文档库 最新最全的文档下载
当前位置:文档库 › 激光工程化净成型促进添加制造与修复技术的发展

激光工程化净成型促进添加制造与修复技术的发展

激光工程化净成型促进添加制造与修复技术的发展
激光工程化净成型促进添加制造与修复技术的发展

1.引言

激光工程化净成形技术(Laser Engineered Net Shaping, LENS)是一种新的快速成形技术,它由美国Sandia国立实验室首先提出,也有资料将LENS译成“激光近形制造技术”或者“激光近净成形技术”。它将选择性激光烧结(SLS)技术和激光熔覆(Laser Cladding)技术相结合,快速获得致密度和强度均较高的金属零件。

选择性激光烧结技术的工作原理如下:首先在计算机上通过CAD软件天生零件的CAD实体模型,并且将该实体模型离散化天生STL文件;然后利用切片软件读取STL文件,将零件切成一系列薄层,并天生每一层的扫描轨迹;最后在活塞工作台上逐层展上金属粉末,用相应的每层扫描轨迹控制激光束对金属粉末进行扫描烧结,形成所需外形的金属零件。

通过选择性激光烧结得到的金属零件实际上是密度和强度都很低的多孔金属零件。要进步这种多孔金属零件的强度,必须采用浸渗树脂、低熔点金属或热等静压等后处理方法。但这些后处理方法既改变了金属零件的性能和精度,又延长了零件加工的时间,从而失往快速成形技术的特色。

激光熔覆技术是材料表面改性技术的一种重要方法,它是利用高能密度激光束将具有不同成分、性能的合金与基材表面快速熔化,在基材表面形成与基材具有完全不同成分和性能的合金层的快速凝固过程。激光熔覆可以通过两种方法完成:其一是预先放置疏松粉末涂层,然后用激光重熔;其二是在激光处理时,采用气动喷注法把粉末注进熔池中。激光熔覆技术的本质是利用高功率激光将金属粉末直接加热至熔化,从而形成材料间的冶金结合。激光熔覆形成的材料组织致密、性能优良。

激光工程化净成形技术将选择性激光烧结技术和激光熔覆技术相结合,既保持了选择性激光烧结技术成形零件的优点,又克服了其成形零件密度低、性能差的缺点。它最大的特点是制作的零件密度高、性能好,可作为结构零件使用。该技术的缺点是需使用高功率激光器,设备造价昂贵;成形时热应力较大,成形精度不高。

目前,激光工程化净成形技术可用于制造成形金属注射模、修复模具和大型金属零件、制造大尺寸薄壁外形的整体结构零件,也可用于加工活性金属如钛、镍、钽、钨、铼及其它特殊金属。

2.激光工程化净成形系统的组成

激光工程化净成形技术是选择性激光烧结技术和激光熔覆技术的结合,因此其工作原理及系统的组成与选择性激光烧结技术相似。本实验所设计的激光工程化净成形系统共由四部分组成:计算机、高功率激光器、活塞式展粉器和X—Y工作台。

(1)计算机

在激光工程化净成形系统中,计算机将参与零件成形全部过程,该过程包括两个阶段:①成形预备阶段。建立零件的CAD实体模型,并将该CAD实体模型转换成STL文件,对零件的STL文件进行切片处理,天生一系列具有一定厚度的薄层及每一薄层的扫描轨迹;②成形加工阶段。对系统中各部件(包括激光器光闸、校正光开关、保护气气阀、展粉电机、活塞电机以及X—Y工作台电机等等)进行同一指令下的有序控制,完成金属零件的加工过程。

(2)高功率激光器

在选择性激光烧结系统中,金属粉末往往与低熔点添加粘结剂相混合,激光烧结时只是将粘结剂熔化,熔化的粘结剂将金属粉末粘结在一起形成金属零件坯体,因此激光器的功率

一般较低。而在激光工程化净成形系统中,激光直接熔化金属粉末,实现熔覆作用,因此要求采用高功率激光器。在本实验系统中采用武汉楚天产业激光设备有限公司生产的JHM-1GX 200B型Nd:YAG高功率固体脉冲激光器,激光波长为1.06μm,产生的激光用具有柔韧传输特性的光纤进行传输。

(3)活塞式展粉器

在美国Sandia国立实验室中,激光工程化净成形系统采用喷嘴将金属粉末喷射到高功率激光的焦点处使粉末熔覆;而本实验中采用预先放置疏松粉末涂层方法,该送粉方式与传统选择性激光烧结中活塞式展粉方式基本相同。活塞式展粉器的移动式贮粉箱移过活塞端口时完成展粉和压实过程,活塞下降实现加工零件的堆积长高,终极得到金属零件实体。

(4)X—Y工作台

在选择性激光烧结系统中采用振镜摆动方式实现扫描,而在本实验所设计的激光工程化净成形系统中采用X—Y工作台来实现平面扫描运动。具体做法是将激光头固定在X—Y工作台的悬臂上,使激光头随工作台一起做平面运动,实现逐点逐线激光熔覆直至获得一个熔覆截面。

3.成形加工中若干题目及其解决办法

由于在激光工程化净成形系统中采用高功率激光器进行熔覆烧结,因此就会碰到与选择性激光烧结系统中不同的新题目,恰当地解决好这些题目则是成形加工的关键。

3.1 体积收缩率过大题目及其解决

在各种金属直接成形技术中都存在着体积收缩题目,这是由于金属粉末的密度即使在高温压实的状态下仍然比较低,而烧结后密度将增加,从而造成在相同质量条件下体积的收缩。这种体积收缩现象在选择性激光烧结中不明显,由于烧结后的零件仍然是强度和密度均较低的多孔金属零件,其密度一般只能达到该金属密度的50%。但是在激光工程化净成形系统中,体积收缩则是一个十分明显且不容忽视的题目,由于在高功率激光熔覆作用下,加工后金属件的密度将与其冶金密度相近,从而造成较大的体积收缩现象。

体积收缩现象实验:展粉厚度为1.5mm,激光熔覆之后的厚度仅为约0.03mm。1.5mm 厚的粉末除少部分在脉冲激光作用下迸飞之外,其余尽大多数体积收缩并熔覆在厚度仅为0.03mm的薄层中。该实验材料为500目纯镍粉;激光参数为:脉冲电流250A、脉冲宽度4.0ms、脉冲频率2Hz;扫描速度为1mm/s;保护气体为氩气,流量5L/min。

在选择性激光烧结技术中,展粉厚度一般与分层厚度相同。而在激光工程化净成形技术中,由于体积收缩过大,要求展粉厚度必须远大于分层厚度才能保证加工后实体高度误差在较小的范围之内。然而过大的展粉厚度会引起金属粉末严重迸飞流失,使下一条扫描线上粉末厚度骤减,无法实现连续扫描。

本实验采用单层多次展粉、多次扫描方式,很好地解决了由体积收缩率过大而造成的影响。例如,假如分层厚度为0.1mm,按照展粉厚度1.5mm产生0.03mm厚熔覆层这一比例,在层数不变的情况下连续展粉3次并扫描3次即可获得厚约0.1mm的一层熔覆层。

3.2 粉末爆炸迸飞题目及其解决

粉末爆炸迸飞是指在高功率脉冲激光的作用下,粉末温度由常温骤增至其熔点之上而引起其急剧热膨胀致使四周粉末飞溅流失的现象。发生粉末爆炸迸飞时经常伴有“啪、啪”声,在扫描熔覆时会形成犁沟现象。激光焦点位于熔覆表面处,焦斑直径0.8mm。这种犁沟现象使粉末上表面的宽度经常大于熔覆面宽度两倍之多,从而使相临扫描线上没有足够厚度的

粉末参与扫描熔覆,无法实现连续扫描熔覆加工。这种粉末爆炸迸飞现象是在高功率脉冲激光熔覆加工中所特有的现象,原因有两个:其一是该激光器一般运行在500W的均匀功率上,但脉冲峰值功率可高达10kW,大于均匀功率15倍之多;其二是脉冲激光使加工呈不连续状态,在展粉层上形成热的周期性剧烈变化。

在本实验中,通过两种办法的综合运用有效地减小了粉末爆炸迸飞现象的发生:

(1)在展上一层金属粉末之后,均匀滴注20%的502—丙酮溶液,待丙酮完全蒸发之后,金属粉末就会在502胶的作用下粘结在一起,从而减小粉末的爆炸迸飞。

(2)加工表面位于激光焦点之下的某一位置。在一般的快速成形中,都尽可能使加工表面位于激光焦点处,这样既保证最大的加工精度又使激光能量充分聚集。但是在本实验系统中,高能量的聚集恰正是粉末爆炸迸飞的直接原因,因此将熔覆面放到焦点以下的某一位置可以使激光能量适当地分散,有效地减小粉末爆炸迸飞现象的发生。但是激光光斑直径会变大,在减小粉末爆炸迸飞并进步加工效率的同时对加工精度产生一定的负面影响。

在本实验中综合运用上述两种方法,当光斑直径取1.5mm时既保证了一定的加工精度,又有效地减小粉末爆炸迸飞现象的发生,达到很好的连续加工效果。

3.3 加工表面质量题目及其解决

在激光扫描熔覆过程中,每一层的表面质量都至关重要,它总是下一层加工面的基础,所以单层表面的粗糙度以及缺陷直接影响后续加工质量,而其积累结果将决定金属零件的终极天生质量。影响加工表面质量的因素很多,这里主要讨论脉冲激光光斑重合率以及扫描轮廓线对表面质量的影响。

(1)光斑重合率对表面质量的影响

脉冲激光光斑重合率是指相临两个脉冲光斑或相临两条扫描线间的重合程度。当两个相临光斑完全重合时,重合率为100%;相切时为0;相交时则介于0~100%之间。

光斑重合率计算公式如下:

η=l/2r×100% (1)

式中l的长度决定于光斑半径r、脉冲频率f和扫描速度v,当激光脉冲频率f取2Hz时,l与v的关系如下式所示:

2r-l=v (2)

将式(2)代进式(1)并加以整理可得:

η=(1-v/2r)×100% (3)

由式(3)可以看出,光斑重合率随扫描速度增加而减小、随光斑半径增加而增加。由于光斑重合率的取值范围在0~1之间,所以要满足下面的关系式:

0<1-v/2r<1 (4)

式中1-v/2r<1是显然的。由0<1-v/2r可得v<2r,即扫描速度必须小于激光光斑的直径。相反,若v>2r,相邻光斑则完全分离,无法实现连续的熔覆烧结,显然无法天生实体零件。

理论上讲,重合率越大加工后的表面越均匀,然而过大的重合率会严重影响加工的效率。因此实验上采用50%的重合率,即相邻光斑以及相邻扫描线之间的间隔均取光斑半径长度。这样既保证一定的表面质量,又进步了加工效率。

(2)扫描轮廓线对表面质量的影响

在选择性激光烧结中,每一层都要先扫描轮廓线,然后再对轮廓线内部进行扫描填充,

这样可保证轮廓清楚,并获得较好的侧表面质量。而在本实验中,扫描轮廓线造成了十分明显的边沿突出现象,从而恶化表面质量。产生边沿突出现象的主要原因在于展粉后先扫描的轮廓线没有受到粉末爆炸迸飞的影响。

解决轮廓线突出的一个十分直接的方法就是不对轮廓线进行扫描,或者先扫描填充线后扫描轮廓线。本实验中采用忽略轮廓线扫描的办法,各条填充线端部在热熔金属熔合作用下,也可以获得较理想的边沿质量。

4.结语

激光工程化净成形技术将选择性激光烧结技术和激光熔覆技术相结合,快速成形密度高、性能好并可作为结构零件使用的金属零件。本文设计并组建具有自己特色的激光工程化净成形系统,并对成形加工中碰到的若干题目进行分析和解决,为成形实验的进一步开展奠定基础。

粘接工艺规程

工艺规程 文件编号:HD/GC012-2015 工艺类别:粘接 编制: 校对: 审核: 批准: 生效日期凌海航达航空科技有限公司

目录 1.总体要求 (2) 2.目的 (2) 3.适用范围 (2) 4.产品概述 (3) 5.依据 (3) 6.工序级别定义 (3) 7. 所用主要设备 (3) 8.工艺流程 (3) 9.检验定义 (4) 10.工作记录 (4) 11.具体工艺要求 (4) 12.工艺重要关联与补充 (13) 附录 《生产工艺&过程检验卡》(PM-QCP-006-01)——粘接

1.总体要求 1.1 本工艺需要熟练操作工执行操作。要求操作者必须经过粘接工艺的培训合格后方能上岗工作。要求操作者能能够识别公司内部生产常见的材料及对应的粘接剂。对粘接过程中出现如溢胶等简单问题,能够立即处理。执行此工艺过程中,要求密切配合、支持本公司各级检验员的工作,尊重其检验结果,执行质控部对质量问题的纠正、返修裁断。服从MRB对重大质量问题的审核及处理结果。 1.2 生产工序的现场中,该产品/零部件的有效/受控图纸及详实记录的《生产工艺&过程检验卡》(PM-QCP-006-01)、《产品检验记录卡》(PM-QCP-006-03)、《产品终检检验卡》(PM-QCP-006-04)等追溯性文件同时存在,必须做到图、物、卡同步存在或转序。 2. 目的 2.1 使生产厂家或本公司生产操作者,在本规程的指导下,正确、高效地生产出合格产品。 2.2 为了实现产品生产过程中的质量控制。 2.3 为了合理利用原辅材料、设备、人员和生产时间。 2.4 为了使公司管理规范化,使生产中的“人、机、料、法、环”得到统筹、合理安排和利用,最大限度地减小内耗、提高效益。 3.适用范围: 3.1 金属与非金属材零部件的粘接。 3.2 非金属件如地板、挡板的封边。 3.3 自带胶(背胶)的原辅材的使用。

激光光散射技术及其应用.

激光光散射技术及其应用 Laser Light Scattering System Technology and Application BROOKHA VEN INSTRUMENTS CORPORATION (BEIJING OFFICE) 地址:北京市海淀区牡丹园北里甲1号中鑫嘉园东座A105室美国布鲁克海文公司公司北京技术服务中心 邮编:100083 电话:8610-62081909 传真:8610-6208189

激光光散射技术和应用 近年来,光电子和计算机技术的飞速发展使得激光光散射已经成为高分子体系和胶体科学研究中的一种常规的测试手段。现代的激光光散射包括静态和动态两个部分。在静态光散射中,通过测定平均散射光强的角度和浓度的依赖性,可以得到高聚物的重均分子量M w,均方根回旋半径R g和第二维利系数A2;在动态光散射中,利用快速数字相关器记录散射光强随时间的涨落,即时间相关函数,可得到散射光的特性弛豫时间τ,进而求得平动扩散系数D和与之对应的流体力学半径R h。在使用过程中,静态和动态光散射有机地结合可被用来研究高分子以及胶体粒子在溶液中的许多涉及到质量和流体力学体积变化的 过程,如聚集和分散、结晶和溶解、吸附和解吸、高分子链的伸展和卷缩以及蛋白质长链的折叠,并可得到许多独特的分子量参数。 一、光散射发展简史: Tynadall effect(1820-1893) 1869年,Tyndall研究了自然光通过溶胶颗粒时的散射,注意到散射光呈淡淡的蓝 色,并且发现如果入射光是偏振的,这散射光也是偏振的。Tyndall由此提出了19 世纪气象学的两大谜题:为什么天空是蓝色的?为什么来自天空的散射光是相当偏 振的? James Clerk Maxwell (1833-1879) 解释了光是一种电磁波,并正确地计算出光的速度。 Lord Rayleigh(1842-1919) 1881年,Rayleigh应用Maxwell的电磁场理论推导出,在无吸收、无相互作用条件下,光学各向同性的小粒子的散射光强与波长的四次方成反比。并解释了蓝天是太阳光穿透大气层所产生的散射现象。 Abert Einstein(1879-1955) 研究了液体的光散射现象。 Chandrasekhara V.Raman (1888-1970) 1928年,印度籍科学家Raman提出了Raman 效应(也称拉曼散射),即光波在被散射后频率发生变化的现象。 Peter Debye(1884-1966) 延续了 Einstein的理论,描述了分子溶解于溶剂中所产生的光散射现象,提出用Debye plot 。1944 年,Debye利用散射光强测得稀溶液中高分子的重均分子量。 Peter Debye Lord Rayleigh Tyndall effect

2010激光原理技术与应用 习题解答

习题I 1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ12 10-≈?,问λλ/?为多少?要使其相干长度达到1000m ,它的单色性λλ/?应是多少? 解:63.01012 -=?λλ λλδτ?= ==2 1v c c L c 相干 = = ?相干 L λ λ λ 2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=?ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν?约为多少? 解:MHz Hz L c v q 60010625 210328 10=?=??==?η

5 .2=??q F v v s c R L c 8 10 1017.410 3)98.01(25)1(-?=??-=-=τ MHz Hz L c R v c c 24104.2)1(21 7=?=-≈=πτδ 3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.1100 210328 10=?=??==? 10 150 1500==??q v v L c R v c c )1(21 -≈ =πτδ 4、已知CO 2激光器的波长m μλ60.10=处 光谱线宽度MHz F 150=?ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。

解:L c v v F q η2=?=?, F v c L ?=2 5、Nd 3 —YAG 激光器的m μ06.1波长处光 谱线宽度MHz F 5 1095.1?=?ν,当腔长为10cm 时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L c v q 3 10105.110 21032?=??==?η 130 =??q F v v L c R v c c )1(21 -≈ =πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。 ①求距束腰10cm 、20cm 、100cm 时, 光斑半径)(z ω和波阵面曲率半径)(z R 各为多少? ②根据题意,画出高斯光束参数分布图。

SLA激光快速成型原理

SLA工艺也称光造型或立体光刻,是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。液槽中盛满液态光固化树脂,激光束在偏转镜作用下,能在液态表面上扫描,扫描的轨迹及光线的有无均有计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度,聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。SLA方法是目前快速成型技术领域中研究得最多的方法,也是技术上最为成熟的方法。SLA工艺成型的零件精度较高,加工精度一般可达到0.1mm,原材料利用率近100%。 成型技术特点 快速成型技术具有一下几个重要特征:1)可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理,它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出RP技术的优越性。此外,RP技术特别适合复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。2)快速性。通过对一个CAD模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。3)高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模型、原型或零件。4)快速成型技术实现了机械工程学科多年来追求的两大先进目标,即材料的提取(气、液、固相)过程与制造过程一体化和设计(CAD)与制造(CAM)一体化。5)与反求工程(Reverse Engineering)、CAD技术、网络技术、虚拟现实等相结合,成为产品快速开发的有力工具。 流程示意 快速成型的工艺过程具体如下: 1)产品的三维模型的构建。由于RP系统是由三维CAD模型直接驱动,因此首先要构建所加工工件的三维CAD模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E,I-DEAS, Solid Works,UG等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。 2)SLA激光快速成型 SLA工艺也称光造型或立体光刻,是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。液槽中盛满液态光固化树脂,激光束在偏转镜作用下,能在液态表面上扫描,扫描的轨迹及光线的有无均有计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度,聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。 3)成型零件的后处理。 从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一部提高其强度。 材料性能

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

激光技术及其在现代通讯技术中的应用.

激光技术及其在现代通讯技术中的应用 姓名:杨春有学号:20141060138 学院:信息学院专业:通信工程(国防) 摘要20世纪以来,激光是继原子能、计算机、半导体之后的又一重大科技发明。在有充分的理论准备和生产实践需要的背景下,激光技术应运而生。它一问世就获得了异乎寻常的快速发展。激光在现代通信领域有着广泛的应用。它在扩大通信容量,缓和通信频段拥挤,提高安全等方面都发挥着极为重要的作用。 关键词:激光通信技术现代通讯激光通信光子晶体能量衰减 引言 事实上,1916 年激光的原理被著名的物理学家爱因斯坦发现之后一直没有研制成功,原因在于科学实验所需要的器材没有现在发达,一直到1958 年激光才被首次成功制造。激光是计入20世纪,继原子能、计算机、半导体之后,人类的又一重大发明,它的亮度非常之高,大约为太阳光的100亿倍。因此激光一问世,就获得了异乎寻常的飞快发展,也正是因为这个原因,历史悠久的光学科学和光学技术体会了新生的快乐,更重要的是导致整个一门新兴产业——激光产业——的诞生。 一激光通信的发展阶段 激光通信经历了大气通信和光波导(光纤)通信两个重要的发展阶段。CO2气体激光器是比较符合要求的早期通信用光源,其输出激光波长为10.6μm,在大气通行当中,信道传输的低损耗窗口要求的标准波长是10.6μm。早期的激光大气通信所用光源还包括YAG固体激光器、He-Ne气体激光器等等。其中的早期激光大气通信曾经掀起了全球性的研究浪潮,大量的人力、财力和物力在这个阶段投入了进去,对激光大气通信进行了广泛的研究开发。但是这项研究只有少数的经济和技术力量雄厚的发达国家才能够承担得起。光纤波导通信技术大约与激光大气通信技术的研究工作同步展开,从而在技术上形成了激光无线通信和激光有线通信两种通信方式,这两种通信技术与传统通信技术大不相同。 腔面发射激光器(VCSEL)列阵光接受发射模块的处理能力不仅速度高而且容量特别大。微电子电路的多功能的逻辑控制、具有高强度并行操作功能的电子集成器件的优越性、光本身的高速传输能力、超高规模集成技术的优越性在垂直腔面发射激光器(VCSEL)列阵光接受发射模块当中得到了完美的体现。现代通信技术研究中,在激光通信领域,最引人瞩目的就要属垂直腔面发射激光器(VCSEL)了。包括制造成本很低、易

激光对射技术原理及应用分析.

激光对射技术原理及应用分析 近年来周界防范系统已经成为安防系统基本且不可或缺的安防子系统。 不仅在军工厂、军营、机场、港口、政府机关等高端领域可见其“踪影”。 同时还被广泛应用到住宅小区,并在这些领域保持着相当高的应用增长速度。 众所周知,安全防范技术现在的发展方向是将视频监控、周界报警、入侵探测、门禁控制等独立的安防子系统集成整合,形成一个多功能、全天候、动态的综合安全管理系统。 而周界报警作为安防系统的第一道防线,作用十分重要,已从过去被动的报警探测,发展为今天的威慑阻挡加报警。 且随着安防技术的发展和安防市场的成熟,以及政策法规的进一步完善,数字化、集成化、网络化将是它发展的必然趋势。 周界报警系统是在防护的边界利用如泄漏、激光、电子围栏等技术形成一道或可见或不可见的“防护墙”。 当有越墙行为发生时,相应防区的探测器即会发出报警信号,并送至控制中心的报警控制主机,发出声光警示的同时显示报警位置。 还可联动周界模拟电子屏,甚至联动摄像监控系统、门禁系统、强电照明系统等。 近年来周界防范系统已经成为安防系统基本且不可或缺的安防子系统,不仅在军工厂、军营、机场、港口、政府机关等高端领域可见其 “踪影”,同时还被广泛应用到住宅小区,并在这些领域保持着相当高的应用增长速度。

本文将对激光对射、张力式电子围栏、泄漏电缆、振动电缆四种最常用的周界防范技术进行分析,借此一窥周界防范报警系统技术的发展踪迹。 激光对射工作原理 三安古德激光对射探测器由收、发两部分组成。 激光发射器向安装在几米甚至于几百米远的接收器发射激光线,其射束有单束、双束,甚至多束。 当相应的三安古德激光射束被遮断时,接收器即发出报警信号。 接收器由光学透镜、激光光电管、放大整形电路、功率驱动器及执行机构等组成。 其工作原理是接收器能收到激光射束为正常状态,而当发生入侵时,发射器发射的激光射束被遮挡,即光电管接收不到激光光。 从而输出相应的报警电信号,并经整形放大后输出开关量报警信号。该报警信号可被报警控制器接收,并去联动执行机构启动其它的报警设备,如声光报警器、模拟电子地图、电视监控系统、照明系统等。系统组成 激光周界防越报警系统通常由前端探测系统、现场报警系统、传输系统、中心控制系统、联动系统以及电源系统六部分组成。 1、前端探测系统由激光探测器及其相关附件组成,其对周界围墙或护栏进行防护,检测周界入侵行为,并输出报警信号。 2、现场报警系统由现场报警器及联动装置组成,在探测器检测到入侵行为时,即启动现场报警设备,对非法入侵行为进行威慑。

DLF与SLM激光快速成型方法的比较

DLF与SLM激光快速成型方法的比较激光直接制造(Direct Laser Fabrication,DLF)技术与选择性激光熔化(Selective Laser Melting,SLM)技术是目前较为成熟和先进的激光快速成型技术,涉及机械、材料、激光、计算机和自动控制等多学科领域,充分体现了现代科学发展多学科交叉的特点,具有广泛的研究与发展前景。 DLF技术是基于激光快速成型的“离散一堆积”、“添加式制造”的基本概念和激光熔覆技术而发展起来的金属零件全密度全功能快速直接制造技术。其实质是利用送粉式激光熔覆逐点、逐层沉积,实现三维任意形状高性能金属零件的近净成型。 SLM技术是以选择性激光烧结(Selective I.aserSinter,SLS)技术为基础,基于快速成型的最基本思想,即逐层熔覆的“增量”制造方式,根据三维CAD模型直接成型具有特定几何形状的零件,成型过程中金属粉末完全熔化,产生冶金结合。它是快速成型技术的 最新发展。 本文采用DLF与SLM两种激光快速成型技术进行一系列实验,根据实验结果,比较分析两种快速成型方法在成型精度和效率、成型件力学性能和组织结构等方面的异同,为激光快速成型方法的选择提供一定的技术依据。 1 DLF与SLM激光快速成型技术的原理 1.1 DLF激光快速成型技术的原理 DLF技术是将快速成型(Rapid Prototyping,RP)技术和激光熔

覆技术相结合,以激光作为加工能源,以金属粉末为加工原料,在金属基板上逐层熔覆堆积,从而形成金属零件的制造技术。DLF快速成型技术的基本原理哺1如图1所示,先利用三维CAD软件(如UG,Pro /E,Solidworks)生成所需制造零件的三维CAD模型,并转换成STL 格式;再利用切片技术将吼格式的CAD模型按照一定的层厚进行分层切片, 提取每一层切片所产生的轮廓;然后根据切片轮廓设计合理的扫描路径,并转换成相应的计算机数字控制(Computer Nomencal Control,CNC)工作台指令;激光束在CNC指令控制下进行扫描加工,将加工原料进行熔覆,生成与这一层形状、尺寸一致的熔覆层。完成这一过程后,聚焦镜、同轴送粉喷嘴等整体上移(或工作台下移)一个层厚的高度,并重复上述过程,如此逐层熔覆堆积直到形成CAD模型所设计的形状,加T出所需的金属零件为提高表面质量和避免加工缺陷,加工过程可在气体保护下进行。

激光技术的发展与展望

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

激光快速成型(SLS)技术在汽车领域的应用讲解

激光快速成型(SLS)技术在汽车领域的应用 湖南华曙公司采用的选择性粉末激光烧结(SLS)技术是行业领先的柔性智能制造技术,广泛服务于汽车制造、飞机工程、消费电子、精密传感等诸多领域。 快速制造(RM)激光装备欧美等国07年一年新增近2000台,制成产品已经大量出现在飞机、汽车、大型仪器、仪表等领域,由于不需要模具,从CAD文件到产品可在15小时之内出货,对我们这个传统的制造业大国产生了强烈的冲击,庞大的市场需求与国产设备的极缺造成的反差,无论是激光装备国产化市场还是产品市场都给我们留出了宝贵的市场机遇。我们项目正是在国内批量制造RM设备并承接RM产品制造服务,并力争建成全国领先的产业集群,国家工程技术中心。 汽车设计和塑胶件批量制造中应用 汽车外形及内饰件的设计、改型、装配试验,发动机、汽缸头等复杂外型的试制。 作为设计验证和评估的手段,激光快速成型已经用于国内外汽车产业中, ●例如美国克莱斯勒公司已制造车身模型,将其放在高速风洞中进行空气动力学试验分析,取得了令人满意的效果,大大节约了试验费用。 ●汽车发动机进气管内腔形状是由十分复杂的自由曲面构成的,它对提高进气效率、燃烧过程有十分重要的影响。设计过程中,需要对不同的进气管方案做气道试验,传统的方法是用手工方法加工出由几十

个截面来描述的气管木模或石膏模,再用砂模铸造进气管,加工中,木模工对图纸的理解和本身的技术水平常导致零件与设计意图的偏离,有时这种误差的影响是显著的。使用数控加工虽然能较好地反映出设计意图,但其准备时间长,特别是几何形状复杂时更是如此。英国Rover公司使用激光快速成型技术生产进气管的外模及内腔模,取得了令人满意的效果。 ●在汽车模具制造中应用本激光快速成型技术,能烧结蜡、聚碳酸酯、尼龙、金属等各种材料。用该系统制造的钢铜合金注塑模具,可注塑5万件工件。也可以结合其他技术来制作钢质模具,实现金属模的快速制造。或者直接制造出复形精度较高的EDM电极,用于注塑模、锻模、压铸等钢制模具型腔的加工。一个中等大小、较为复杂的电极一般4~8h即可完成,复形精度完全满足工程要求。福特汽车公司用此技术制造汽车模具取得了满意的效果。上海交通大学也已通过RP与精密铸造结合的方法为汽车及汽车轮胎等行业生产进口替代模具计80余副。与传统机加工法相比,快速模具制造的制作成本及周期大大降低。我国每年需进口模具达几十亿美元,主要是复杂模具和精密模具,因此,激光快速成型技术在未来的汽车模具制造业中的应用前景十分广阔。 ●在汽车灯具制造上的应用汽车灯具大多数的形状是不规则的,曲面复杂,模具制造难度很大。通过快速成型技术,可以很快得到精确的产品试样,为模具设计CAD和CAM提供了有利的参考。同时,也可以通过快速成型技术,用熔模铸造的方法快速、高精度地制造出灯具模具。

激光焊接技术应用及发展趋势

激光焊接技术应用及其发展趋势 摘要:本文论述了激光焊接工艺的特点、激光焊接在汽车工业、微电子工业、生物医学等领域的应用以及研究现状,激光焊接的智能化控制,论述激光焊接需进一步研究与探讨的问题。关键词:激光焊接;混合焊接;焊接装置;应用领域 引言 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的Y AG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 一、激光焊接的质量与特点 激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种: 1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。 这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。 1、激光焊接的焊缝形状 对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。图2显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形

激光快速成型技术研究现状与发展

激光快速成型技术研究现状与发展 摘要:快速成型技术是近年来制造技术领域的一次重大突破和革命性的发展,激光快速成型技术是其重要组成部分。本文介绍了激光快速成型技术的基本原理和特点,分析了有关工艺方法,讨论了LRP 技术的研究现状和应用,并展望其未来发展趋势。 关键词:激光快速成型;研究现状;发展趋势 1 激光快速成型技术原理和特点 80 年代后期发展起来的快速成型技术(RapidPrototyping ,RP) 是基于分层技术、堆积成型, 直接根据CAD 模型快速生产样件或零件的先进制造成组技术总称。RP 技术不同于传统的去除成型、拼合成型及受迫成型等加工方法,它是利用材料累加法直接制造塑料、陶瓷、金属及各种复合材料零件[1 ] 。以激光作为加工能源的激光快速成型是快速成型技术的重要组成部分,它集成了CAD 技术、数控技术、激光技术和材料科学等现代科技成果。激光快速成型(Laser Rapid Prototyping ,LRP) 原理是用CAD 生成的三维实体模型,通过分层软件分层,每个薄层断面的二维数据用于驱动控制激光光束,扫射液体,粉末或薄片材料,加工出要求形状的薄层,逐层累积形成实体模型。快速制造出的模型或样件可直接用于新产品设计验证、功能验证、工程分析、市场订货及企业决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。以此为基础进一步发展的快速模具工装制造(Quick Tooling) 技术,快速精铸技术(Quick Casting) ,快速金属粉末结技术(Quick Powder Sintering) 等,可实现零件的快速成品。 激光快速成型技术主要特点: (1) 制造速度快、成本低, 节省时间和节约成本,为传统制造方法注入新的活力,而且可实现自由制造(Free Form Fabrication) ,产品制造过程以及产品造价几乎与产品的批量和复杂性无关。[2 ] (2) 采用非接触加工的方式,没有传统加工的残余应力问题,没有工具更换和磨损之类的问题,无切割、噪音和振动等,有利于环保。 (3) 可实现快速铸造、快速模具制造,特别适合于新品开发和单件零件生产。 2 LRP 工艺方法 LRP 技术包括很多种工艺方法,其中相对成熟的有立体光固化(SLA) 、选择性激光烧结(SLS) 、分层实体制造(LOM) 、激光熔覆成形(LCF) 、激光近形制造(LENS) 。 (1) 光固化立体造型(SL —Stereolithography ,orSLA) 将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态光敏树脂逐点扫描,被扫描的树脂薄层产生光聚合反应固化形成零件的一个截面, 再敷上一层新的液态树脂进行扫描加工,如此重复直到整个原型制造完毕。这种方法的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑。 (2) 分层实体制造(LOM—Laminated ObjectManufacturing) LOM工艺是根据零件分层得到的轮廓信息用激光切割薄材,将所获得的层片通过热压装置和下面已切割层粘合,然后新的一层纸再叠加在上面,依次粘结成三维实体。LOM主要特点是设备和材料价格较低,制件强度较好、精度较高。Helisys 公司研制出多种LOM工艺用的成型材料,可制造用金属薄板制作的成型件,该公司还开发基于陶瓷复合材料的LOM工艺。 (3) 选择性激光烧结(SLS —Se1ected LaserSintering) SLS 的原理是根据CAD 生成的三维实体模型,通过分层软件分层获得二维数据驱动控制激光束,有选择性地对铺好的各种粉末材料进行烧结,加工出要求形状的薄层,逐层累积形成实体模型,最后去掉未烧结的松散的粉未,获得原型制件。SLS的特点是可以采用多种材料适应不同的应用要求,而具有更广阔的发展前景。但能量消耗非常高,成型精度有待进一步提高。DTM

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

激光器技术的应用现状及发展趋势_百度文库讲解

激光器技术的应用现状及发展趋势 摘要 :简述了激光精密加工技术及其特点 ; 综述了激光精密加工的应用现状 ; 探讨了激光精密加工技术的发展趋势。激光加工技术在机械工业中的广泛应用, 促进了激光加工技术向工业化发展。为此, 介绍了几种应用较广泛的激光加工技术; 重点讨论了激光硬化和激光珩磨技术的应用和发展趋势。摘要由于在光通信光数据存储传感技术医学等领域的广泛应用近几年来光纤激光器发展十分迅速本文简要介绍了光纤激光器的工作原理及特性 , 并对目前多种光纤激光器作了较为详细的分类 ; 同时介绍了近几年国内外对于光纤激光器的研究方向及其目前的热点是高功率光纤激光器、窄线宽可调谐光纤激光器和超短脉冲光纤激光器 ; 最后指出光纤激光器向高功率、多波长、窄线宽发展的趋势 . :结合河北工业大学光机电一体化研究室近几年对激光加工技术研究的初步成果, 对激光加工技术的特点, 激光加工技术在国内外的应用发展状况, 以及激光加工技术的发展趋势进行了简要介绍, 同时分析了我国激光加工产业面临的机遇与挑战,并提出了应采取的对策 前言 1 概述 激光加工是 20 世纪 60 年代初期兴起的一项新技术,此后逐步应用于机械、汽车、航空、电子等行业, 尤以机械行业的应用发展速度最快。在机械制造业中的广泛使用又推动了激光加工技术的工业化。 20 世纪 70 年代,美国进行了两大研究 :一是福特汽车公司进行的车身钢板的激光焊接 ; 二是通用汽车公司进行的动力转向变速箱内表面的激光淬火。这两项研究推动了以后的机械制造业中的激光加工技术的发展。到了 20 世纪 80 年代后期, 激光加工的应用实例有所增加 , 其中增长最迅速的是激光切割、激光焊接和激光淬火。这 3 项技术目前已经发展成熟, 应用也很广泛。进入 20 世纪 90 年代后期, 激光珩磨技术的出现又将激光微细加工技术在机械加工中的应用翻开了崭新的一页。激光加工技术之所以得到如此广泛的应用, 是因为它与传统加工技术相比具有很多优点:一、是非接触加工, 没有机械力; 二、是可以加工高硬度、高熔点、极脆的难加工材料;三、是加工区小,热变形很小,

激光快速成型的特点与工艺(图)

手板模型按加工方式,主要可分为CNC数控加工,另外就是激光快速成型加工,本文主要介绍关于快速成型技术的制作原理与要点。 快速成型技术的特点: 与传统材料加工技术相比,快速成型具有鲜明的特点: 1.数字化制造。 2.高度柔性和适应性。可以制造任意复杂形状的零件。 3.直接CAD模型驱动。如同使用打印机一样方便快捷。 4.快速。从CAD设计到原型(或零件)加工完毕,只需几十分钟至几十小时。 5.材料类型丰富多样,包括树脂、纸、工程蜡、工程塑料(ABS等)、陶瓷粉、金属粉、砂等,可以在航空,机械,家电,建筑,医疗等各个领域应用。 快速成型的主要工艺: RP技术结合了众多当代高新技术:计算机辅助设计、数控技术、激光技术、材料技术等,并将随着技术的更新而不断发展。自1986年出现至今,短短十几年,世界上已有大约二十多种不同的成形方法和工艺,而且新方法和工艺不断地出现。目前已出现的RP技术的主要工艺有: 1.PCM工艺:无木模铸造。 2.SL工艺:光固化/立体光刻 。 3.FDM工艺:熔融沉积成形。 4.SLS工艺:选择性激光烧结。 5.LOM工艺:分层实体制造。 6.3DP工艺:三维印刷。 模型放置与添加零件支撑: 为了防止成型过程中零件的翘曲变形,需要给零件添加支撑。AFS(快速成型系统)提供了两种支撑方法,一种是网格支撑,一种是基于切片和零件形状的支撑。因为支撑只是在零件烧结成型的过程中防止零件翘曲变形,零件成型以后,支撑是需要去除的,因此支撑再烧结温度要小于零件的烧结温度。也就是激光束在扫描经过支撑的时候,激光器的功率要降低,扫描密度要降低,扫描线宽要增大。这样,支撑的烧结强度就低,成型以后很容易去除。如图2所示,成型零件是一个吸尘器的封盖,当封盖模型经过缩放处理后就可以添加支撑了,涂颜色的部分即是添加的支撑。添加支撑的原则是对那些悬掉点、下棱线、倾斜角度过大的表面三种结构需要加支撑。因此在放置模型时就应该考虑到支撑的放置问题。一般对表面质量要求较高的面最好放置为顶面,特别是对于细小凸起,更要放置在顶面;同时,如果凸起的尺寸太小,需要对凸起高度进行一定比例的放大。对于细长的悬臂类结构件最好横放,竖放难以保证悬臂的直线度。为了提高扫描的效率,一般应考虑将尺寸较大的边横放,减少扫描的层数,缩短加工时间。 激光快速成型的特点与工艺广州盛域 https://www.wendangku.net/doc/982374433.html, 2012年5月 快 速 成 型 与 自 动 化 技 术 Rapid prototyping & automation technology 快速成型技术是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。以常用的激光快速成型来进行简单总结其工艺过程中的一些要点。第 1 页

相关文档
相关文档 最新文档