文档库 最新最全的文档下载
当前位置:文档库 › 理论力学第二章思考题及习题答案

理论力学第二章思考题及习题答案

理论力学第二章思考题及习题答案
理论力学第二章思考题及习题答案

第二章思考题

2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? 2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?

2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?

2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?

2.5水面上浮着一只小船。船上一人如何向船尾走去,则船将向前移动。这是不是与质心运动定理相矛盾?试解释之。

2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?

2.7选用质心坐标系,在动量定理中是否需要计入惯性力?

2.8轮船以速度V 行驶。一人在船上将一质量为m 的铁球以速度v 向船首抛去。有人认为:这时人作的功为

()mvV mv mV v V m +=-+222

2

12121 你觉得这种看法对吗?如不正确,错在什么地方? 2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?

2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么? 2.11多级火箭和单级火箭比起来,有哪些优越的地方?

第二章思考题解答

2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。

2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。

2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,

难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。

若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。

2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。

2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。

2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,使物体发生形变,内力做功使系统的动能转化为相碰物体的形变能(分子间的结合能),故动量守恒能量不一定守恒。只有完全弹性碰撞或碰撞物体是刚体时,即相撞物体的形变可以完全恢复或不发生形变时,能量也守恒,但这只是理想情况。

2.7.答:设质心的速度c v ,第i 个质点相对质心的速度i v ',则i c i v v v '+=,代入质点组动量定理可得

()()()∑∑∑∑-++=???

??'i c i i i i i

e i i i i m m dt d a F F v 这里用到了质心运动定理()∑∑=v

c

i i

e

i m a

F 。故选用质心坐标系,在动量定理中要计入惯性力。但质点组相对质心

的动量守恒

常矢量='∑i

i

i m v 。当外力改变时,质心的运动也改变,但质点组相对于质心

参考系的动量不变,即相对于质心参考系的动量不受外力影响,这给我们解决问题带来不少方便。值得指出:质点组中任一质点相对质心参考系有 ,对质心参考系动量并不守恒。 2.8.答不对.因为人抛球前后球与船和人组成的系统的动量守恒,球抛出后船和人的速度不再是V 。设船和人的质量为M ,球抛出后船和人的速度为V ',则

()()v V m MV V m M ++=+11 v m

M m

V V +-

=1球出手时的速度应是()v V +1。人做的

功应等于系统动能的改变,不是只等于小球动能的改变,故人做的功应为

()()222

121212121v m

M Mm V m M v V m MV +=+-++显然与系统原来的速度无关。 2.9.答:秋千受绳的拉力和重力的作用,在运动中绳的拉力提供圆弧运动的向心力,此力不做功,只有重力做功。重力是保守力,故重力势能与动能相互转化。当秋千荡到铅直位置向上去的过程中,人站起来提高系统重心的位置,人克服重力做功使系统的势能增加;当达到最高点向竖直位置折回过程中,人蹲下去,内力做功降低重心位置使系统的动能增大,这样

循环往复,系统的总能不断增大,秋千就可以越荡越高。这时能量的增长是人体内力做功,消耗人体内能转换而来的。

2.10.答:火箭里的燃料全部烧完后,火箭的质量不再改变,然而质量不变是变质量物体运动问题的特例,故§2.7(2)中诸公式还能适用,但诸公式都已化为恒质量系统运动问题的公式。

2.11.答:由z v v m m v v v r s

r ln ln

00

0+=+=知,要提高火箭的速度必须提高喷射速度r v 或增大质量比

s

m m 0

。由于燃料的效能,材料的耐温等一系列技术问题的限制,r

v 不能过大;

又由于火箭的外壳及各装置的质量0m 相当大,质量比也很难提高,故采用多级火箭,一级火箭的燃料燃完后外壳自行脱落减小火箭的质量使下一级火箭开始工作后便于提高火箭的速度。

若各级火箭的喷射速度都为r

v ,质量比分别为n z z z .,,21???,各级火箭的工作使整体速度增

加n v v v ???,,21,则火箭的最后速度

()()n r n r n z z z v z z z v v v v v ????=???++=+???++=212121ln ln ln ln

因每一个z 都大于1,故v 可达到相当大的值。

但火箭级数越多,整个重量越大,制造技术上会带来困难,再者级越高,质量比越减小,级数很多时,质量比逐渐减小趋近于1,速度增加很少。故火箭级数不能过多,一般三至四级火箭最为有效。

第二章习题.

2.1 求均匀扇形薄片的质心,此扇形的半径为a ,所对的圆心角为2θ,并证半圆片的质心离圆心的距离为

π

a 34。 2.2 如自半径为a 的球上,用一与球心相距为

b 的平面,切出一球形帽,求此球形冒的质心。 2.3 重为W 的人,手里拿着一个重为w 的物体。此人用与地平线成α角的速度0v 向前跳去,跳的距离增加了多少?

2.4 质量为1m 的质点,沿倾角为θ的光滑直角劈滑下,劈的本身,质量为2m ,又可在光滑

水平面自由滑动。试求

()a 质点水平方向的加速度1x

()b 劈的加速度2x ; ()c 劈对质点的反作用力1R ;

()d 水平面对劈的反作用力2

R ;

2.5 半径为a ,质量为M 的薄圆片,绕垂直于圆片并通过圆心的竖直轴以匀角速ω转动,求绕此轴的动量矩。

2.6 一炮弹的质量为21M M +,射出时的水平及竖直分速度为U 及V 。当炮弹达到最高点

时,其内部的炸药产生能量E ,使此炸弹分为1

M 及2

M 两部分。在开始时,两者仍沿原方

向飞行,试求它们落地时相隔的 距离,不计空气阻力。

2.7 质量为M ,半径为a 的光滑半球,其低面放在光滑的水平面上。有一质量为m 的 质点沿此半球面滑下。设质点的初位置与球心的连线和竖直向上的直线间所成之角为α,并且起始时此系统是静止的,求此质点滑到它与球心的连线和竖直向上直线间所成之角为θ时θ 之值。

2.8 一光滑球A 与另一静止的光滑球B 发生斜碰。如两者均为完全弹性体,且两球的质量相等,则两球碰撞后的速度互相垂直,试证明之。

2.9 一光滑小球与另一相同的静止小球相碰撞。在碰撞前,第一小球运动的方向与碰撞时两球的联心线成α角。求碰撞后第一小球偏过的角度β以及在各种α值下β角的最大值。设恢复系数e 为已知。

2.10 质量为2m 的光滑球用一不可伸长的绳系于固定点A 。另一质量为1m 的球以与绳成θ角的速度1v 与2m 正碰。试求1m 与2m 碰后开始运动的速度1v '及2

v '。设恢复系数e 为已知。

1

v '第2.10题图

2.11 在光滑的水平桌面上,有质量各为m 的两个质点,用一不可伸长的绳紧直相连,绳长为a 。设其中一质点受到一个为绳正交的冲量I 的作用,求证此后两质点各做圆滚线运动,且其能量之比为1

2cot 2=??

?

??am It ,式中t 为冲力作用的时间。

2.12 质量为1m 的球以速度1v 与质量为2

m 的静止球正碰。求碰撞后两球相对于质心的速度

1V '和2V '又起始时,两球相对于质心的动能是多少?恢复系数e 为已知。

2.13 长为l 的均匀细链条伸直地平放在水平光滑桌面上,其方向与桌边缘垂直,此时链条的一半从桌上下垂。起始时,整个链条是静止的。试用两种不同的方法,求此链条的末端滑到桌子边缘时,链条的速度v 。

2.14 一柔软、无弹性、质量均匀的绳索,竖直地自高处下坠至地板上。如绳索的长度等于l ,每单位长度的质量等于σ。求当绳索剩在空中的长度等于x

(x <)l 时,绳索的速度及它

对地板的压力。设开始时,绳索的速度为零,它的下端离地板的高度为h 。

2.15 机枪质量为M ,放在水平地面上,装有质量为M '的子弹。机枪在单位时间内射出的质量为m.其相对地面的速度则为u ,如机枪与地面的摩擦系数为μ,试证当M '全部射出后,机枪后退的速度为

()g mM

M M M u M M μ22

2

-'+-' 2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。 2.17 设用某种液体燃料发动的火箭,喷气速度为2074米/秒,单位时间内所消耗的燃料为原始火箭总质量的

60

1。如重力加速度g 的值可以认为是常数,则利用此种火箭发射人造太

阳行星时,所携带的燃料的重量至少是空火箭重量的300倍。试证明之。

2.18 原始总质量为0M 的火箭,发射时单位时间内消耗的燃料与0M 正比,即 0M α(α为比例常数),并以相对速度 v 喷射。已知火箭本身的质量为M ,求证只有当 g v >α时,火箭才能上升; 并证能达到的最大速度为

????

?

?--001M M g M M vIn

α

能到的最大高度为

???

? ??--+??? ??M M In M M v M M In g v 000212α

2.19试以行星绕太阳的运动为例,验证维里定理。计算时可利用1.9中所有的关系和公式,即认为太阳是固定不动的。

第二章习题解答

2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。

题2.1.1图

有质心公式

??=

dm

xdm x c

设均匀扇形薄片密度为ρ,任意取一小面元dS ,

dr rd dS dm θρρ==

又因为

θcos r x =

所以

θ

θθρθρsin 32a dr rd dr rd x dm xdm x c

===?????? 对于半圆片的质心,即2

πθ=代入,有

πππ

θθa a a x c 342

2sin

32sin 32=?

==

2.2 解 建立如图2.2.1图所示的球坐标系

题2.2.1图

把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则

)(222z a dz y dv dm -===ρπρπρ

由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即

)

2()(432

b a b a dm zdm z c

++-

==??

2.3 解 建立如题2.

3.1图所示的直角坐标,原来人W 与共同作一个斜抛运动。

y

O

题2.3.1图

当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s

t a v s ?=cos 01 ①

gt v =αsin 0 ②

ααcos sin 20

1g

v s = ③

第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有

)(cos )(0u v w W v v w W x x -+=+α

可知道

u w

W w

a v v x ++

=cos 0 水平距离

αααsin )(cos sin 0202uv g

W w w

g v t v s x ++==

跳的距离增加了

12s s s -=?=

αsin )(0uv g

w W w

+

2.4解 建立如图2.4.1图所示的水平坐标。

2.4.1图

θ题2.4.2图

以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有

02211=+x m x

m ① 对1m 分析;因为

相对绝a a a += ②

1m 在劈2m 上下滑,

以2m 为参照物,则1m 受到一个惯性力21x m F -=惯(方向与2m 加速度方向相反)。如图2.4.2图所示。所以1m 相对2m 下滑。由牛顿第二定律有

θθcos sin 21111x

m g m a m +=' ②

所以1m 水平方向的绝对加速度由②可知

..

2

1

'1cos //x a a -=θ绝 ③

..

2..2..

1cos cos sin x x g x -??

?

??==θθθ④

联立①④,得

g m x θ

sin m m 2

12+=

θ

θcos sin 2..

1 ⑤ 把⑤代入①,得

g m m s m x θ

θ

θ2

121..

2sin cos sin =-

= ⑥ 负号表示方向与x 轴正方向相反。求劈对质点反作用力1R 。用隔离法。单独考察质点1m 的受力情况。因为质点垂直斜劈运动的加速度为0,所以

0sin cos ..

2111=??

?

??-+-θθx m g m R ⑦

把⑥代入⑦得,

g m m m m R θ

θ

2

12211sin cos +=

⑧ 水平面对劈的反作用力2R 。仍用隔离法。因为劈在垂直水皮方向上无加速度,所以

0cos 122=--θR g m R ⑨

于是

g m m m m m R θ

2

122122sin )

(++=

2.5解 因为质点组队某一固定点的动量矩

∑=?=n

1

i i i m v r J i

所以对于连续物体对某一定点或定轴,我们就应该把上式中的取和变为积分。如

图2.5.1图所示薄圆盘,任取一微质量元,

题2.5.1图

dr rd dm θρ?=

2

a M πρ=

所以圆盘绕此轴的动量矩J

??????=

?=

r rdrd r )ωθρv r dm J (=

ω22

1

Ma

2.6 解炮弹达到最高点时爆炸,由题目已知条件爆炸后,两者仍沿原方向飞行知,分成的两个部分1M ,2M ,速度分别变为沿水平方向的1v ,2v ,并一此速度分别作平抛运动。由前面的知识可知,同一高处平抛运动的物体落地时的水平距离之差主要由初速度之差决定。进而转化为求1v ,2v 。炮弹在最高点炮炸时水平方向上无外力,所以水平方向上的动量守恒:

()221121V M V M U M M +=+ ①

以()21M M +质点组作为研究对象,爆炸过程中能量守恒:

()E V M V M U M M -+=+2222112212

12121

② 联立①②解之,得

()2211

12M M M EM U v ++

=

()2

211

22M M M EM U v +-

=

所以落地时水平距离之差s ?

s ?=???? ??+=

-=-21

2121112M M E g V t v t v s s

2.7 解 建立如题2.7.1图所示的直角坐标系。

O

题2.7.1图

当m 沿半圆球M 下滑时,M 将以V 向所示正方向的反向运动。以M 、m 组成系统为研究对象,系统水平方向不受外力,动量守恒,即

x mv MV =

m 相对于地固连的坐标系xy O 的绝对速度

牵相绝对V V +=V

相V 为m 相对M 的运动速度

θ

a u = ② 故水平方向

V u v x -=θcos ③

竖直方向

θusia v y = ④

在m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)

22MV 2

1

21cos cos ++

=绝mv mga mga θα ⑤ 2绝

v =22

y x v v +⑥ 把③④代入⑥

2绝v =θcos 222

uV V u -+⑦

把①③代入⑤

θθ

θ

2cos 1cos cos 2M

m m a a g +--?

=

2.8证 以AB 连线为x 轴建立如题2.8.1图所示的坐标。

v 题2.8.1图

题2.8.1图

设A 初始速度为与x 轴正向夹角0θ碰撞后,设A 、B 运动如题2.8.2图所示。A 、B 速度分别为1v 、2v ,与x 轴正向夹角分别为1θ、2θ。以A 、B 为研究对象,系统不受外力,动量守恒。x 方向:

2

2110cos cos θθmv mv mv +=① 垂直x 轴方向有:

2

211sin sin 0θθmv mv -=② 可知

()21212

22120cos 2θθ+++=v v v v v ③

整个碰撞过程只有系统内力做功,系统机械能守恒:

2221202

12121mv mv mv +=④

由③④得

()0cos 22121=+θθv v

()???=+

=+,2,1,02

21k k π

πθθ

即两球碰撞后速度相互垂直,结论得证。

2.9 解 类似的碰撞问题,我们一般要抓住动量守恒定理和机械能守恒定理得运

用,依次来分析条件求出未知量。设相同小球为AB ,初始时A 小球速度0v ,碰撞后球A 的速度为1v ,球B 的速度2v 以碰撞后B 球速度所在的方向为x 轴正向建立如题2.9.1图所示的坐标(这样做的好处是可以减少未知量的分解,简化表达式)。以A 、B 为系统研究,碰撞过程中无外力做功,系统动量守恒。

题2.9.1图

x 方向上有:

(

)210cos cos mv mv mv ++=βαα ① y 方向上有:

()

βαα+=sin sin 10mv mv ② 又因为恢复系数

碰前相对速度

碰后相对速度=

e ()αβαcos cos 012v v v +-=

e αcos 0v =()βα+-cos 12v v ③

用①-③

()()

βαα+-=

cos 2cos 101v e v ④

用④代入②得

()()

()βαβααα++-=

sin cos 2cos 1sin 00v e v ()α

α

β2

tan 21tan 1tan +-+=

e e

()??

??

??+-+=ααβ2

tan 21tan 1arctan e e

求在各种α值下β角的最大值,即为求极致的问题。

我们有

0=α

β

d d 得

()()

0tan 21)tan 1(sec 12

22=+---+αααe a e e

α2tan 1a e --=0

所以

2

1tan e -=

α ()

e e

-+=181arctan

max β

()

e e

-+=

181tan max β

由因为

max 2

max 2

cot 1csc ββ+==()()

21181e e +-+

()()2max

max 11811

csc 1sin e e +-+

=

=

ββ=e

e -+31

所以

??

?

??-+=-e e 31sin 1max β

2.10 以21,m m 为研究对象。当21,m m 发生正碰撞后,速度分别变为1v ',2v ',随即2m 在不可伸长的绳AB 约束下作圆周运动。以AB 的连线为x 轴建立如题2.10.1图所示。

题2.10.1图

碰撞过程中无外力做功,动量守恒:

2

11v v v '+'=211m m m ① 随即2m 在AB 的约束下方向变为沿y 轴的正向,速度变为2v ' 故 y 方向上有

221

111sin sin v m v m v m '+'=θθ② 故恢复系数定义有:

碰前相对速度

碰后相对速度=

e =112

sin v v v '-'θ 即

112

1sin sin v v v ev '-'-'=θθ③ 联立①②③得

1

2122211sin sin v m m em m v θ

θ+-='

()12

1212

sin sin 1v m m e m v θ

θ

++=' 2.11 解

如图所示,

x

题2.11.1图

题2.12.2图

有两质点A ,B 中间有一绳竖直相连,坐标分别为:??? ??2,0a A ??? ?

?

-2,0a B ,

质量为m ,开始时静止。现在有一冲量I 作用与A ,则I 作用后,A 得到速度m I v A =,B

仍静止不动:0=B v 。它们的质心C 位于原点,质心速度我为

2

2A B A C m m m v v v v =

+=

现在把坐标系建在质心C 上,因为系统不再受外力作用,所以质心将以速率2

A v 沿

x 轴正向匀速正向、反向运动。由于质心系是惯性系,且无外力,所以A ,B 分

别以速率2A v 绕质心作匀速圆周运动,因而他们作的事圆滚线运动。经过时间t 后

,如图所示:

am It a v t a v A A

=

==2

于是在xy O 系中A 的速度

???

???

?-=+=θθsin 2)cos 1(2A Ay A Ax u v u v B 的速度:

???

???

?=-=θθsin 2)cos 1(2A By A Bx u v u v 因此

1:2cot sin 1cos 1sin 2)cos 1(2sin 2)cos 1(2:22

22

2??? ??=-+=??

?

???-+??????-????

???+??????+?=am It v v v v E E A A A A B A θθθθθθ

2.12 解 对于质心系的问题,我们一般要求求出相对固定参考点的物理量,在找

出质心的位置和质心运动情况,由此去计算物体相对或绝对物理量及其间的关系。由题可知,碰前1m 速度为1v ,2m 速度02=v 。碰后速度1m ,2m 分别设为21,v v ''。碰撞过程中无外力做功,动量守恒。

221

111v m v m v m '+'=① 有恢复系数e

1

12

v v v e '-'=

② 联立①②得

12

12

11

v m m em m v +-='

12

112

)

1(v m m e m v ++='

再由质点组质心的定义:

2

12

211m m r m r m r c ++=

c r 为质心对固定点位矢,1r ,2r 分别为 1m ,2m 对同一固定点的位矢 所以

12

11212211212

211c r

v m m m m m v m v m m m r m r m v c +=++=++==

(质点组不受外力,所以质心速度不变。)

设两球碰撞后相对质心的速度1V ',2V '。

12121211121211

1v m m em v m m m v m m em m v v V c +-=+-+-=-'='(负号表示与1v 相反)

12

12

121112112

2)1(v m m em v m m m v m m e m v v V c +=+-++=-'='

同理,碰撞前两球相对质心的速度

12

12

1211111v m m m v m m m v v v V c +=+-

=-=

12

12

22v m m m v v V c +-

=-=(负号表示方向与1v 相反)

所以开始时两球相对质心的动能:

2222112121V m V m T +==2

2122221212121???? ??+-+???? ??+v m m m m v m m m m =2

12

12121v m m m m ?+? 2.13用机械能守恒方法;在链条下滑过程中,只有保守力重力做功,所以链条的

机械能守恒。以桌面所平面为重力零势能面。

22124

2mv l mg l

g m +?-=???? ??-

2

3gl v =

2.14 此类题为变质量问题,我们一般研究运动过程中质量的变化与力的关系

()()mv dt

d

F t =

以竖直向上我x 轴正向建立如题2.14.1图所示坐标。

题2.14.1图

绳索离地面还剩x 长时受重力

()xy F t σ-=

()xv dt

d

xy σσ=- ()dt

dx dx xv d xy ?=

-

dx

dv v

g =- ??

+-=x l

h v

gdx vdv 0

所以

)(22x l h g v -+=

求地板的压力,有牛顿第三定律知,只需求出地板对绳索的支持力N 即可,它们是一对作用力与反作用力。这是我们以快要落地的一小微元作为研究对象。它的速度由v 变为0。用动量守恒,有

dt mv d g x l N )()(=

--σ=dt xv d )(σ=dt

dx

v σ2v σ=

又因为

)(22x l h g v -+=

)(2)(x l h g g x l N -+?+-=σσ=[])(32x l h g -+σ

2.15 解 这是一道变质量的问题,对于此类问题,我们由书上p.137的(2.7.2)式

F u dt

dm mv dt d =-)(① 来分析。

以机枪后退方向作为x 轴争先,建立如题2.15.1图的坐标。

f

u

题2.15图

竖直方向上支持力与重力是一对平衡力。水平方向上所受合外力F 即为摩擦力

g mt M M n f F )(-'+-=-==μμ②

单位时间质量的变化

m dt

M d ='

③ 由①②式

[])()(mt M M g u dt

M d v mt M M dt d -'+-='--'+μ

[]?

?

?'-'+-='--'+m M u

o

v dt mt M M g u M d v mt M M d 0

)()(μ

??

? ??'+''+-='-'-'+m M g m M M M g u M v m M m

M M 21)()(μμ 所以

g Mm

M M M u m M v μ2)(22-'+-'=

2.16解 这是一个质量增加的问题。雨滴是本题m 。导致雨滴m 变化的微元m ?的速度0=u 。

所以我们用书上p.138的(2.7.4)式分析

F mv dt

d

=)(① 雨滴的质量变化是一类比较特殊的变质量问题。我们知道处理这类问题常常理想化模型的几何形状。对于雨滴我们常看成球形,设其半径为r ,则雨滴质量m 是与半径r 的三次方成正比(密度看成一致不变的)。

31r k m =②

有题目可知质量增加率与表面积成正比。即

2224r k r k dt

dm

=?=π③ 21,k k 为常数。我们对②式两边求导

dt

dr

r k dt dm 213?=④ 由于③=④,所以

λ==1

2

3k k dt dr ⑤ 对⑤式两边积分

??

=t

r

a

dt dr 0

λ

a t r +=λ⑥

31)(a t k m +=λ⑦

理论力学习题

班级姓名学号 第一章静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。() 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。() 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。() 4、凡是受两个力作用的刚体都是二力构件。() 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。()二.选择题 1、在下述公理、法则、原理中,只适于刚体的有() ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体)

f(杆AC、CD、整体 )e(杆AC、CB、整体) 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

班级 姓名 学号 第一章 静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑 接触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体

理论力学习题

第一章静力学公理与受力分析(1) 一.就是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体就是真实物体的一种抽象化的力学模型,在自然界中并不存在。( ) 4、凡就是受两个力作用的刚体都就是二力构件。( ) 5、力就是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有( ) ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体) )e(杆AC、CB、整体)f(杆AC、CD、整体

四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接 触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a(杆AB、BC、整体)b(杆AB 、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体 )e(杆CE、AH、整体)f(杆AD、杆DB、整体

理论力学第二章

第2章 力系的等效与简化 2-1试求图示中力F 对O 点的矩。 解:(a )l F F M F M F M M y O y O x O O ?==+=αsin )()()()(F (b )l F M O ?=αsin )(F (c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2 22 1sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF 2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。 解:)(2 )()(j i k i F r F M +-? +=?=F a A O m kN )(36.35) (2 ?+--=+--= k j i k j i Fa m kN 36.35)(?-=F x M 2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm , α = 30°。试求力F 对x 、y 、z 轴之矩。 解: )cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--?-=?=F D A k j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-= 力F 对x 、y 、z 轴之矩为: m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(?-=+-=+-=ααF x M m N 10sin 40)(2?-=-=αF y M m N 5.7sin 30)(2?-=-=αF z M 2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。 习题2-1图 A r A 习题2-2图 (a ) 习题2-3图

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化 2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。 答:F/2;62F/5。 2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩 M x(F)= 。 答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ) 图2-40 图2-41 2-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。 答:-60N; 2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE的一个力F,图中α=30°,则此力对各坐标轴之矩为: M x(F)= ;M Y(F)= ;M z(F)= 。 答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/4 2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。 答:M x(F)=160 N·cm;M z(F)=100 N·cm

图2-42 图2-43 2-6.试求图示中力F 对O 点的矩。 解:a: M O (F)=F l sin α b: M O (F)=F l sin α c: M O (F)=F(l 1+l 3)sin α+ F l 2cos α d: ()22 21l l F F M o +=αsin 2-7.图示力F=1000N ,求对于z 轴的力矩M z 。 题2-7图 题2-8图 2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。试求其合力,并画在图上(图中长度单位为米)。 解:将力系向O 点简化 R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N 主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m 合力的方向:cos (R ,)=,cos (R ,)=-

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以 n3 预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。 若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。 2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。 2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。 2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,

理论力学题库第二章

理论力学题库——第二章 一、 填空题 1. 对于一个有n 个质点构成的质点系,质量分别为123,,,...,...i n m m m m m ,位置矢量分别 为123,,,...,...i n r r r r r ,则质心C 的位矢为 。 2. 质点系动量守恒的条件是 。 3. 质点系机械能守恒的条件是 。 4. 质点系动量矩守恒的条件是 。 5. 质点组 对 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 6. 质心运动定理的表达式是 。 7. 平面汇交力系平衡的充分必要条件是合力为零。 8. 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 9. 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 10. 质点组动能的微分的数学表达式为: ∑∑∑===?+?==n i i i i n i i e i n i i i r d F r d F v m d dT 1 )(1)(12 )21( , 表述为质点组动能的微分等于 力和 外 力所作的 元功 之和。 11. 质点组动能等于 质心 动能与各质点对 质心 动能之和。 12. 柯尼希定理的数学表达式为: ∑='+=n i i i C r m r m T 1 2221 ,表述为质点组动能等于 质心 动能与各质点对 质心 动能之和。 13. 2-6.质点组质心动能的微分等于 、外 力在 质心系 系中的元功之和。 14. 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。 15. 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动) 的引力的运动。 16. 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个 粒子。 17. 设木块的质量为m 2 , 被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如 果有一质量为m 1的子弹以速率v 1 沿水平方向射入木块,子弹与木块将一起摆至高度为 h 处,则此子弹射入木块前的速率为: 2 /11 2 11)2(gh m m m += v 。 18. 位力定理(亦称维里定理)可表述为:系统平均动能等于均位力积的负值 。(或

理论力学答案第二章

《理论力学》第二章作业 习题2-5 解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力F外,沿DB有一拉力7和沿DE有一拉力T E。列平衡方程 F Y 0 T E sin F 0 解之得 T Fctg 800/0.1 8000( N) (2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T夕卜,沿BA有一铅直向下的拉力T A,沿BC有一拉力T C,且拉力T与D点所受的拉力T大小相等方向相反,即T TT。列平衡方程 F X 0 T T C sin 0 F Y 0 T C COS T A 0 解之得 T A Tctg 8000/0.1 80000( N) 答:绳AB作用于桩上的力约为80000N 习题2-6 解:(1)取构件BC为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M,那末B、C处所受的约束力F B、F C必定形成一个阻力偶与之 F X 0 T T E COS 0 3) ,T A

平衡。列平衡方程 r M B (F) 0 M F C l 0 与BC 构件所受的约束力F C 互为作用力与反作用力关系,在D 处有一约束力F D 的 方向向上,在A 处有一约束力F A ,其方向可根据三力汇交定理确定,即与水平 方向成45度角。列平衡方程 F X 0 F A sin 45o F C 所以 F A 迈F C >/2F C V 2 -M - 答:支座A 的约束力为.2-,其方向如上图(b ) 所示 习题2-7 解: (1)取曲柄0A 为研究对象,其受力情况如下图(a )所示:由于其主动力 仅有一个力偶M ,那末O A 处所受的约束力F O 、F BA 必定形成一个阻力偶与之 平衡。列平衡方程 ⑵ 取构件ACD ^研究对象,其受力情况如上图(b )所示:C 处有一约束力F C F

理论力学课后习题第二章解答

理论力学课后习题第二章解答 2.1 解 均匀扇形薄片,取对称轴为轴,由对称性可知质心一定在轴上。 有质心公式 设均匀扇形薄片密度为,任意取一小面元, 又因为 所以 对于半圆片的质心,即代入,有 2.2 解 建立如图2.2.1图所示的球坐标系 x x 题2.1.1图 ? ?=dm xdm x c ρdS dr rd dS dm θρρ==θcos r x =θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?? ????2 π θ= πππ θθa a a x c 342 2sin 32sin 32=?==

把球帽看成垂直于轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为。 则 由对称性可知,此球帽的质心一定在轴上。 代入质心计算公式,即 2.3 解 建立如题2. 3.1图所示的直角坐标,原来与共同作一个斜抛运动。 当达到最高点人把物体水皮抛出后,人的速度改变,设为,此人即以 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离 题2.2.1图 z ρ)(222z a dz y dv dm -===ρπρπρz )2()(432 b a b a dm zdm z c ++-==? ?人 W y 题2.3.1图 x v x v αcos v 0=水平v 1s

① ② ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 可知道 水平距离 跳的距离增加了 = 2.4解 建立如图2.4.1图所示的水平坐标。 以,为系统研究,水平方向上系统不受外力,动量守恒,有 ① 对分析;因为 ② 在劈上下滑,以为参照物,则受到一个惯性力(方向与加速度方向相反)。如图2.4.2图所示。所以相对下滑。由牛顿第二定律有 t a v s ?=cos 01gt v =αsin 0ααcos sin 20 1g v s =)(cos )(0u v w Wv v w W x x -+=+αu w W w a v v x ++ =cos 0αααsin )(cos sin 0202uv g W w w g v t v s x ++==12s s s -=?αsin )(0uv g w W w + 题2.4.1图 θ题2.4.2图 1m 2m 02211=+x m x m 1m 相对绝a a a +=1m 2m 2m 1m 21x m F -=惯2m 1m 2m

(完整word版)理论力学 期末考试试题(题库 带答案)

理论力学 期末考试试题 1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。试求固定端A 的约束力。 解:取T 型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布: 1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用 力偶矩M=18kN.m 。求机翼处于平衡状态时,机翼根部固定端O 所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力. 解: 1-5、平面桁架受力如图所示。ABC 为等边三角形,且AD=DB 。求杆CD 的内力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。试计算杆1、2和3的内力。 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。若F=10kN,求各杆的内力。

《理论力学》第二章作业答案

x y P T F 220 36 O 15 2-?图[习题2-3]动学家估计,食肉动物上颚的作用力P 可达800N ,如图2-15示。试问此时肌肉作用于下巴的力T 、F 是多少? 解: 解: 0=∑x F 036cos 22cos 00=-F T 22cos 36cos F T = 0=∑y F 036sin 22sin 00=-+P F T 80036sin 22sin 22 cos 36cos 000 =+F F )(651.87436 sin 22tan 36cos 800 00N F =+= )(179.76322 cos 36cos 651.87422cos 36cos 0 00N F T ===

18 2-?图 B [习题2-6] 三铰拱受铅垂力P F 作用,如图2-18所示。如拱的重量不计,求A 、B 处支座反力。 解:0=∑x F 0cos 45cos 0=-θB A R R B A R l l l R 22)23()2(22 2 += B A R R 1012 1= B A R R 5 1= 0=∑y F 0sin 45sin 0=-+P B A F R R θ P B A F R l l l R =++ 22)23()2(232 1 P B A F R R =+ 10 32 1

的受力图 轮A P B B F R R =+ ? 10 35 121 P B F R =10 4 P P B F F R 791.04 10 ≈= 31623.010 1)2 3()2(2cos 22≈= += l l l θ 0565.71≈θ P P P A F P F R 354.04 2 41051≈=? = 方向如图所示。 [习题2-10] 如图2-22所示,一履带式起重机,起吊重量kN F P 100=,在图示位置平衡。如不计吊臂AB 自重及滑轮半径和摩擦,求吊臂AB 及揽绳AC 所受的力。 解:轮A 的受力图如图所示。 0=∑x F 030cos 20cos 45cos 000=--P AC AB F T R

理论力学题库第二章

理论力学题库一一第二章 填空题 对于一个有n 个质点构成的质点系,质量分别为 m 1, m>, m 3,...m i ,...m n ,位置矢量分别 卄彳 4 T 为r ∣,r 2, r 3,...r i ,...r n ,则质心 C 的位矢为 _________ 。 质点系动量守恒的条件是 _______________________________________ 。 质点系机械能守恒的条件是 __________________________________ 。 质点系动量矩守恒的条件是 _____________________________________________ 。 质点组 ______ 对 ________ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 质心运动定理的表达式是 ____________________________________ 。 平面汇交力系平衡的充分必要条件是合力为零。 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 n n n 质点组动能的微分的数学表达式为: dT =d C'? m i v 2)i" F i Wdr i X Ffdr i 2 iA i = I i =I 表述为质点组动能的微分等于 内力和夕卜力所作的元功之和。 质点组动能等于质心动能与各质点对 质心动能之和。 1 n T= mr c 2亠二m i r i 2 ,表述为质点组动能等于 质心 2 y 动能与各质点对 质心动能之和。 2-6.质点组质心动能的微分等于 内、夕卜 力在 质心系 系中的元功之和。 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动) 的引力的运动。 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个 粒子。 设木块的质量为m,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如 果有一质量为 m 的子弹以速率 V 1沿水平方向射入木块,子弹与木块将一起摆至高度为 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 柯尼希定理的数学表达式为: 18. h 处,则此子弹射入木块前的速率为: 位力定理(亦称维里定理)可表述为: m ■旦(2gh)1/2 m 1 系统平均动能等于均位力积的负值 。(或

理论力学题库第4章

理论力学题库——第四章 一、填空题 1.科里奥利加速度(“是”或“不是”)由科里奥利力产生的,二 者方向(“相同”或“不相同”)。 2.平面转动参考系中某一点对静止参考系的加速度的表达式 是,其中是相对加速度,是牵 连加速度,是科里奥利加速度。 4-1.非惯性系中,运动物体要受到 4种惯性力的作用它们是:惯性力、惯性切 向力、惯性离轴力、科里奥利力。 4-2.在北半球,科里奥利力使运动的物体向右偏移,而南半球,科里奥利力使 运动的物体向左偏移。(填“左”或“右”) 4-3.产生科里奥利加速度的条件是:物体有相对速度υ'及参照系转动,有角速度ω,且υ'与ω不平行。 4-4.科里奥利加速度是由参考系的转动和物体的相对运动相互影响产生的。 4-5.物体在主动力、约束力和惯性力的作用下在动系中保持平衡,称为相对平衡。4-6.重力加速度随纬度增加的主要原因是:地球自转产生的惯性离轴力与地心引力有抵消作用。 4-7.由于科里奥利力的原因北半球气旋(旋风)一般是逆时针旋转的.(顺时针或逆时针) 4-8.地球的自转效应,在北半球会使球摆在水平面内顺时针转动.(顺时针或逆时针) 二、选择题 1.关于平面转动参考系和平动参考系,正确的是() A.平面转动参考系是非惯性系; B.牛顿定律都不成立; C.牛顿定律都成立; D.平动参考系中质点也受科里奥利力。

2. 下列关于非惯性系的说法中正确的是: 【C 】 A 惯性离心力与物体的质量无关; B 科里奥利力与物体的相对运动无关; C 科里奥利力是参考系的转动与物体相对与参考系的运动引起的; D 科里奥利力使地球上南半球河流右岸冲刷比左岸严重。 3. 科里奥利力的产生与下列哪个因素无关? 【B 】 A 参照系的转动; B 参照系的平动; C 物体的平动; D 物体的转动。 4. 在非惯性系中如果要克服科里奥利力的产生,需要: 【D 】 A 物体作匀速直线运动; B 物体作匀速定点转动; C 物体作匀速定轴转动; D 物体静止不动。 5. A 、B 两点相对于地球作任意曲线运动,若要研究A 点相对于B 点的运动,则A (A) 可以选固结在B 点上的作平移运动的坐标系为动系; (B) 只能选固结在B 点上的作转动的坐标系为动系; (C) 必须选固结在A 点上的作平移运动的坐标系为动系; (D) 可以选固结在A 点上的作转动的坐标系为动系。 6..点的合成运动中D (A) 牵连运动是指动点相对动参考系的运动; (B) 相对运动是指动参考系相对于定参考系的运动; (C) 牵连速度和牵连加速度是指动参考系对定参考系的速度和加速度; (D) 牵连速度和牵连加速度是该瞬时动系上与动点重合的点的速度和加速度。 7. dt v d a e e =和dt v d a r r =两式A (A) 只有当牵连运动为平移时成立; (B) 只有当牵连运动为转动时成立; (C) 无论牵连运动为平移或转动时都成立; (D) 无论牵连运动为平移或转动时都不成立。 8.点的速度合成定理D (A) 只适用于牵连运动为平移的情况下才成立; (B) 只适用于牵连运动为转动的情况下才成立; (C) 不适用于牵连运动为转动的情况; (D) 适用于牵连运动为任意运动的情况。

理论力学题库第二章

理论力学题库——第二章 一、填空题 1.对于一个有"个质点构成的质点系,质量分别为加],加2,加3,…叫,…加",位置矢量分别 为,“,£,?",???—,则质心c的位矢为_______________ 。 2.质点系动量守恒的条件是______________________________ 。 3.质点系机械能守恒的条件是__________________________ , 4.质点系动量矩守恒的条件是___________________________________ o 5.质点组_______ 对______ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 & 质心运动定理的表达式是______________________________ 0 7.平面汇交力系平衡的充分必要条件是合力为零。 8.各质点对质心角动量对时间的微商等于外力对质心的力矩之和。 9.质点组的角动量等于质心角动量与各质点对质心角动量之和。 10.质点组动能的澈分的数学表达式为:£耳"?心+£戸件叭 2 t.i /-I /-I 表述为质点组动能的微分等于_力和力所作的元功之和。 11.质点组动能等于质心动能与各质点对质心动能之和。 12.柯尼希定理的数学表达式为:丁=丄〃呢2+£性十2 ,表述为质点组动能等于质心 2 /.I 动能与各质点对质心动能之和。 13.2-6?质点组质心动能的微分等于、外力在质心系系中的元功之和。 14.包含运动电荷的系统,作用力与反作用力不--定在同一条直线上。 15.太阳、行星绕质心作圆锥曲线的运动可看成质量为折合质量的行星受太阳(不动)的引力的运 动。 16.两粒子完全弹性碰撞,当质量相等时,一个粒子就有可能把所有能量转移给另一个粒子。 17.设木块的质呈为nh ,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如果有一质 量为叫的子弹以速率v,沿水平方向射入木块,子弹与木块将一起摆至高度为 久=佟上竺(2g〃严 h处,则此子弹射入木块前的速率为:E___________ 。 18.位力定理(亦称维里定理)可表述为:系统平均动能等于均位力积的负值。(或 沧士护T ) 二、选择题

第2章混凝土结构材料的物理力学性能习题答案.

第2章混凝土结构材料的物理力学性能 2.1选择题 1.混凝土若处于三向应力作用下,当( D )。 A. 横向受拉,纵向受压,可提高抗压强度; B. 横向受压,纵向受拉,可提高抗压强度; C. 三向受压会降低抗压强度; D. 三向受压能提高抗压强度; 2.混凝土的弹性模量是指( A )。 A. 原点弹性模量; B. 切线模量; C. 割线模量; D. 变形模量; 3.混凝土强度等级由150mm 立方体抗压试验,按( B )确定。 A. 平均值μfcu ; B. C. D. μfcu -1. 645σ ;μfcu -2σ ;μfcu -σ; 4.规范规定的受拉钢筋锚固长度l a 为( C )。 A .随混凝土强度等级的提高而增大;

B .随钢筋等级提高而降低; C .随混凝土等级提高而减少,随钢筋等级提高而增大; D .随混凝土及钢筋等级提高而减小; 5.属于有明显屈服点的钢筋有( A )。 A .冷拉钢筋; B .钢丝; C .热处理钢筋; D .钢绞线; 6.钢材的含碳量越低,则( B )。 A .屈服台阶越短,伸长率也越短,塑性越差; B .屈服台阶越长,伸长率越大,塑性越好; C .强度越高,塑性越好; D .强度越低,塑性越差; 7.钢筋的屈服强度是指( D )。 A. 比例极限; B. 弹性极限; C. 屈服上限; D. 屈服下限; 8.能同时提高钢筋的抗拉和抗压强度的冷加工方法是( B )。

A. 冷拉; B. 冷拔; 9.规范确定f cu , k 所用试块的边长是( A )。 A .150 mm; B .200 mm; C .100mm ; D .250 mm; 10.混凝土强度等级是由( A )确定的。 A .f cu , k ; B .f ck ; C .f cm ; D .f tk ; 11.边长为100mm 的非标准立方体试块的强度换算成标准试块的强度,则需乘以换算系数( C )。 A .1.05 ; B .1.0 ; C .0.95 ; D .0.90 ; 12.E c =

理论力学第二章思考题及习题答案

第二章思考题 2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? 2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故? 2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动? 2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何? 2.5水面上浮着一只小船。船上一人如何向船尾走去,则船将向前移动。这是不是与质心运动定理相矛盾?试解释之。 2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒? 2.7选用质心坐标系,在动量定理中是否需要计入惯性力? 2.8轮船以速度V 行驶。一人在船上将一质量为m 的铁球以速度v 向船首抛去。有人认为:这时人作的功为 ()mvV mv mV v V m +=-+222 2 12121 你觉得这种看法对吗?如不正确,错在什么地方? 2.9秋千何以能越荡越高?这时能量的增长是从哪里来的? 2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么? 2.11多级火箭和单级火箭比起来,有哪些优越的地方? 第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,

理论力学课后答案第二章.docx

解ftff?H?:晦矍*曲<∕jY?il ??Λ!P??∕i的钓痕力耳欝珊iL*G 0??l IlH b陌示.KZVk ??Oy4血平胡那论鬥 式⑴* Cr赚立?解紂 佔2 EF D?Π P = 5 ωo N .棗与撑祎自虫不计7 求BC'内力 的反力D 解该系统曼力如图(訂, 三力匸交于艰D.n?t?ι的力三 角膠如图冷人祥得 FX二5 OOm J‰ 二疔OoOW '?-?β-?ΛR?--?≠^≠?-?Vn? 2-2 在铰链A、B处有力Fi, F2作用,如图所示。该机Fi 与F2的关系。 2-3铰链4杆机构CABD的CD边固定, 构在图示位置平衡,不计杆自重。求力 30 T > ◎ 60o 检 (b) B [T j

已 ?] M?fr? P A ?? ?处于?,杆電 不比 求i )若片= F Ft =巴 角e -? 2)若 P Λ - 300 B = (ΛF? = ? 八5两轮受力分别 如图示■对A fc? SX = 0? F 刚 CEJB60, F F ?≤ I XKg = 0 ΣY 二 O J Fs X ?in60τ - F 屈 s?ι? - P A = I! 对 B 轮育 ΣX ^ 0, Fi l oos? - FX & 8= C ΣY = O l Frl A Sinff T F W SinJ?Γ -Pn = U (1) 四牛封程嬴立求AL 爾 Θ-2CT (2) 把拧-0?F A - 3t)0 N 入方社,联立解筹 P fl =IOON 2-5如图2-10所示,刚架上作用力F 。试分别计算力 F 解 M A (F) = -Fbcosθ M 3 IF) = -Fb cos0 + FosinB = F(OSiιι0-bcos0) 2-6已知梁AB 上作用1力偶,力偶矩为M ,梁长为 I ,梁重不计。求在图a , b , C 三种情 况下支座A 和 B 的约束力。 2-4 解⑴柠点掐坐KAS 力如囲Ib 所示"IQ 平fti j l l ?ffl 品F ∑Λ =0, F (Jf co?15° + F 1cosS0e =0. = *9 2co ? 节点瓦 腿标歴覺力如03 所小* Lil f *j≡?H ∑Λ =0, -F AS cos 30&-ACOS60o ≡0 Λ=-√3F 45=-?- = 1.5<3F 1 F 、: F l - 0.644 对点A 和B 的力矩。

理论力学第二章答案

第二章习题解答 2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。 题2.1.1图 有质心公式 ??= dm xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS , dr rd dS dm θρρ== 又因为 θcos r x = 所以 θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?????? 对于半圆片的质心,即2 πθ=代入,有 πππ θθa a a x c 342 2sin 32sin 32=? == 2.2 解 建立如图2.2.1图所示的球坐标 系 题2.2.1图 把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则 )(222z a dz y dv dm -===ρπρπρ 由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即 ) 2()(432 b a b a dm zdm z c ++- ==?? 2.3 解 建立如题2. 3.1图所示的直角坐 标,原来人W 与共同作一个斜抛运动。

y O 题2.3.1图 当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以 αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s t a v s ?=cos 01 ① gt v =αsin 0 ② ααcos sin 20 1g v s = ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 )(cos )(0u v w W v v w W x x -+=+α 可知道 u w W w a v v x ++ =cos 0 水平距离 αααsin )(cos sin 02 02uv g W w w g v t v s x ++== 跳的距离增加了 12s s s -=?= αsin )(0uv g w W w + 2.42.4 解 建立如图2.4.1图所示的水平坐标。 2.4.1图 θ题2.4.2图 以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有 02211=+x m x m ① 对1m 分析;因为 相对绝a a a += ② 1m 在劈2m 上下滑, 以2m 为参照物,则1m 受到一个惯性力21x m F -=惯(方向与2m 加速

理论力学习题答案

第一章静力学公理和物体的受力分析 一、是非判断题 1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。 ( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。 ( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。 ( ∨ ) 1.1.5 两点受力的构件都是二力杆。 ( × ) 1.1.6只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。 ( × ) 1.1.7力的平行四边形法则只适用于刚体。 ( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。 ( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。 ( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。 ( × ) 1.1.11 合力总是比分力大。 ( × ) 1.1.12只要两个力大小相等,方向相同,则它们对物体的作用效果相同。 ( × ) 1.1.13若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。 ( ∨ ) 1.1.14当软绳受两个等值反向的压力时,可以平衡。 ( × ) 1.1.15静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。 ( ∨ ) 1.1.16静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。 ( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。 ( × ) 1.1.18 如图所示三铰拱,受力F ,F1作用,其中F作用于铰C的销子上,则AC、BC构件都不是二力构件。 ( × )

理论力学第二章力系的简化习题解

1 F 2 F 3 F 0 1350 90O 第二章 力系的简化习题解 [习题2-1] 一钢结构节点,在沿OA,OB,OC 的方向上受到三个力的作用,已知kN F 11=, kN F 41.12=,kN F 23=,试求这三个力的合力. 解: 01=x F kN F y 11-= )(145cos 41.102kN F x -=-= )(145sin 41.102kN F y == kN F x 23= 03=y F )(12103 0kN F F i xi Rx =+-==∑= 00113 =++-==∑=i yi Ry F F 12 2=+=Ry Rx R R F F 作用点在O 点,方向水平向右. [习题2-2] 计算图中已知1F ,2F ,3F 三个力分别在z y x ,,轴上的投影并求合力. 已知 kN F 21=,kN F 12=,kN F 33=. 解: kN F x 21= 01=y F 01=z F )(424.053 7071.01cos 45sin 022kN F F x =??==θ)(567.05 4 7071.01sin 45sin 022kN F F y =??==θ )(707.0707.0145sin 022kN F F z =?== 03=x F 03=y F kN F z 33= )(424.20424.023 0kN F F i xi Rx =++==∑= )(567.00567.003 0kN F F i yi Ry =++==∑= )(707.33707.003 kN F F i zi Rz =++==∑= 合力的大小: )(465.4707.3567.0424.22222 22kN F F F F Rz Ry Rx R =++=++= 方向余弦: 4429.0465.4424 .2cos === R Rx F F α 1270.0465 .4567 .0cos ===R Ry F F β

理论力学题目整合第二章

填空题 对于一个有n 个质点构成的质点系,质量分别为 m 2,m 3,...m i ,...m n ,位置矢量分别 为r1;;,...?,..,,则质心C 的位矢为 质点系动量守恒的条件是 质点系机械能守恒的条件是 质点系动量矩守恒的条件是 质点组 _______ 对 _______ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 质心运动定理的表达式是 _______________________________ 平面汇交力系平衡的充分必要条件是合力为零^ 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 质点组动能等于质心动能与各质点对 质心动能之和。 1 n 柯尼希定理的数学表达式为: T - mr C m i r i 2 ,表述为质点组动能等于 质心 i 1 动能与各质点对 质心动能之和。 2-6.质点组质心动能的微分等于 内、夕卜 力在 质心系 系中的元功之和。 理论力学题库一一第二章 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 质点组动能的微分的数学表达式为: dT n 1 2 d( m V ) n (e) F dr n ⑴ F dr 2 i 1 i 1 i 1 表述为质点组动能的微分等于 内力和夕卜力所作的 元功之和。 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。

15.太阳、行星绕质心作圆锥曲线的运动可看成质量为折合质量的行星受太阳(不动)的 引力的运动。 16.两粒子完全弹性碰撞,当质量相等时,一个粒子就有可能把所有能量转移给另一个粒子。 17.设木块的质量为 m2 ,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如果有一质 量为m i的子弹以速率v i沿水平方向射入木块,子弹与木块将一起摆至高度 选择题 1.关于质心,以下说法错误的是() A. 均质物体的质心和其几何中心重合; B. 处于均匀重力场中的物 体, 重心和质心重合; C. 质点组合外力为零时,质心将静止; D. 质心可以在物体的外部。 2.质点组运动的总动能的改变() A. 与外力无关,内力有关; B. 与外力、内力都有关; C. 与外力、内力都无关; D. 与外力有关,内力无关。 3.满足下列哪种情况,质点组的机械能守恒(V1 匹』2(2gh)1/2 为h处,则此子弹射入木块前的速率为: 18.位力定理(亦称维里定理)可表述为: m1 系统平均动能等于均位力积的负值(或 F i r i

相关文档
相关文档 最新文档