文档库 最新最全的文档下载
当前位置:文档库 › 第三章线性规划

第三章线性规划

第三章线性规划
第三章线性规划

第三章 线性规划

§1 线性规划

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足

(目标函数)2134max x x z += (1)

s.t.(约束条件)???????≥≤≤+≤+0

,781022122

121x x x x x x x (2)

这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式

是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。

1.2 线性规划问题的解的概念 一般线性规划问题的标准型为

∑==n

j j j x c z 1

min (3)

∑==≤n

j i

j ij m i b x a 1

,,2,1 s.t. (4)

可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

可行域 所有可行解构成的集合称为问题的可行域,记为R 。 1.3 线性规划的图解法

图解法简单直观,有助于了解线性规划问题求解的基本原理。我们先应用图解法来求解例1。如上图所示,阴影区域即为LP 问题的可行域R 。对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。让等位线沿目标函数值减小的方向移动,直到等位线与可行域有交点的最后位置,此时的交点(一个或多个)即为LP 的最优解。

对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。不难看出,本例的最优解为T x )6,2(*=,最优目标值26*=z 。 从上面的图解过程可以看出并不难证明以下断言:

(1)可行域R 可能会出现多种情况。R 可能是空集也可能是非空集合,当R 非空时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。R 既可能是有界区域,也可能是无界区域。

(2)在R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其目标函数值无界)。

(3)R 非空且LP 有有限最优解时,最优解可以唯一或有无穷多个。 (4)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域R 的“顶点”。

上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。在一般的n 维空间中,满足一线性等式

∑==n

i i

i b x

a 1

的点集被称为一个超平面,而满足一线性不等式

∑=≤n

i i

i b x

a 1

(或∑=≥n

i i i b x a 1

)的点集被称为一个半空间(其中),,(1n a a 为一n 维行

向量,b 为一实数)。有限个半空间的交集被称为多胞形,有界的多胞形又被称为多面体。易见,线性规划的可行域必为多胞形(为统一起见,空集Φ也被视为多胞形)。 在一般n 维空间中,要直接得出多胞形“顶点”概念还有一些困难。二维空间中的顶点可以看成为边界直线的交点,但这一几何概念的推广在一般n 维空间中的几何意义并不十分直观。为此,我们将采用另一途径来定义它。

定义 1 称n 维空间中的区域R 为一凸集,若R x x ∈?2

1

,及)1,0(∈?λ,有

R x x ∈-+21)1(λλ。

定义2 设R 为n 维空间中的一个凸集,R 中的点x 被称为R 的一个极点,若不

存在R x x ∈2

1、及)1,0(∈λ,使得21)1(x x x λλ-+=。

定义1 说明凸集中任意两点的连线必在此凸集中;而定义2 说明,若x 是凸集R 的一个极点,则x 不能位于R 中任意两点的连线上。不难证明,多胞形必为凸集。同样也不难证明,二维空间中可行域R 的顶点均为R 的极点(R 也没有其它的极点)。

1.4 求解线性规划的Matlab 解法

单纯形法是求解线性规划问题的最常用、最有效的算法之一。单纯形法是首先由 George Dantzig 于1947年提出的,近60年来,虽有许多变形体已被开发,但却保持着同样的基本观念。由于有如下结论:若线性规划问题有有限最优解,则一定有某个最优解是可行区域的一个极点。基于此,单纯形法的基本思路是:先找出可行域的一个极点,据一定规则判断其是否最优;若否,则转换到与之相邻的另一极点,并使目标函数值更优;如此下去,直到找到某一最优解为止。这里我们不再详细介绍单纯形法,有兴趣的读者可以参看其它线性规划书籍。下面我们介绍线性规划的Matlab 解法。

Matlab5.3中线性规划的标准型为 b Ax x c T

x

≤ such that min

基本函数形式为linprog(c,A,b),它的返回值是向量x 的值。还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:

[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X 0,OPTIONS) 这里fval 返回目标函数的值,Aeq 和beq 对应等式约束beq x Aeq =*,LB 和UB 分别是变量x 的下界和上界,0x 是x 的初始值,OPTIONS 是控制参数。

例2 求解下列线性规划问题

321532m a x x x x z -+=

???

??≥≥+-=++0,,105273

21321321x x x x x x x x x 解 (i )编写M 文件 c=[2;3;-5];

a=[-2,5,-1]; b=-10; aeq=[1,1,1]; beq=7;

x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x

(ii )将M 文件存盘,并命名为example1.m 。

(iii )在Matlab 指令窗运行example1即可得所求结果。 例3 求解线性规划问题 32132 min x x x z ++=

???

??≥≥+≥++0,,6238243

2121321x x x x x x x x 解 编写Matlab 程序如下: c=[2;3;1];

a=[1,4,2;3,2,0]; b=[8;6];

[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))

1.5 可以转化为线性规划的问题

很多看起来不是线性规划的问题也可以通过变换变成线性规划问题来解决。如: 例4 问题为

b

Ax x x x n ≤+++ t.s.|

|||||min 21

其中T n x x x ][1 =,A 和b 为相应维数的矩阵和向量。

要把上面的问题变换成线性规划问题,只要注意到事实:对任意的i x ,存在

0,>i i v u 满足

i i i v u x -=,i i i v u x +=||

事实上,我们只要取2||i i i x x u +=,2

||i

i i x x v -=就可以满足上面的条件。

这样,记T n u u u ][1 =,T n v v v ][1 =,从而我们可以把上面的问题

变成

∑=+n

i i i

v u

1

)(min

??

?≥≤-0

,)( t.s.v u b

v u A

§2 运输问题(产销平衡)

例5 某商品有m 个产地、n 个销地,各产地的产量分别为m a a ,,1 ,各销地的需求量分别为n b b ,,1 。若该商品由i 产地运到j 销地的单位运价为ij c ,问应该如何调运才能使总运费最省?

解:引入变量ij x ,其取值为由i 产地运往j 销地的该商品数量,数学模型为

∑∑==m i n

j ij

ij x

c 11

min

s.t. ????

?????≥====∑∑==0,,2,1,,,1,1

1ij m

i j ij n

j i ij x n j b x m i a x

显然是一个线性规划问题,当然可以用单纯形法求解。

对产销平衡的运输问题,由于有以下关系式存在:

∑∑∑∑∑∑=======??? ??=???? ??=m

i i n

j n j m i ij m

i n j ij j a x x b 1

11111

其约束条件的系数矩阵相当特殊,可用比较简单的计算方法,习惯上称为表上作业法(由

康托洛维奇和希奇柯克两人独立地提出,简称康—希表上作业法)。 表上作业法是单纯形法在求解运输问题时的一种简化方法,其求解工作在运输表上进行逐步迭代如下:先按某一规则找出一个初始解(初始调运方案);再对现行解作最优性判断;若这个解不是最优的,就在运输表上对它进行调整改进,得一新解;再判断,再改进,直到得到最优解。

§3 指派问题(又称分配问题Assignment Problem )

3.1 指派问题的数学模型

例6 拟分配n 人去干n 项工作,每人干且仅干一项工作,若分配第i 人去干第j 项工作,需花费ij c 单位时间,问应如何分配工作才能使工人花费的总时间最少?

容易看出,要给出一个指派问题的实例,只需给出矩阵)(ij c C =,C 被称为指派问题的系数矩阵。

引入变量ij x ,若分配i 干j 工作,则取1=ij x ,否则取0=ij x 。上述指派问题的数学模型为

∑∑==n i n

j ij

ij x

c 11

min

s.t. n ,1,2,j i,, 1 0,,2,1,1,,2,1,11

1?????

??????======∑∑== 或ij n

i ij n

j ij x n j x n i x (5)

(5)的可行解既可以用一个矩阵(称为解矩阵)表示,其每行每列均有且只有一个元

素为1,其余元素均为0,也可以用n ,,1 中的一个置换表示。

(5)的变量只能取0或1,从而是一个0-1规划问题。一般的0-1规划问题求解极为困难。但指派问题并不难解,其约束方程组的系数矩阵十分特殊(被称为全单位模矩阵,其各阶非零子式均为1±),其非负可行解的分量只能取0或1,故约束10或=ij x 可改写为0≥ij x 而不改变其解。此时,指派问题被转化为一个特殊的运输问题,其中n m =,

1==j i b a 。

3.2 求解指派问题的匈牙利算法

由于指派问题的特殊性,又存在着由匈牙利数学家D.Konig 提出的更为简便的解法—匈牙利算法。算法主要依据以下事实:如果系数矩阵)(ij c C =一行(或一列)中每一元素都加上或减去同一个数,得到一个新矩阵)(ij b B = ,则以C 或B 为系数矩阵的指派问题具有相同的最优指派。

利用上述性质,可将原系数阵C 变换为含零元素较多的新系数阵B ,而最优解不

变。若能在B 中找出n 个位于不同行不同列的零元素,令解矩阵中相应位置的元素取值为1,其它元素取值为零,则所得该解是以B 为系数阵的指派问题的最优解,从而也是原问题的最优解。

由C 到B 的转换可通过先让矩阵C 的每行元素均减去其所在行的最小元素得矩阵D ,D 的每列元素再减去其所在列的最小元素得以实现。

下面通过一例子来说明该算法。 例7 求解指派问题,其系数矩阵为

?????

????

???=1622

19171718222418192117

22191516C 解 将第一行元素减去此行中的最小元素15,同样,第二行元素减去17,第三行元素减去17,最后一行的元素减去16,得

?????

????

???=06

31

01571240

74011B 再将第3列元素各减去1,得

?????

???????=**

**20531005711407301B 以2B 为系数矩阵的指派问题有最优指派

???

?

??43124321

由等价性,它也是例7的最优指派。

有时问题会稍复杂一些。

例8 求解系数矩阵C 的指派问题

?????

??

?????????=61071041066141512141217766698979712C

解:先作等价变换如下

∨????????

?????

???→????????????????----- 26360

40*089

57

510*00*

0032202

*056107104106614151214121776669897971246767

容易看出,从变换后的矩阵中只能选出四个位于不同行不同列的零元素,但5=n ,

最优指派还无法看出。此时等价变换还可进行下去。步骤如下:

(1) 对未选出0元素的行打∨; (2) 对∨行中0元素所在列打∨;

(3) 对∨列中选中的0元素所在行打∨; 重复(2)、(3)直到无法再打∨为止。

可以证明,若用直线划没有打∨的行与打∨的列,就得到了能够覆盖住矩阵中所有零元素的最少条数的直线集合,找出未覆盖的元素中的最小者,令∨行元素减去此数,∨列元素加上此数,则原先选中的0元素不变,而未覆盖元素中至少有一个已转变为0,且新矩阵的指派问题与原问题也等价。上述过程可反复采用,直到能选取出足够的0元素为止。例如,对例5变换后的矩阵再变换,第三行、第五行元素减去2,第一列元素加上2,得

???

??

?

?

?

????????04140400811353800003420207

现在已可看出,最优指派为?

??

?

??5314254321。

§4 对偶理论与灵敏度分析

4.1 原始问题和对偶问题

考虑下列一对线性规划模型:

x c T m a x s.t. 0,≥≤x b Ax (P) 和

y b T min s.t. 0,≥≥y c y A T (D)

称(P )为原始问题,(D )为它的对偶问题。

不太严谨地说,对偶问题可被看作是原始问题的“行列转置”:

(1) 原始问题约束条件中的第j 列系数与其对偶问题约束条件中的第j 行的

系数相同;

(2) 原始目标函数的系数行与其对偶问题右侧的常数列相同; (3) 原始问题右侧的常数列与其对偶目标函数的系数行相同;

(4) 在这一对问题中,除非负约束外的约束不等式方向和优化方向相反。 考虑线性规划:

0,s.t.min ≥=x b Ax x

c T

把其中的等式约束变成不等式约束,可得

0, s.t. min ≥??

?

???-≥??????-x b b x A A x c T

它的对偶问题是

[

][

]

c y y A A y y b b T

T T

T

≤??

?

???-?

?

?

???-2121 s.t.max

其中1y 和2y 分别表示对应于约束b Ax ≥和b Ax -≥-的对偶变量组。令21y y y -=,

则上式又可写成

c y A y b T T ≤ s.t. max

原问题和对偶的对偶问题约束之间的关系:

min max

???

??≤≥无限制变量

00 ?????=≥≤行约束 ???

??=≤≥行约束

??

?

??≤≥无限制变量00 4.2 对偶问题的基本性质

1o 对称性:对偶问题的对偶是原问题。

2o 弱对偶性:若x 是原问题的可行解,y 是对偶问题的可行解。则恒有:

y b x c T T ≤。

3o 无界性:若原问题(对偶问题)为无界解,则其对偶问题(原问题)无可行解。 4o

可行解是最优解时的性质:设x

?是原问题的可行解,y ?是对偶问题的可行解,当y b x

c T

T ??=时,y x ?,?是最优解。 5o 对偶定理:若原问题有有限最优解,那么对偶问题也有最优解;且目标函数值相同。

6o 互补松弛性:若y x

?,?分别是原问题和对偶问题的最优解,则 0)?(?,0)?(?=-=-c y A x b x A y

T T T 由上述性质可知,对任一LP 问题(P),若它的对偶问题(D)可能的话,我们总可以

通过求解(D )来讨论原问题(P ):若(D)无界,则(P)无可行解;若(D)有有限最优解*

w ,最优值b w *

,则利用互补松弛性可求得(P)的所有最优解,且(P)的最优值为b w *

。例如对只有两个行约束的LP ,其对偶问题只有两个变量,总可用图解法来求解。

例9 已知线性规划问题

5432132532min x x x x x ++++=ω

432..54321≥++++x x x x x t s 33254321≥+++-x x x x x

5,,2,1,

0 =≥j x j 已知其对偶问题的最优解为5

3,54*2*1==y y ,最优值为5*

=z 。试用对偶理论找出原

问题的最优解。

解 先写出它的对偶问题

2134max y y z +=

s.t. 2221≤+y y ①

321≤-y y ②

53231≤+y y ③ 221≤+y y ④ 3321≤+y y ⑤ 0,21≥y y

将*

2*

1,y y 的值代入约束条件,得②,③,④为严格不等式;设原问题的最优解为

),,(*5*1*x x x =,由互补松弛性得0*

4*3*2===x x x 。因 0,*2*1

>y y ;原问题的两个约束条件应取等式,故有

43*

5*1=+x x

32*5*1=+x x

求解后得到1,1*

5*1==x x ;故原问题的最优解为

]'10001[*=X ;最优值为5*

=w 。

4.3 灵敏度分析

灵敏度分析是指对系统或周围事物因周围条件变化显示出来的敏感程度的分析。 在以前讨论线性规划问题时,假定j i ij c b a ,,都是常数。但实际上这些系数往往是估计值和预测值。如市场条件一变,j c 值就会变化;ij a 往往是因工艺条件的改变而改变;

i b 是根据资源投入后的经济效果决定的一种决策选择。因此提出这样两个问题:当这

些参数有一个或几个发生变化时,已求得的线性规划问题的最优解会有什么变化;或者这些参数在什么范围内变化时,线性规划问题的最优解不变。这里我们就不讨论了。

4.4 参数线性规划

参数线性规划是研究j i ij c b a ,,这些参数中某一参数连续变化时,使最优解发生变化的各临界点的值。即把某一参数作为参变量,而目标函数在某区间内是这参变量的线性函数,含这参变量的约束条件是线性等式或不等式。因此仍可用单纯形法和对偶单纯形法进行分析参数线性规划问题。

习 题 一

1. 某厂生产三种产品I ,II ,III 。每种产品要经过B A ,两道工序加工。设该厂有两种规格的设备能完成A 工序,它们以21,A A 表示;有三种规格的设备能完成B 工序,它们以321,,B B B 表示。产品I 可在B A ,任何一种规格设备上加工。产品II 可在任何规格的A 设备上加工,但完成B 工序时,只能在1B 设备上加工;产品III 只能在2A 与2B 设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有

效台时以及满负荷操作时机床设备的费用如下表,要求安排最优的生产计划,使该厂利

2. 有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如

问指派哪个人去完成哪项工作,可使总的消耗时间为最小?

3. 某战略轰炸机群奉命摧毁敌人军事目标。已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。为完成此项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸弹32枚。飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸弹时每升汽油可飞行3千米。又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每升汽油可飞行4千米)外,起飞和降落每次各消耗100升。有关

题的线性规划模型。

运筹学中的线性规划在企业中的应用

线性规划在企业中的运用 摘要:运筹学是一门定量优化的决策科学,而线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,帮助决策人员选择最优方针和决策,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在帮助企业经营决策、计划优化等方面具有重要的作用。 关键词:运筹学;线性规划;应用;企业 运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。 它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。运筹学早期应用在军事领域,二战后转为民用,并且在企业中的应用越来越广泛,取得了良好的经济效益。运筹学的思想贯穿了企业发展的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划(或非线性规划)问题。从应用范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门它都可以发挥作用。线性规划方法具有适应性强,应用面广,计算技术比较简便的特点。其基本思路是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少

对偶线性规划理论及其在经济中的应用开题报告

开题报告 信息与计算科学 对偶线性规划理论及其在经济中的应用 一、选题的背景、意义[1] 21世纪中国进入到了一个新的时代,随着经济的快速发展和社会的进步,整个社会运行的各个方面——无论是在政治、经济、文化、科技、军事、外交方面,还是在环境、生态、资源问题方面,都将着眼于解决能否实现的问题扩充到更加重视解决如何优化实现的问题,从解决局部的简单问题扩充到解决系统的复杂问题,从静态地解决问题到动态地解决问题,从解决涉及单一领域的独立发展问题扩充到解决涉及多个领域的协同发展的问题,从通过直接办法解决问题扩充到通过间接的办法解决问题等,都迫切需要线性规划理论及其应用。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们合理利用有限资源制定最佳决策的有利工具。 二、研究的基本内容与拟解决的主要问题 2.1 对偶线性规划理论概述 2.1.1 对偶线性规划理论的发展历程及现状[2] [3] 线性规划理论产生于20世纪30年代。1939年,苏联数学家康托罗维奇在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题。 1947年,美国数学家丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法─单纯形法,为这门学科奠定了基础。1947年,美国数学家诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。 1951年,美国经济学家库普曼斯把线性规划应用到经济领域;1960年,康托罗维奇再次发表《最佳资源利用的经济计算》,创立了享誉全球的线性规划要点,对资源最优分配理论做出了贡献。为此,库普曼斯与康托罗维奇一起获1975年诺贝尔经济学奖。1984年,美国贝尔电话实验室的印度数学家卡马卡提出求解线性规划问题的投影尺度法,这是一个有实用意义的新的多项式时间算法。这个算法引起了人们对内点算法的关注,此后相

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

第一章 线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 台乙机床时总利润最大,则 21,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为

线性规划1

习题一 1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。 (1) min z =6x1+4x2(2) max z =4x1+8x2 st. 2x1+x2≥1 st. 2x1+2x2≤10 3x1+4x2≥1.5 -x1+x2≥8 x1, x2≥0 x1, x2≥0 (3) max z =x1+x2(4) max z =3x1-2x2 st. 8x1+6x2≥24 st. x1+x2≤1 4x1+6x2≥-12 2x1+2x2≥4 2x2≥4 x1, x2≥0 x1, x2≥0 (5) max z =3x1+9x2(6) max z =3x1+4x2 st. x1+3x2≤22 st. -x1+2x2≤8 -x1+x2≤4 x1+2x2≤12 x2≤6 2x1+x2≤16 2x1-5x2≤0 x1, x2≥0 x1, x2≥0 1.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。 (1) max z =3x1+5x2(2) min z =4x1+12x2+18x3 st. x1+x3=4 st. x1+3x3-x4=3 2x2+x4=12 2x2+2x3-x5=5 3x1+2x2+x5=18 x j≥0 (j=1, (5) x j≥0 (j=1, (5) 1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。 (1) max z =10x1+5x2 st. 3x1+4x2≤9 5x1+2x2≤8 x1, x2≥0 (2) max z =100x1+200x2 st. x1+x2≤500 x1≤200 2x1+6x2≤1200 x1, x2≥0 9

北师大版数学高二必修5第三章4.2、4.3简单线性规划及其应用作业

[学业水平训练] 1.设x ,y 满足???? ?2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ( ) A .有最小值2,最大值3 B .有最小值2,无最大值 C .有最大值3,无最小值 D .既无最小值,也无最大值 解析:选B.由图像可知z =x +y 在点A 处取最小值,即z m in =2,无最大值. 2.设变量x ,y 满足???? ?x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( ) A .20 B .35 C .45 D .55 解析:选D.作出可行域如图所示. 令z =2x +3y ,则y =-23x +13z ,要使z 取得最大值,则需求直线y =-23x +1 3z 在y 轴上 的截距的最大值,移动直线l 0:y =-2 3x ,可知当l 0过点C (5,15)时,z 取最大值,且z m ax =2×5+3×15=55,于是2x +3y 的最大值为55.故选D. 3.(2013·高考课标全国卷Ⅱ)设x ,y 满足约束条件???? ?x -y +1≥0,x +y -1≥0,x ≤3, 则z =2x -3y 的最小

值是() A.-7 B.-6 C.-5 D.-3 解析:选B.作出不等式组表示的可行域,如图(阴影部分). 易知直线z=2x-3y过点C时,z取得最小值. 由 ?? ? ??x=3, x-y+1=0, 得 ?? ? ??x=3, y=4, ∴z m in=2×3-3×4=-6,故选B. 4.直线2x+y=10与不等式组 ?? ? ??x≥0 y≥0 x-y≥-2 4x+3y≤20, 表示的平面区域的公共点有() A.0个B.1个 C.2个D.无数个 解析: 选B.画出可行域如图阴影部分所示. ∵直线过(5,0)点,故只有1个公共点(5,0). 5.已知实数x,y满足 ?? ? ?? y≥1, y≤2x-1, x+y≤m. 如果目标函数z=x-y的最小值为-1,则实数m等 于() A.7 B.5 C.4 D.3

第一章线性规划

-1- 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量, (1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性 函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 x c x T min s.t. ?? ? ??≤≤=?≤ub x lb beq x Aeq b Ax 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向量。

运筹学第七章动态规划

习题七7.1计算如图所示的从A 到E 的最短路线及其长度(单位:km ): (1) 用逆推解法;2用标号法。 7.2 用动态规划方法求解下列问题 (1) max z =x 12x 2 x 33 x 1+x 2+x 3 ≤6 x j ≥0 (j =1,2,3) (2)min z = 3x 12+4x 22 +x 32 x 1x 2 x 3 ≥ 9 x j ≥0 (j =1,2,3) 7.3 利用动态规划方法证明平均值不等式: n n n x x x n x x x 12121)()( ≥+++ 设x i ≥0,i =1,2,…,n 。 7.4 考虑一个有m 个产地和n 个销地的运输问题。设a i (i =1,2,…,m )为产地i 可发运的物资数,b j (j =1,2,…,n )为销地j 所需要的物资数。又从产地i 到销地j 发运x ij 单位物资所需的费用为h ij (x ij ),试将此问题建立动态规划的模型。 7.5 某公司在今后三年的每一年的开头将资金投入A 或B 项工程,年末的回收及其概率如下表所示。每年至多做一项投资,每次只能投入1000万元。求出三年后所拥有的期望金额达到最大的投资方案。 投 资 回 收 概 率 A 0 0.4 2000 0.6 B 1000 0.9 2000 0.1 7.6 某公司有三个工厂,它们都可以考虑改造扩建。每个工厂都有若干种方案可供选择,各种方案的投资及所能取得的收益如下表所示(单位:千万元)。现公司有资金5千万元,问应如何分配投资使公司的总收益最大?

7.7 某厂准备连续3个月生产A种产品,每月初开始生产。A的生产成本费用为x2,其中x是A产品当月的生产数量。仓库存货成本费是每月每单位为1元。估计3个月的需求量分别为d1=100,d2=110,d3=120。现设开始时第一个月月初存货s0=0,第三个月的月末存货s3=0。试问:每月的生产数量应是多少才使总的生产和存货费用为最小。 7.8 设有一辆载重卡车,现有4种货物均可用此车运输。已知这4种货物的重量、容积及价值关系如下表所示。 货物代号重量(吨)容积(立方米)价值(千元) 1 2 2 3 2 3 2 4 3 4 2 5 4 5 3 6 若该卡车的最大载重为15吨,最大允许装载容积为10立方米,在许可的条件下,每车装载每一种货物的件数不限。问应如何搭配这四种货物,才能使每车装载货物的价值最大。 7.9 某警卫部门有12支巡逻队负责4个仓库的巡逻。按规定对每个仓库可分别派2-4支队伍巡逻。由于所派队伍数量上的差别,各仓库一年内预期发生事故的次数如下表所示。试应用动态规划的方法确定派往各仓库的巡逻队数,使预期事故的总次数为最少。 巡逻队数预期事故次数仓库 1 2 3 4 2 18 38 14 34 3 16 36 12 31 4 12 30 11 25 7.10 (生产计划问题)根据合同,某厂明年每个季度末应向销售公司提供产品,有关信息见下表。若产品过多,季末有积压,则一个季度每积压一吨产品需支付存贮费0.2万元。现需找出明年的最优生产方案,使该厂能在完成合同的情况下使全年的生产费用最低。 季度j生产能力a j(吨)生产成本d j(万元/吨)需求量b j(吨) 1 30 15.6 20 2 40 14.0 25 3 25 15.3 30 4 10 14.8 15 (1)请建立此问题的线性规划模型。(提示:设第j季度工厂生产产品x j吨,第j季度初存贮的产品为y j吨,显然y1=0)(2)请建立此问题的动态规划模型。(均不用求解)

第三章线性规划

第三章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1 min (3) ∑==≤n j i j ij m i b x a 1 ,,2,1 s.t. (4) 可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。 可行域 所有可行解构成的集合称为问题的可行域,记为R 。 1.3 线性规划的图解法

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

第三章线性规划对偶理论与灵敏度分析习题 一、思考题 1.对偶问题和对偶变量的经济意义是什么? 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么? 3.什么是资源的影子价格?它和相应的市场价格之间有什么区别? 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系? 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解? 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么? 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么? 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>* i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=* i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

第三章 非线性规划

第三章 非线性规划 §1 非线性规划 1.1 非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。 例1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金A 元,投资于第),,1(n i i 个项目需花资金i a 元,并预计可收益i b 元。试选择最佳投资方案。 解 设投资决策变量为 个项目 决定不投资第,个项目 决定投资第i i x i 0, 1,n i ,,1 , 则投资总额为 n i i i x a 1 ,投资总收益为 n i i i x b 1 。因为该公司至少要对一个项目投资,并 且总的投资金额不能超过总资金A ,故有限制条件 n i i i A x a 1 另外,由于),,1(n i x i 只取值0或1,所以还有 .,,1,0)1(n i x x i i 最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为: n i i i n i i i x a x b Q 11max s.t. n i i i A x a 1 .,,1,0)1(n i x x i i 上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中目标函数或约束条件中至少有一个非线性函数,这类问题称之为非线性规划问题,简记为(NP )。可概括为一般形式 )(min x f q j x h j ,,1, 0)(s.t. (NP) p i x g i ,,1, 0)(

线性规划在运输问题中的应用

线性规划在运输问题中的应用 【摘要】用运筹学的思想探讨运筹学课程的教学方法。运筹学中的指派问题、最短路问题,最小费用流问题可转化为运输问题或转运问题,从而可以统筹安排这些教学内容,为提高教学效果,减少教学时间找出更优的教学方法。 【关键词】运输问题;转运问题;运筹学;线性规划;教学方法 引言: 随着我国国民经济的不断发展,企业之间的交易活动更加频繁,同地区、不同地区、甚至跨国的交易活动也不断发生,运输则成为交易的活动重点了。交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。 1.线性规划简介 线性规划法是解决多变量最优决策的方法,是在各种?相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。当资源限制或约束条件表现为线性等式或不等式,目标函数表示为线性函数时,可运用线性规划法进行决策。线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大?或极小值表示。约束条件是指实现目标的能力资源和内?部条件的限制因素,用一组等式或不等式来表示。线性规划是决策系统的静态最优化数学规划方法之一。它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划;经营管理等各方面提出的大量问题。? 最近几年,我国物流产业快速发展,形成了物流热。在物流作业的管理活动中,有着大量的规划问题,物资的合理调运就是其中一个比较重要的问题。求物资调运的最优调运方案,就是要在满足各种资源限制的条件下,找到使运输总费用最小的调运方案。? 2.线性规划在运输中的应用 在现实的生产经营、商品销售、经济建设和物资管理过程中,常常会遇到各类物资的分配和调运问题,即将各种生产资料或生活资料消耗品从供给基地调运到需求基地,这里就需要如何根据现有条件科学、合理的安排调运方案,提高运输经济效益。这就是属于线性规划中网络配送的以最小的成本完成货物的运输问题。运输问题就是讨论有关物资调运的问题,即将数量和单位运价都给定的某种物资从供应站运送到消费站,要求在供给和需求平衡的同时,制定出流量与流向,使总运输成本最低。运输问题是特殊的线性规划问题,根据问题的要求,建立数学模型,用表上作业法或线性规划软件求解,即可得出最佳的调运方案,取得了较好的经济效益。在运输问题中,确定的需求限制占据着重要的地位,即必须确定需求以及相应地确定需求的约束条件。? 3.运输问题的特征? 运输问题关心的是以最低的总配送成本把供应中心(出发地)的任何产品运送到每一个接收中心(目的地)。每一个出发地都有一定供应量配送到目的地,每一个目的地都需要一定的需求量。运输问题在供应量和需求量两方面都做出了如下的假设:需求假设。每一个出发地都有一个固定的供应量,所有的供应量都必须配送到目的地。与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须由出发地满足成本假设。从任何一个出发地到任何一个目的地的货物配送成本和所配送的数量成线性比例关系。因此,这个成本就等于配送的单位成本乘以所配送的数量。运输问题所需要的数据仅仅是供应量、需求量和单位成本,这些就是模型参数。如果一个问题可以完全描述成如下表所示的参数

第一章线性规划及单纯形法习题

第一章 线性规划及单纯形法习题 1.用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解还是无可行解。 (1)??? ??≥≥+≥++=0,42266432min 2121212 1x x x x x x x x z (2) ??? ??≥≥+≥++=0,12432 223max 2 121212 1x x x x x x x x (3) ?? ? ??≤≤≤≤≤++=8 3105120 106max 21212 1x x x x x x z (4) ??? ??≥≤+-≥-+=0,2322 265max 1 2212121x x x x x x x x z 2.将下列线性规划问题化成标准形式。 (1)????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43214321432143214321,0,,2321422 245243min x x x x x x x x x x x x x x x x x x x x z (2) ????? ? ?≥≤≥-++-≤-+-=++-+-=无约束 32143213213213 21,0,023*******min x x x x x x x x x x x x x x x x z 3.对下列线性规划问题找出所有基本解,指出哪些是基可行解,并确定最优解。 (1) ??? ?? ? ?=≥=-=+-+=+++++=)6,,1(0231024893631223min 61432143213 21 j x x x x x x x x x x x x x x z j (2) ??? ??=≥=+++=+++++-=)4,,1(0102227 4322325min 432143214321 j x x x x x x x x x x x x x z j 4.分别用图解发法和单纯形法求解下述问题,并对照单纯形表中的各基本可行解对应图解法中可行域的哪一顶点。

【人教A版】高中数学必修5同步辅导与检测:第三章3.3-3.3.2第2课时简单线性规划的应用(含答案)

第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.2 简单的线性规划问题 第2课时 简单线性规划的应用 A 级 基础巩固 一、选择题 1.有5辆6吨的汽车,4辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( ) A .z =6x +4y B .z =5x +4y C .z =x +y D .z =4x +5y 解析:设需x 辆6吨汽车,y 辆4吨汽车.则运输货物的吨数为z =6x +4y ,即目标函数z =6x +4y . 答案:A 2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( ) A.?????x +y ≤10, 2x +y ≤10,x +y ≤6,x ,y ∈N z =20x +40y

B.?????x +y ≥10, 2x +y ≥10,x +y ≤6,x ,y ∈N z =20x +40y C.???? ?x +y ≤10,2x +y ≤10,x +y ≤6, z =20x +40y D.?????x +y ≤10, 2x +y ≤10,x +y ≤6,x ,y ∈N z =40x +20y 解析:由题意可知选A. 答案:A 3.实数x ,y 满足?????x ≥1,y ≥0,x -y ≥0,则z = y -1x 的取值范围是( ) A .[-1,0] B .(-∞,0] C .[-1,+∞) D .[-1,1) 解析:作出可行域,如图所示,y -1 x 的几何意义是点(x ,y )与点 (0,1)连线l 的斜率,当直线l 过B (1,0)时k 1最小,最小为-1.又直线l 不能与直线x -y =0平行,所以k l <1.综上,k ∈[-1,1). 答案:D

线性规划的应用

课题:线性规划在实际生活中得应用 授课教师:济南市长清中学姜登凯 一、教材分析 1教材:高中数学(人教B 版)必修5第三章3、5、2 2教学目标 知识与技能目标:了解线性规划得相关概念,会解简单线性规划问题; 过程与方法目标:使学生经历“知识形成与发展”得过程,体会其中数形结合与转化得数学思想,培养学生得实践能力; 情感、态度与价值观目标:让学生体验“做数学”得乐趣,提高学生得数学素养、 3、教学重点难点 重点:解简单线性规划问题; 难点:线性规划问题解法得探求与理解、 4教 具:多媒体、实物投影仪、学案与直尺 二、教学方法与手段 采用了教师启发与学生自主探究相结合得互动式教学法,让学生通过合作探究自主突破难点,用变式训练拓展学生进行研究性学习得空间,把课堂变成教师导演学生主演得数学学习活动场、 为了提高课堂效率,规范学生得解题步骤,采取多媒体辅助教学与导学案结合得教学手段 三、教学过程: (一)创设情境,提出问题 1.引入:华罗庚解释什么就是“运筹学”,从字面上就就是“运行与规划得科学”就是在国民经济中选择最优化方法得一种科学,消除商品生产与流通过程中得浪费与不合理等现象,引出课题《简单线性规划》 2、 引例:某工厂用A 、B 两种配件生产甲、乙两种产品.每生产一件甲产品使用4个A 配件,耗时1小时;每生产一件乙产品使用4个B 配件,耗时2小时.已知该厂每天最多可从配件厂获得16个A 配件与12个B 配件,按每天工作不超过8小时计算,请您列出满足生产条件得数学关系式,并画出相应得平面区域、 解:设甲、乙两种产品每日得产量分别为x ,y 个 注:列约束条件时,要注意讲清x ∈N 、y ∈N ,这就是学生容易忽略得问题. 3提出中心问题:生产一件甲产品获利2万元,生产一件乙产品获利3万元,如何安排生产利润最大? (二)合作探究,解决问题 列出了约束条件与目标函数z=2x+3y 后,应用问题转化为线性规划问题。 用问题组引领学生用几何意义解决问题 1想求目标函数得最大值能不能每次解题都一一代入验证呢? 2可行解得几何意义就是点,目标函数z=2x+3y 得几何意义就是什么呢? 3将可行解代入目标函数,也就就是将可行域内点得坐标代入式子中,让我们联想到什么呢? 4我们要求z=2x+3y 得最大值,又与点到直线2x+3y=0得距离有什么关系呢? 28416412,x y x y x y N +≤??≤?? ≤??∈?

1第一章线性规划讲解

目录 未找到目录项。 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =?

相关文档