文档库 最新最全的文档下载
当前位置:文档库 › 激光快速成型原理

激光快速成型原理

激光快速成型原理
激光快速成型原理

激光快速成型机

快速成型技术的原理、工艺过程及技术特点:

快速成型属于离散/堆积成型。它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。

快速成型的工艺过程具体如下:

l )产品三维模型的构建。由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。

2 )三维模型的近似处理。由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用

3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。 STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。典型的CAD 软件都带有转换和输出 STL 格式文件的功能。

3 )三维模型的切片处理。根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。间隔一般取0.05mm~0.5mm,常用 0.1mm 。间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。

4 )成型加工。根据切片处理的截面轮廓,在计算机控制下,相应的成型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结,最终得到原型产品。

5 )成型零件的后处理。从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一步提高其强度。

快速成型特术具有以下几个重要特征:

l )可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。

2 )快速性。通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。

3 )高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件

4 )快速成型技术实现了机械工程学科多年来追求的两大先进目标.即材料的提取(气、液固相)过程与制造过程一体化和设计(CAD )与制造( CAM )一体化

5 )与反求工程( Reverse Engineering)、CAD 技术、网络技术、虚拟现实等相结合,成为产品决速开发的有力工具。

因此,快速成型技术在制造领域中起着越来越重要的作用,并将对制造业产生重要影响。

快速成型技术的分类:

快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(Laser Technology),例如:光固化成型(SLA )、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(Jetting Technoloy),例如:熔融沉积成型(FDM)、三维印刷( 3DP )、多相喷射沉积( MJD )。下面对其中比较成熟的工艺作简单的介绍。

1、SLA(Stereolithogrphy Apparatus)工艺 SLA 工艺也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。 1988 年美国 3D System公司推出商品化样机SLA-I,这是世界上第一台快速成型机。SLA 各型成型机机占据着 RP 设备市场的较大份额。

SLA 技术是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。

SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后.未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。

SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。 SLA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。

2、LOM(Laminated Object Manufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于 1986 年研制成功。LOM工艺采用薄片材料,如纸、塑料薄膜等。片材表面事先涂覆上一层热熔胶。加工时,热压辊热压片材,使之与下面已成型的工件粘接。用CO2

激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。激光切割完成后,工作台带动已成型的工件下降,与带状片材分离。供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。再在新层上切割截面轮廓。如此反复直至零件的所有截面粘接、切割完。最后,去除切碎的多余部分,得到分层制造的实体零件。

LOM 工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。因此成型厚壁零件的速度较快,易于制造大型零件。工艺过程中不存在材料相变,因此不易引起翘曲变形。工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以 LOM 工艺无需加支撑。缺点是材料浪费严重,表面质量差。

3、SLS(Selective Laser Sintering)工艺 SLS工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的C.R.Dechard于 1989 年研制成功。SLS工艺是利用粉末状材料成型的。将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧结下层截面。

烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。

SLS工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。这使SLS工艺颇具吸引力。SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。

4、3DP (Three Dimension Printing)工艺三维印刷工艺是美国麻省理工学院E-manual Sachs等人研制的。已被美国的Soligen公司以DSPC(Direct Shell Production Casting)名义商品化,用以制造铸造用的陶瓷壳体和型芯。3DP 工艺与SLS工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面“印刷”在材料粉来上面。

用粘结剂粘接的零件强度较低,还须后处理。先烧掉粘结剂,然后在高温下渗人金属,使零件致密化,提高强度。

5 . FDM (Fused Depostion Modeling)工艺熔融沉积制造( FDM )工艺由美国学者Scott Crump于 1988 年研制成功。 FDM 的材料一般是热塑性材料,如蜡、 ABS 、尼龙等。以丝状供料。材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结。

快速成型技术的应用领域:

目前RP技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计)--造型设计--结构设计--基本功能评估--模拟样件试制这段开发过程。对某些以塑料结构为主的产品还可以进行小批量试制,或进行一些物理方面的功能测试、装配验证、实际外观效果审视,甚至将产品小批量组装先行投放市场,达到投石问路的目的。

快速成型的应用主要体现在以下几个方面:

(1)新产品开发过程中的设计验证与功能验证。RP技术可快速地将产品设计的CAD模型转换成物理实物模型,这样可以方便地验证设计人员的设计思想和产品结构的合理性、可装配性、美观性,发现设计中的问题可及时修改。如果用传统方法,需要完成绘图、工艺设计、工装模具制造等多个环节,周期长、费用高。如果不进行设计验证而直接投产,则一旦存在设计失误,将会造成极大的损失。

(2)可制造性、可装配性检验和供货询价、市场宣传,对有限空间的复杂

系统,如汽车、卫星、导弹的可制造性和可装配性用RP方法进行检验和设计,将大大降低此类系统的设计制造难度。对于难以确定的复杂零件,可以用RP,技术进行试生产以确定最佳的合理的工艺。此外,RP原型还是产品从设计到商品化各个环节中进行交流的有效手段。比如为客户提供产品样件,进行市场宣传等,快速成型技术已成为并行工程和敏捷制造的一种技术途径。

(3)单件、小批量和特殊复杂零件的直接生产。对于高分子材料的零部件,可用高强度的工程塑料直接快速成型,满足使用要求;对于复杂金属零件,可通过快速铸造或直接金属件成型获得。该项应用对航空、航天及国防工业有特殊意义。

(4)快速模具制造。通过各种转换技术将RP原型转换成各种快速模具,如低熔点合金模、硅胶模、金属冷喷模、陶瓷模等,进行中小批量零件的生产,满足产品更新换代快、批量越来越小的发展趋势。快速成型应用的领域几乎包括了制造领域的各个行业,在医疗、人体工程、文物保护等行业也得到了越来越广泛的应用。

快速成型技术的主要应用各行业的应用状况如下:

◆汽车、摩托车:外形及内饰件的设计、改型、装配试验,发动机、汽缸头试制。

◆家电:各种家电产品的外形与结构设计,装配试验与功能验证,市场宣传,模具制造。

◆通讯产品:产品外形与结构设计,装配试验,功能验证,模具制造。

◆航空、航天:特殊零件的直接制造,叶轮、涡轮、叶片的试制,发动机的试制、装配试验。

◆轻工业:各种产品的设计、验证、装配,市场宣传,玩具、鞋类模具的快速制造。

◆医疗:医疗器械的设计、试产、试用,CT扫描信息的实物化,手术模拟,人体骨关节的配制。

◆国防:各种武器零部件的设计、装配、试制,特殊零件的直接制作,遥感信息的模型制作。

总之,快速成型技术的发展是近20年来制造领域的突破性进展,它不仅在制造原理上与传统方法迥然不同,更重要的是在目前产业策略以市场响应速度为第一的状况下,RP技术可以缩短产品开发周期,降低开发成本,提高企业的竞争力。下面通过一些事例,说明该项技术在产品开发过程中起的作用。

1.设计验证:用于新产品外观设计玲证和结构设计验证,找出设计缺陷,完善产品设计。在现代产品设计中,设计手段日趋先进,计算机辅助设计使得产品设计快捷、直观,但由于软件和硬件的局限,设计人员仍无法直观地评价所设计产品的效果和结构的合理性以及生产工艺的可行性。快速成型技术为设计人员迅速得到产品样品,直观评判产品提供了先进的技术手段。我公司为某摩托车生产厂新型250摩托车制作的覆盖件样件,包括油箱、前后挡板、车座和侧盖等共13件。采用AFS成型技术,仅用12天就完成了全部制作。设计人员将样件装在车体上,经过认真评价和反复比较,对产品的外观做了重新修改,达到了理想状态。这一验证过程,使设计更趋完美,避免了盲目投产造成的浪费。

2.装配验证:制出样品实件,进行装配实验。天津某公司委托我方加工传真机外壳及电话。用户不仅要进行外观评价,而且要将传真机的内部部件装入样

件中,进行装配实验和结构评价。该公司首先选择传统加工方法,分块加工,手工粘结,仅加工一套电话听筒就耗资肆仟元,耗时20天。预计制作传真机样品需2个月,费用为2?5万元。我公司用快速成型技术,仅用15天就将该产品一套共六件交给委托方。用户在装配实验中发现了7处装配干涉和结构不合理处。将前后两种方法相比,传真机BABS塑料组装样件传统加工方法工序繁多,手工拼接费时、费力,材料浪费大、加工周期长。对复杂的结构和曲面,加工粗糙,尺寸精度低,制作的实物模型与设计模型之间不能建立一一对应的关系,因而在装配实验中很难检查出设计错误。而自动成型法,高度自动化,一次成型,周期短,精度高,与设计模型之间具有一一对应的关系,更适合样品组装件的生产和制造。

3.功能验证:我公司为某摩托车厂制作250型双缸摩托车汽缸头。这是一款新设计的发动机,用户需要10件样品进行发动机的模拟实验。该零件具有复杂的内部结构,传统机加工无法加工,只能呆用铸造成型。整个过程需经过开模、制芯、组模、浇铸、喷砂和机加等工序,与实际生产过程相同。其中仅开模一项就需三个月时间。这对于小批量的样品制作无论在时间上还是成木上都是难以接受的。我们采用选区激光烧结技术,以精铸熔模材料为成型材料,在快速成型机上仅用5天即加工出该零件的10件铸造熔模,再经熔模铸造工艺,10天后得到了铸造毛坯。经过必要的机加工,30天即完成了此款发动机的试制。

4.快速铸造:在制造业特别是航空、航天、国防、汽车等重点行业,共基础的核心部件一般均为金属零件,而且相当多的金属零件是非对称性的、有不规则曲面或结构复杂而内部又含有精细结构的零件。这些零件的生产常采用铸造或解体加工的方法。在铸造生产中,模板、芯盒、压蜡型、压铸模的制造往往是用机加工的方法来完成的,有时还需要钳工进行修整,不仅周期长、耗资大,而且从模具设计到加工制造是一个多环节的复杂过程,咯有失误就会导致全部返工。特别是对一些形状复杂的铸件,如叶片、叶轮、发动机缸体、缸盖等,模具的制造是一个难度更大的问题,即使使用数控加工中心等昂贵的设备,在加工技术与工艺可行性方面仍有很大困难。可以设想,如果遇到此类零件的试制或小批量生产,其制造周期、成本及风险是相当大的。

激光快速成型技术已被证明是解决小批量复杂零件制造的非常有效的手段。迄今为止,我们己通过激光快速成型成功地生产了包括叶铃、叶片、发动机转子、泵体、发动机缸体、缸盖等千余仕扫盘钻件我们将快速成型与铸造工艺的结合称为快速铸造工艺。图5给出了快速铸造工艺与传统铸造工艺的比较。由于快速铸造过程无须开模具,因而大大节省了制造周期和费用。图6是采用快速铸造方法生产的燃气二动机S段,零件直径80Omm,高410m们,按传统金属铸件方法制造,模具制造周期约需半年,费用几十万。用快速铸造方法,快速成型铸造熔模7天(分6段组合),拼装、组合、铸造10天,费用每件不超过2万(共6件)。用快速成型方法生产的新型坦克增压器的铸造熔模,我们用5天时间就完成了37件蜡模的生产,使整个试制任务比原计划提前了3个月。

5.翻模成型:实际应用上,很多产品必须通过模具才能加工出来。用成型机先制作出产品样件再翻制模具,是一种既省时又节省费用的方法。发动机泵壳原型件产品用传统机加工方法很难加工,必须通过模具成型。据估算,开模时间要8个月,费用至少30万。如果产品设计有误,整套模具就全部报废。我们用快速成型法为该产品制作了塑料样件,作为模具母模用于翻制硅胶模。将该母模固定于铝标准模框中,浇入配好的硅橡胶,静置12?20小时,硅橡胶完全固化,

打开模框,取出硅橡胶用刀沿预定分型线划开,将母模取出,用于浇铸泵壳蜡型的硅胶模即翻制成功。通过该模制出蜡型,经过涂壳、焙烧、失蜡、加压浇铸、喷砂,一件合格的泵壳铸件在短短的两个月内制造出来,经过必要的机加工,即可装机运行,使整个试制周期比传统方法缩短了三分之二,费用节省了四分之三。

6.样品制作:制造产品替代品,用于展示新产品,进行市场宣传,如通讯、家电及建筑模型制作等。

7.工艺和材料验证:快速制作各种蜡模,用于精铸新工艺和新型材料的摸索、验证以及新产品制造所需辅助工具及部件的试验。近无余量精铸叶片的实验品。首先按不同收缩率用成型机一次制作几个叶片蜡模,然后涂壳、编号、失蜡铸造。将所得叶片铸件进行测量,反复几次即可确定不同材料无余量精铸收缩率,为批量生产奠定基础。如果用开模具的办法进行此项试验,其费用和周期都将大大增加。发动机高速涡轮,要求材质高,铸件密实。使用激光快速自动成型机,制作精铸用蜡模四个,编号涂壳,使用不同配比特殊合金,分别浇铸,对所得四件样品进行测试,分别加以比较分析,即确定材料最佳配方。从制模到取得结果仅需一个月。

8.反求工程与快速成型:成型机成型的一件摩托车的前面板样件,面板上包含了一个前大灯和二个侧灯的外罩,它们与面板构成一个完整的曲面。这是一个用反向工程进行零件详细设计的典型实例。整个工艺过程是首先由模型工根据摩托车的整体形象要求用油泥制作概念模型,经评审满意后用三座标测量仪进行数值化,测量数据用Pro/E软件的Scantools模块进行整理并转换成曲面模型,再转换成实体模型并进"细节"计。糟加筋、孔和车孔的轮廓等结构,最后由成型机制作出样件模型,经过打磨和喷漆的处理后装在摩托车上进行外观、装配等检验,整个过程从完成三座标测量到得到样件仅用一周时间。此时得到的样件模型巴不同于最初的油泥模型,而成为与实际零件壁厚、尺寸一致,筋、孔等结构齐全的零件模型,这比油泥模型无疑是一个很大的进步。如果这时需对模型进行修改,只需在CAD系统上就可完成。当模型的外观和细部结构确定无误后,就可利用最后的模型数据进行模具设计和加工

快速成型机

快速成型机的工艺

立体光刻成型sla

层合实体制造lom

选域黏着及热压成型SAHP

层铣工艺lmp

分层实体制造som

熔融沉积快速成型fdm

多相喷射固化mjs

多孔喷射成型mjm

直接壳法产品铸造dspc

激光工程净成型lens

快速成型机的原理

1.RP技术简介

快速原型制造技术,又叫快速成形技术,(简称RP技术);

英文:RAPID PROTOTYPING(简称RP技术),或

RAPID PROTOTYPING MANUFACTUREING,简称RPM。

快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

RP技术的优越性显而易见:它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。

2、它具体是如何成形出来的呢?

形象地比喻:快速成形系统相当于一台"立体打印机"。

它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。

3、RP系统的基本工作原理:

RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。

每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下:

(1)SLA快速成形系统的成形原理:

成形材料:液态光敏树脂;

制件性能:相当于工程塑料或蜡模;

主要用途:高精度塑料件、铸造用蜡模、样件或模型。

(2)SLS快速成形系统的成形原理:

成形材料:工程塑料粉末;

制件性能:相当于工程塑料、蜡模、砂型;

主要用途:塑料件、铸造用蜡模、样件或模型。

(3)LOM快速成形系统的成形原理:

成形材料:涂敷有热敏胶的纤维纸;

制件性能:相当于高级木材;

主要用途:快速制造新产品样件、模型或铸造用木模。

(4)FDM快速成形系统的成形原理:

成形材料:固体丝状工程塑料;

制件性能:相当于工程塑料或蜡模;

主要用途:塑料件、铸造用蜡模、样件或模型。

4、应用RP技术的重要意义

大大缩短新产品研制周期,确保新产品上市时间;

------使模型或模具的制造时间缩短数倍甚至数十倍;

提高了制造复杂零件的能力;

------使复杂模型的直接制造成为可能;

显著提高新产品投产的一次成功率;

------可以及时发现产品设计的错误,做到早找错、早更改,避免更改后续工序所造成的大量损失;

支持同步(并行)工程的实施;

------使设计、交流和评估更加形象化,使新产品设计、样品制造、市场定货、生产准备、等工作能并行进行;

支持技术创新、改进产品外观设计;

------有利于优化产品设计,这对工业外观设计尤为重要。

成倍降低新产品研发成本;

------节省了大量的开模费用

快速模具制造可迅速实现单件及小批量生产,使新产品上市时间大大提前,迅速占领市场。

总而言之,RP技术是九十年代世界先进制造技术和新产品研发手段。在工业发达国家,企业在新产品研发过程中采用RP技术确保研发周期、提高设计质量已成为一项重要的策略。当前,市场竞争愈演愈烈,产品更新换代加速。要保持我市产品在国内外市场的竞争力,迫切需要在加大新产品开发投入力度、增强创新意识的同时,积极采用先进的创新手段。RP技术在不需要任何刀具、模具及工装卡具的情况下,可实现任意复杂形状的新产品样件的快速制造。用RP技术快速制造出的的模型或样件可直接用于新产品设计验证、功能验证、外观验证、工程分析、市场订货等,非常有利于优化产品设计,从而大大提高新产品开发的一次成功率,提高产品的市场竞争力,缩短研发周期,降低研发成本。

快速原型制造技术生产力促进中心的成立为本市企业应用RP技术开展产品创新活动提供了很好的前提条件。

快速成型(RP)是一种创新技术,它可以在几个小时内利用三维CAD

设计的图形直接生产出复杂零件。自从1988年第一台快速成型系统出现以后,超过二十种以上的系统被开发,每一种系统都有一些细小的差别。最初,这些系统应用于汽车和航空领域,之后在许多其它的领域,例如玩具、电脑、珠宝及医药等领域都得到了应用。目前的国内快速成型主要分为以下五大类,国产的进口的设备都有。

◆立体光固化(SLA)

SLA 法是最早商品化、市场占有率最高的RP技术,它以光敏树脂为原料,计算机控制紫外激光按零件的各分层截面信息在光敏树脂表面进行逐点扫描,使被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层。一层固化完毕后,工作台下移一个层厚的距离,以使在原先固化好的树脂表面再敷上一层新的液态树脂,然后就可进行下一层的扫描加工。新固化的一层牢固地粘在前一层上,如此反复直到整个原型制造完毕。

这种成型的产品对贮藏环境有很高的要求,温度过高会融化。还有高紫外线等等的制约,耗材的价格也不便宜!成型时需要支撑,但是成型的表面质量可以。精度高。生产效率较高,运营成本较高,设备费用较贵。材料利用率约100%。适合医学,电子,汽车,鞋业,消费品,娱乐等等。

◆叠层法(LOM)

LOM法出现于1985年。首先在基板上铺上一层箔材(如纸张),然后用一定功率的红外激光在计算机的控制下按分层信息切出轮廓,同时将非零件部分按一定的网格形状切成碎片以便去除,加工完一层后,再铺上一层箔材,用热辊碾压,使新铺上的一层在粘接剂的作用下粘在已成型体上,再切割该层的形状,如此反复直至加工完毕。最后去除切碎的多余部分,便可得到完整的零件。

这种技术是最早使用于RP市场,我对它的了解不是很多,但是本人的感觉比较浪费材料。成型的精度也不是太高。不需要支撑。生产效率较低,运营成本较低,设备费用较便宜。适合的行业有限。

◆激光选区烧结法(SLS)

SLS法采用红外激光器作能源,使用的造型材料多为粉末材料。加工时,首先将粉末预热到稍低于其熔点的温度,然后在刮平棍子的作用下将粉末铺平;激光束在计算机控制下根据分层截面信息进行有选择地烧结,一层完成后再进行下一层烧结,全部烧结完后去掉多余的粉末,则就可以得到一烧结好的零件。目前成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行烧结的工艺还在研究之中。

在成型的过程中因为是把粉末烧结,所以工作中会有很多的粉状物体污染办公空间,一般设备要有单独的办公室放置。另外成型后的产品是一个实体,一般不能直接装配进行性能验证。另外产品存储时间过长后会因为内应力释放而变形。对容易发生变形的地方设计支撑,表面质量一般。生产效率较高,运营成本较高,设备费用较贵。能耗通常在8000瓦以上。材料利用率约100%。

◆融熔沉积法(FDM)

FDM法是1988年发明的。喷头中喷出的熔化材料在X-Y工作台的带动下,按截面形状铺在底板上,一层一层加工,最终制造出零件。商品化的FDM

设备使用的材料范围很广,如铸造石蜡、尼龙、热塑性塑料、ABS等。此外为提高效率可以采用多个喷头。现阶段又开发来水溶性支撑,大大的提高了成型后处理的速度和可行度!

该成型机是目前市场上占有量最大的,成型的便面质量很好,可以直接进行装配和性能验证。耗材是PC,ABS,原厂耗材价格也不便宜。成型后产品可以支持再加工。需要支撑。生产效率较低,运营成本一般,设备费用便宜。总体材料利用率约100%。适用医学,设计研发,教学及研究机构,航空航天,家电以及大地测量。

◆黏合剂粘结法(3D-P三维打印)

3D-P三维打印是利用喷头喷粘结剂选择性粘结粉末成型。首先铺粉机构在加工平台上精确地铺上一薄层粉末材料,然后喷墨打印头根据这一层的截面形状在粉末上喷出一层特殊的胶水,喷到胶水的薄层粉末发生固化。然后在这一层上再铺上一层一定厚度的粉末,打印头按下一截面的形状喷胶水。如此层层叠加,从下到上,直到把一个零件的所有层打印完毕。然后把未固化的粉末清理掉,得到一个三维实物原型。

这个最早是麻省理工大学研制的,耗材很便宜,一般的石膏粉都可以,成型的速度快,因为是粉末粘合在一起,所以表面比较粗糙,强度也不高。不需要支撑。可以全彩色成型样件。适合行业也很有限,一般教育,和大地地貌,楼盘设计。

三维打印在产品创新中的应用

快速盛开三维打印

什么是产品创新

为什么工程师在做设计的时候要面对很多不同的插件呢?从产品创新的角度来看,最终的目的都是要帮助产品更好的卖出去。而产品创新带来两个方面的好处,一则节约材料、时间帮助产品省钱;二则提高产品科技含量、实用性帮助产品赚钱。在产品创新的时候,需要考虑到产品的核心价值在哪里。特别在

今天,全球经济出现危机,对制造业的影响非同小可。这种情况下,如何让去寻找产品的核心价值显得更为艰难。如何渡过经济危机的难关,甚至让企业更上一层楼?那么产品创新便是答案。到底什么是创新设计,且先不谈论它的具体定义,可以回味脑海的存在的产品创新画面。苹果电脑的iPhone、任天堂的Wii游戏机、丰田的Pirus混能车这些产品算是创新产品么?当然算,因为他们都有共同点:市场领导者、最好卖产品、最好设计、最好创新技术、最好价格。

设计才是企业的未来

设计对企业来说是一个长远的加速器,设计驱动创新,创新加强品牌,品牌建立忠诚,忠诚维持利润。设计与创新是一个非常复杂的过程,可能一个企业,它的品牌,一个性格,一个文化在里面,本身那个文化,因为要定位一个品牌,等于定位你的企业,你的产品你的性格在里面,创新的过程里肯定是一些融合,你的企业一些性格或者品牌在里面。做了创新不是说我们不去考虑质量的问题,好的设计没有质量的话这个不行的,没有市场的推广和需求的话也是不行的,好的产品不针对客户的需求的话,它也不是一个好的产品,或者不是一个能够在市场里面成功的产品。

现在国内很多企业都是帮国外的一些品牌做外包,对于很多企业来讲,中间的过程是零价值。为什么?因为最终生产出来的产品是挂着国外的品牌。不管中间的制作过程过么复杂,消费者看到的只是某个品牌的产品。所以从某个程度上来说,这个技术是没有意义的,是没有价值的。怎么做一个数字化的产品?在这

个过程里面经常会用到快速成型技术,或者用不同的方式去做,产品的寿命周期会越来越短。产品的寿命越来越短,引导我们去寻找不同的方式。

模型有很多阶段,比如姿态模型、概念性模型、结构性模型、工效学模型、机械模型、质量模型、几何模型、外观模型、成品模型,不同的行业有不同的需求,不同的设计模型有不同的用途。为什么会衍生出这么多种类的模型?一是因为我们需要缩短产品的设计周期;二是在不同阶段需要不同的模型来诠释产品包含的各种实时因素,以便我们去解决各种问题。

三维彩色打印成型技术

三维彩色打印成型技术在产品创新的过程里面应用时间是比较多的。更好的沟通是为了做更好的产品,最好的产品最终是为了两个目的,一是可持续的,二是为了利润。以前做样件主要是为了这两个用途,但是随着三维数字化的普及,很多产品基本可以通过三维模拟出来,而减少对模型的要求,现在利用快速成型技术的产品反而比较多。快速成型也往另外一个方向发展,就是快速加工,或者快速制造。如果要打印一个彩色的手机,大概28分钟可以完成,可以凭借打印出来的样机做一个评估,评估手感,评估键盘的字形好不好,所以消费品是用快速成型技术是最多的。现在很多产品设计都使用三维彩色打印技术,比如汽车、手机、等等。ZCorp最终希望把责任制推到彩色的身上,因为有彩色才能有比较真实的模型需要。

在很多应用里,最难的部分是CAD做,三维彩色打印只是拿工具把它打印出来。对用户来说,最重要的一点就是要产品能够方便在设计创新的过程里面表现出来,速度、成本,彩色。为什么?利用三维打印能快速的拿出与客户沟通的题材,了解产品是否能满足客户的需求;产品的成本是建立在产品的功能之上,利用各种技术来控制、节省成本;最重要的一点是彩色,因为彩色能够拥有的技术绝对是没有彩色的不能相比的。

为什么要使用三维打印呢?因为时间很重要,比传统的快5到10倍,成本也很低。除了可以打印,还可以做别的东西。可以有一些控制做处理,还可以做金属浇铸的部分。随着这些的应用,不但在制造业,医疗,做土木工程的模型,快速成型的模具部分也可以做。三维打印机实际上是有一个发展的方向的,跟CAD一样,最终当然要快了,达到一个目的,成本要低。这个部分到这里为止就讲完了,谢谢。

SLA激光快速成型原理

SLA工艺也称光造型或立体光刻,是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。液槽中盛满液态光固化树脂,激光束在偏转镜作用下,能在液态表面上扫描,扫描的轨迹及光线的有无均有计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度,聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。SLA方法是目前快速成型技术领域中研究得最多的方法,也是技术上最为成熟的方法。SLA工艺成型的零件精度较高,加工精度一般可达到0.1mm,原材料利用率近100%。 成型技术特点 快速成型技术具有一下几个重要特征:1)可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理,它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出RP技术的优越性。此外,RP技术特别适合复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。2)快速性。通过对一个CAD模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。3)高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模型、原型或零件。4)快速成型技术实现了机械工程学科多年来追求的两大先进目标,即材料的提取(气、液、固相)过程与制造过程一体化和设计(CAD)与制造(CAM)一体化。5)与反求工程(Reverse Engineering)、CAD技术、网络技术、虚拟现实等相结合,成为产品快速开发的有力工具。 流程示意 快速成型的工艺过程具体如下: 1)产品的三维模型的构建。由于RP系统是由三维CAD模型直接驱动,因此首先要构建所加工工件的三维CAD模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E,I-DEAS, Solid Works,UG等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。 2)SLA激光快速成型 SLA工艺也称光造型或立体光刻,是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。液槽中盛满液态光固化树脂,激光束在偏转镜作用下,能在液态表面上扫描,扫描的轨迹及光线的有无均有计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度,聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。 3)成型零件的后处理。 从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一部提高其强度。 材料性能

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

DLF与SLM激光快速成型方法的比较

DLF与SLM激光快速成型方法的比较激光直接制造(Direct Laser Fabrication,DLF)技术与选择性激光熔化(Selective Laser Melting,SLM)技术是目前较为成熟和先进的激光快速成型技术,涉及机械、材料、激光、计算机和自动控制等多学科领域,充分体现了现代科学发展多学科交叉的特点,具有广泛的研究与发展前景。 DLF技术是基于激光快速成型的“离散一堆积”、“添加式制造”的基本概念和激光熔覆技术而发展起来的金属零件全密度全功能快速直接制造技术。其实质是利用送粉式激光熔覆逐点、逐层沉积,实现三维任意形状高性能金属零件的近净成型。 SLM技术是以选择性激光烧结(Selective I.aserSinter,SLS)技术为基础,基于快速成型的最基本思想,即逐层熔覆的“增量”制造方式,根据三维CAD模型直接成型具有特定几何形状的零件,成型过程中金属粉末完全熔化,产生冶金结合。它是快速成型技术的 最新发展。 本文采用DLF与SLM两种激光快速成型技术进行一系列实验,根据实验结果,比较分析两种快速成型方法在成型精度和效率、成型件力学性能和组织结构等方面的异同,为激光快速成型方法的选择提供一定的技术依据。 1 DLF与SLM激光快速成型技术的原理 1.1 DLF激光快速成型技术的原理 DLF技术是将快速成型(Rapid Prototyping,RP)技术和激光熔

覆技术相结合,以激光作为加工能源,以金属粉末为加工原料,在金属基板上逐层熔覆堆积,从而形成金属零件的制造技术。DLF快速成型技术的基本原理哺1如图1所示,先利用三维CAD软件(如UG,Pro /E,Solidworks)生成所需制造零件的三维CAD模型,并转换成STL 格式;再利用切片技术将吼格式的CAD模型按照一定的层厚进行分层切片, 提取每一层切片所产生的轮廓;然后根据切片轮廓设计合理的扫描路径,并转换成相应的计算机数字控制(Computer Nomencal Control,CNC)工作台指令;激光束在CNC指令控制下进行扫描加工,将加工原料进行熔覆,生成与这一层形状、尺寸一致的熔覆层。完成这一过程后,聚焦镜、同轴送粉喷嘴等整体上移(或工作台下移)一个层厚的高度,并重复上述过程,如此逐层熔覆堆积直到形成CAD模型所设计的形状,加T出所需的金属零件为提高表面质量和避免加工缺陷,加工过程可在气体保护下进行。

快速成型

快速成型 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 目录 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP 技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。 具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理

激光快速成型(SLS)技术在汽车领域的应用讲解

激光快速成型(SLS)技术在汽车领域的应用 湖南华曙公司采用的选择性粉末激光烧结(SLS)技术是行业领先的柔性智能制造技术,广泛服务于汽车制造、飞机工程、消费电子、精密传感等诸多领域。 快速制造(RM)激光装备欧美等国07年一年新增近2000台,制成产品已经大量出现在飞机、汽车、大型仪器、仪表等领域,由于不需要模具,从CAD文件到产品可在15小时之内出货,对我们这个传统的制造业大国产生了强烈的冲击,庞大的市场需求与国产设备的极缺造成的反差,无论是激光装备国产化市场还是产品市场都给我们留出了宝贵的市场机遇。我们项目正是在国内批量制造RM设备并承接RM产品制造服务,并力争建成全国领先的产业集群,国家工程技术中心。 汽车设计和塑胶件批量制造中应用 汽车外形及内饰件的设计、改型、装配试验,发动机、汽缸头等复杂外型的试制。 作为设计验证和评估的手段,激光快速成型已经用于国内外汽车产业中, ●例如美国克莱斯勒公司已制造车身模型,将其放在高速风洞中进行空气动力学试验分析,取得了令人满意的效果,大大节约了试验费用。 ●汽车发动机进气管内腔形状是由十分复杂的自由曲面构成的,它对提高进气效率、燃烧过程有十分重要的影响。设计过程中,需要对不同的进气管方案做气道试验,传统的方法是用手工方法加工出由几十

个截面来描述的气管木模或石膏模,再用砂模铸造进气管,加工中,木模工对图纸的理解和本身的技术水平常导致零件与设计意图的偏离,有时这种误差的影响是显著的。使用数控加工虽然能较好地反映出设计意图,但其准备时间长,特别是几何形状复杂时更是如此。英国Rover公司使用激光快速成型技术生产进气管的外模及内腔模,取得了令人满意的效果。 ●在汽车模具制造中应用本激光快速成型技术,能烧结蜡、聚碳酸酯、尼龙、金属等各种材料。用该系统制造的钢铜合金注塑模具,可注塑5万件工件。也可以结合其他技术来制作钢质模具,实现金属模的快速制造。或者直接制造出复形精度较高的EDM电极,用于注塑模、锻模、压铸等钢制模具型腔的加工。一个中等大小、较为复杂的电极一般4~8h即可完成,复形精度完全满足工程要求。福特汽车公司用此技术制造汽车模具取得了满意的效果。上海交通大学也已通过RP与精密铸造结合的方法为汽车及汽车轮胎等行业生产进口替代模具计80余副。与传统机加工法相比,快速模具制造的制作成本及周期大大降低。我国每年需进口模具达几十亿美元,主要是复杂模具和精密模具,因此,激光快速成型技术在未来的汽车模具制造业中的应用前景十分广阔。 ●在汽车灯具制造上的应用汽车灯具大多数的形状是不规则的,曲面复杂,模具制造难度很大。通过快速成型技术,可以很快得到精确的产品试样,为模具设计CAD和CAM提供了有利的参考。同时,也可以通过快速成型技术,用熔模铸造的方法快速、高精度地制造出灯具模具。

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

3D打印快速成型技术

特种加工论文 题目3D打印快速成型技术 姓名 专业 班级 学号

3D打印快速成型技术 摘要: 本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。 关键词:特种加工技术,3D打印快速成型,特点,应用。 Abstract: This article mainly introduced the special processing of 3 d printing rapid prototyping technology, introduces its processing principle, and analyzes its characteristics, processing methods, and then explain the main application in practical production and the development direction. Key words:Special processing technology, 3 d printing rapid prototyping, characteristics, application. 一、引言 3D打印(3D PRINTING )即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。 3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。 自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。 二、打印系统的工作原理 3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系

激光快速成型技术研究现状与发展

激光快速成型技术研究现状与发展 摘要:快速成型技术是近年来制造技术领域的一次重大突破和革命性的发展,激光快速成型技术是其重要组成部分。本文介绍了激光快速成型技术的基本原理和特点,分析了有关工艺方法,讨论了LRP 技术的研究现状和应用,并展望其未来发展趋势。 关键词:激光快速成型;研究现状;发展趋势 1 激光快速成型技术原理和特点 80 年代后期发展起来的快速成型技术(RapidPrototyping ,RP) 是基于分层技术、堆积成型, 直接根据CAD 模型快速生产样件或零件的先进制造成组技术总称。RP 技术不同于传统的去除成型、拼合成型及受迫成型等加工方法,它是利用材料累加法直接制造塑料、陶瓷、金属及各种复合材料零件[1 ] 。以激光作为加工能源的激光快速成型是快速成型技术的重要组成部分,它集成了CAD 技术、数控技术、激光技术和材料科学等现代科技成果。激光快速成型(Laser Rapid Prototyping ,LRP) 原理是用CAD 生成的三维实体模型,通过分层软件分层,每个薄层断面的二维数据用于驱动控制激光光束,扫射液体,粉末或薄片材料,加工出要求形状的薄层,逐层累积形成实体模型。快速制造出的模型或样件可直接用于新产品设计验证、功能验证、工程分析、市场订货及企业决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。以此为基础进一步发展的快速模具工装制造(Quick Tooling) 技术,快速精铸技术(Quick Casting) ,快速金属粉末结技术(Quick Powder Sintering) 等,可实现零件的快速成品。 激光快速成型技术主要特点: (1) 制造速度快、成本低, 节省时间和节约成本,为传统制造方法注入新的活力,而且可实现自由制造(Free Form Fabrication) ,产品制造过程以及产品造价几乎与产品的批量和复杂性无关。[2 ] (2) 采用非接触加工的方式,没有传统加工的残余应力问题,没有工具更换和磨损之类的问题,无切割、噪音和振动等,有利于环保。 (3) 可实现快速铸造、快速模具制造,特别适合于新品开发和单件零件生产。 2 LRP 工艺方法 LRP 技术包括很多种工艺方法,其中相对成熟的有立体光固化(SLA) 、选择性激光烧结(SLS) 、分层实体制造(LOM) 、激光熔覆成形(LCF) 、激光近形制造(LENS) 。 (1) 光固化立体造型(SL —Stereolithography ,orSLA) 将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态光敏树脂逐点扫描,被扫描的树脂薄层产生光聚合反应固化形成零件的一个截面, 再敷上一层新的液态树脂进行扫描加工,如此重复直到整个原型制造完毕。这种方法的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑。 (2) 分层实体制造(LOM—Laminated ObjectManufacturing) LOM工艺是根据零件分层得到的轮廓信息用激光切割薄材,将所获得的层片通过热压装置和下面已切割层粘合,然后新的一层纸再叠加在上面,依次粘结成三维实体。LOM主要特点是设备和材料价格较低,制件强度较好、精度较高。Helisys 公司研制出多种LOM工艺用的成型材料,可制造用金属薄板制作的成型件,该公司还开发基于陶瓷复合材料的LOM工艺。 (3) 选择性激光烧结(SLS —Se1ected LaserSintering) SLS 的原理是根据CAD 生成的三维实体模型,通过分层软件分层获得二维数据驱动控制激光束,有选择性地对铺好的各种粉末材料进行烧结,加工出要求形状的薄层,逐层累积形成实体模型,最后去掉未烧结的松散的粉未,获得原型制件。SLS的特点是可以采用多种材料适应不同的应用要求,而具有更广阔的发展前景。但能量消耗非常高,成型精度有待进一步提高。DTM

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较 FDM 丝状材料选择性熔覆(FusedDepositionModeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是: 1、精度较低,难以构建结构复杂的零件。 2、垂直方向强度小。 3、速度较慢,不适合构建大型零件。 SLA 敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺过程结束。 2、尺寸精度较高,可确保工件的尺寸精度在0.1mm以内。 3、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

激光快速成型的特点与工艺(图)

手板模型按加工方式,主要可分为CNC数控加工,另外就是激光快速成型加工,本文主要介绍关于快速成型技术的制作原理与要点。 快速成型技术的特点: 与传统材料加工技术相比,快速成型具有鲜明的特点: 1.数字化制造。 2.高度柔性和适应性。可以制造任意复杂形状的零件。 3.直接CAD模型驱动。如同使用打印机一样方便快捷。 4.快速。从CAD设计到原型(或零件)加工完毕,只需几十分钟至几十小时。 5.材料类型丰富多样,包括树脂、纸、工程蜡、工程塑料(ABS等)、陶瓷粉、金属粉、砂等,可以在航空,机械,家电,建筑,医疗等各个领域应用。 快速成型的主要工艺: RP技术结合了众多当代高新技术:计算机辅助设计、数控技术、激光技术、材料技术等,并将随着技术的更新而不断发展。自1986年出现至今,短短十几年,世界上已有大约二十多种不同的成形方法和工艺,而且新方法和工艺不断地出现。目前已出现的RP技术的主要工艺有: 1.PCM工艺:无木模铸造。 2.SL工艺:光固化/立体光刻 。 3.FDM工艺:熔融沉积成形。 4.SLS工艺:选择性激光烧结。 5.LOM工艺:分层实体制造。 6.3DP工艺:三维印刷。 模型放置与添加零件支撑: 为了防止成型过程中零件的翘曲变形,需要给零件添加支撑。AFS(快速成型系统)提供了两种支撑方法,一种是网格支撑,一种是基于切片和零件形状的支撑。因为支撑只是在零件烧结成型的过程中防止零件翘曲变形,零件成型以后,支撑是需要去除的,因此支撑再烧结温度要小于零件的烧结温度。也就是激光束在扫描经过支撑的时候,激光器的功率要降低,扫描密度要降低,扫描线宽要增大。这样,支撑的烧结强度就低,成型以后很容易去除。如图2所示,成型零件是一个吸尘器的封盖,当封盖模型经过缩放处理后就可以添加支撑了,涂颜色的部分即是添加的支撑。添加支撑的原则是对那些悬掉点、下棱线、倾斜角度过大的表面三种结构需要加支撑。因此在放置模型时就应该考虑到支撑的放置问题。一般对表面质量要求较高的面最好放置为顶面,特别是对于细小凸起,更要放置在顶面;同时,如果凸起的尺寸太小,需要对凸起高度进行一定比例的放大。对于细长的悬臂类结构件最好横放,竖放难以保证悬臂的直线度。为了提高扫描的效率,一般应考虑将尺寸较大的边横放,减少扫描的层数,缩短加工时间。 激光快速成型的特点与工艺广州盛域 https://www.wendangku.net/doc/e315527996.html, 2012年5月 快 速 成 型 与 自 动 化 技 术 Rapid prototyping & automation technology 快速成型技术是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。以常用的激光快速成型来进行简单总结其工艺过程中的一些要点。第 1 页

常用快速成型基本方法简介

1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。

快速成型的基本原理图 快速成型的工艺过程原理如下: (1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。 (2)三维模型的离散处理:在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

相关文档
相关文档 最新文档