文档库 最新最全的文档下载
当前位置:文档库 › 发电厂空冷技术的应用

发电厂空冷技术的应用

发电厂空冷技术的应用
发电厂空冷技术的应用

目录

摘要

第一章概论

1.1 空冷技术的概述及分类‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.2 空冷技术的发展及在我国的应用‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.3 空冷技术的采用对整个发电厂生产工艺流程的影响‥‥‥‥‥‥‥‥‥‥第二章发电厂空冷系统设备

2.1 直接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.2 海勒式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.3 哈蒙氏间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.4 三种空冷系统的主要设备特征和技术参数比较‥‥‥‥‥‥‥‥‥‥‥‥第三章直接空冷系统的运行和维护

3.1 冷却风机‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3.2 直接空冷散热器的防冻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3.3 直接空冷散热器的热风再循环‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥第四章空冷系统与湿冷系统的比较

4.1 空冷和湿冷系统的经济性比较‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4.2 空冷系统的应用的评价‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥

结束语

参考文献

摘要

目前我国火力发电厂多采用水冷技术,面对越来越紧迫的水资源缺乏问题,火力发电行业的发展受到极大挑战,而空气冷却相比普通湿冷塔技术可以节水大约2/3。文章介绍目前在国外许多大型火电机组项目中采用的各种类型的空气冷却技术及我国火力发电行业采用空气冷却技术的历史和发展现状为了推广空冷技术在电厂的应用,特做此设计以供大家参考。

第一章概论

第一节空冷技术概述及分类

发电厂空冷技术从提出到现在约有50年的历史,并在国际上有了迅速发展,目前已出现单机容量686MW的空冷机组。在干旱地区,空冷技术发展尤为迅速,并出现了多种类型,如直接空冷、干湿联合冷却机组等。发电厂空冷技术已成为当前发电厂建设中的一个热门课题。

当前用于发电厂的空冷系统主要有三种,即直接空冷、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。直接空冷多采用机械通风方式,20世纪90年代以来,比利时哈蒙—鲁姆斯公司提出采用自然通风,两种间接空冷多采用自然通风。

一、间接空冷系统

混合式凝汽器间接空冷系统又称海勒式间接空冷系统,其发电厂如图所示。

1—锅炉; 2—过热器; 3—汽轮机; 4—喷射式凝汽器; 5—凝结水泵;6—凝结水精处理装置; 7—凝结水升压泵; 8—低压加热器; 9—除氧器;10—给水泵; 11—高压加热器; 12—冷却水循环泵; 13—调压水轮机;14—全铝制散热器; 15—空冷塔; 16—

旁路节流阀; 17—发电机

该系统由喷射式凝汽器和装有福哥型散热器的空冷塔构成。系统中的冷却水都是高纯度的中性水。中性冷却水进入凝汽器直接与汽轮机排汽混合并将其冷凝。受热后的冷却水绝大部分由冷却水循环泵送至空冷塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。

海勒式间接空冷系统的优点:①以微正压的低压水系统运行,较易掌握,可与中背压汽轮机配套;②冷却系统消耗动力低,厂用电耗少,占地面积中等。缺点是:①铝制空冷散热器耐冲洗,耐抗冻性能差;②空冷散热器在塔外布臵易受大风影响其带负荷能力;③设备系统复杂。

海勒式间接空冷系统一般适用于气候温和、无大风的发电厂。

二哈蒙氏间接空冷系统

表面式凝汽器间接空冷系统又称哈蒙式间接空冷系统。

哈蒙式间接空冷系统的发电厂示意图如图所示。

1—锅炉; 2—过热器; 3—汽轮机; 4—表面式凝汽器; 5—凝结水泵;6—凝结水精处理装臵; 7—凝结水升压泵; 8—低压加热器; 9—除氧器;10—给水泵; 11—高压加热器; 12—循环水泵; 13—膨胀水箱;14—全钢制散热器; 15—空冷塔; 16—除铁器; 17—发电机

该系统由表面式凝汽器与空冷塔构成。在哈蒙式间接空冷系统回路中,由于冷却水在温度变化时体积发生变化,故需设臵膨胀水箱。膨胀水箱顶部和冲氮系统连接,使膨胀水箱有一定压力的氮气,既可对冷却水容积膨胀起到补偿作用,又可避免冷却水和空气接触,保持冷却水品质不变。

哈蒙式间接空冷系统的优点是:①节约厂用电,设备少,冷却水系统与汽水系统分开,两者水质可按各自要求控制;

②冷却水量可根据季节调整,在高寒区,在冷却水系统中可冲以防冻液防冻;③空冷散热器在塔内布臵,基本上不受大

风影响其带负荷的能力。缺点是:①空冷塔占地大,基建投资大;②发电煤比湿冷机组多约105%;③系统中需要两次换热且都属于表面换热,使全厂热效率有所降低。

哈蒙式间接空冷系统一般适用于核电站、热电站和调峰大电厂。

三、直接空冷系统

直接空冷系统又称空气冷却系统,是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间通过管壁进行热交换。所需冷却空气,通常由轴流冷却机通过机械通风方式供应,系统如图所示。

1—锅炉; 2—过热器; 3—汽轮机; 4—空冷凝汽器; 5—凝结水泵;6—凝结水精处理装臵; 7—凝水升压泵; 8—低压加热

器; 9—除氧器;10—给水泵; 11—高压加热器; 12—汽轮机排汽管道; 13—轴流冷却风机;14—立式电动机; 15—凝结水箱; 16—除铁器; 17—发电机

直接空冷系统的特点如下所述。

⑴汽轮机背压变幅大。汽轮机排汽直接由空气冷凝,其背压随空气温度变化而变化。

⑵真空系统庞大。汽轮机排汽要由大直径的管道引出,用空气作为直接冷却介质通过钢制散热器进行表面热交换冷凝排汽需要较大的冷却面积,故而导致真空系统庞大。

⑶厂用电耗大。直接空冷系统所需空气由大直径的风机提供,风机需要耗能,直接空冷系统自耗电占机组发电容量的1.5%左右。

⑷电厂整体占地面积小。由于空冷凝汽器一般都布臵在汽轮机房顶或汽轮机房前的高架平台上,平台下电气设备等,空气冷凝器占地得到综合利用,使得电厂整体占地面积减少。

⑸冬季防冻措施比较灵活可靠。直接空冷可通过改变风机转速,停运风机或使风机反转来调节空冷凝汽器的进风量,直至吸热风来防止空冷凝汽器的冻结。调节相对灵活,效果好且可靠。

⑹凝结水溶氧量高。由于直接空冷机组的真空系统庞

大,易出现负压系统的氧气吸入。另外,由于机组背压偏高,易出现凝结水过冷度偏大,进一步加大了凝结水中的溶解氧的含量。

⑺可以大量节约电厂用水。

⑻由于蒸汽与空气通过翘片管束至直接进行热交换,省去了中间介质和二次换热,综合热效率提高,运行更经济。

⑼直接空冷电站具有较高的社会效益和与水冷凝汽器机组可比的经济性。

直接空冷系统适用于各种环境条件和各类燃煤电厂,要求煤价低廉,最后带基本电负荷的电厂,尤其适用于富煤缺水区。

第二节空冷技术的发展及在我国的应用

一、直接空冷凝汽器系统的发展

循环冷却系统是电力生产过程中的一个重要环节,做过功的汽轮机乏汽需要在凝汽器中冷却凝结,然后重新循环。常规湿冷机组是采用自然通风冷却塔形式,以水为冷却介质,其中循环水损失(蒸发损失、风吹损失和排污损失)约占电厂耗水量的80%;而空冷机组是以空气为冷却介质,其中间接空冷系统主要有带喷射式凝汽器的海勒式系统,带表面式凝汽器的哈蒙氏系统和直接空冷系统。无论是采用密闭循环冷却水的间接空冷方式,还是无循环冷却水的直接空冷方式,都不产生循环水损失,只需锅炉补水和其他用水即可,所以电站耗水量明显

减少,在相同的水资源下可多装机至原来的三倍以上,具有长远的经济效益。

电站空冷凝汽器技术的开发应用自世界上第一台15MW直接空冷机组于1938年在德国一个坑口电站投运至今已有近70年的历史。直接空冷技术的发展主要是围绕空冷凝汽器管束进行的,空冷凝汽器所用的翅片管基本上是表面镀锌的椭圆形钢管加钢质翅片,或圆形钢管加铝翅片。

在直接空冷凝汽器发展初期的20世纪60年代,由于受加工工艺的限制,翅片管的内径较小。为了将蒸汽侧的压力损失控制在合理范围内,单管长度一般为7m左右。为了获得足够的换热面积,蒸汽管束不得不采用2排、3排甚至4排管片。由于多排管组成的管束,空气(蒸汽)流会产生死区,换热面积不能像单排那样被100%利用,而且多排管空气流阻力大,其空冷风机必然要多耗电能,另外,管束外可能会出现死区,在冬季流动不畅的不可凝结气体和凝结水容易结冰。因此直接空冷技术的优越性显得不够突出,其发展和推广也受到了一定制约,基本上都在单机容量比较小的发电机组上使用。

20世纪80年代初,翅片管直径由25.4mm扩大到38mm,单管长度也相应加长到10m,组成管束的翅片管排数也相应减少,使用空冷技术发电机组的单机容量也相应增大。20世纪80年代中期以后,翅片管直径已经扩大到50mm以上,组成管的翅片管减少到只有一排,这也就是目前使用的具有特殊形状的单排椭圆形翅片管的空冷凝汽器。

空冷风机的发展,特别是变频技术的应用,对直接空冷技术的发展和推广起到很大的推动作用,它为防止空冷技术在严寒的冬季发生冰冻提供了更为灵活的控制手段。由于空冷凝汽器制造技术不断发展,解决了空冷技术在应用上的诸多难题,使其优点更为突出,为其在大容量机组上的应用铺平了道路。空冷技术已经为越来越多的国家认同和使用,使用空冷凝汽器的机组从无到有、容量从小到大,世界上相继出现了一批200、300甚至600MW及以上的大容量直接空冷机组,如伊朗Touss电站(4×150MW),1970年7月后相继投产的西班牙Utrillas 火电厂(单机容量160MW),1978年投产的美国Wyodak电站(单机容量330MW),1986年后相继投产的南非Maimba电站6×685MW等等,至今运行良好。

二、空冷技术在我国的应用

我国是一个以煤炭资源为主的能源国家,其中燃煤发电约占全部电源的70%,而且在近期仍不会改变这种电力能源以煤电为主的比例。我国还是严重缺水的国家,水资源短缺已成为制约经济社会发展的主要因素。按目前的正常需要和不超采地下水,全国缺水总量约为400亿m3,全国现有668座城市,约有400座城市缺水。

我国电力工业发展迅速,大容量、高参数的大型火电机组日益增多,其年耗燃料及水资源相当可观,其中水资源的矛盾已是制约我国大部分地区发展的一个重要因素,尤其是西部地区,富煤缺水,要开发这些地区的能源,除了有关工业、农业均要采取节约水措施外,电力行业建设采用大型空冷机组是非常经济而有效的措施。

我国于20世纪60年代开始火电空冷技术的研究,但都属于小型机组。“七五”期间,我国从匈牙利进口两套200MW带喷射式凝汽器的海勒式间接空冷系统设备,同时引进了海勒式系统的空冷技术,与东方汽轮机厂和电机厂生产的

200MW汽轮发电机组配套,在山西大同第二发电厂分别于1987年和1988年投产。

“八五”期间,太原第二热电厂的2台200MW供热空冷机组经论证,参照大同第二发电厂运行的实践,确定采用带表面式凝汽器哈蒙氏间接空冷系统。哈蒙氏系统是哈蒙公司在购买匈牙利海勒式系统专利后经研究改进的间接空冷系统,它与海勒式系统的主要不同是采用了表面式凝汽器和钢管钢翅片散热器,是循环冷却水与锅炉给水分成两个独立的系统,其水质可以按各自的标准和要求进行化学处理,因而简化了系统,方便运行操作,增加了空冷设备运行的可靠性。

从1992年起,哈尔滨发电设备制造基地为内蒙古丰镇电厂制造了4台200MW 空冷机组,采用了海勒式间接空冷系统。这几台节水型空冷机组投入运行,缓解了缺水地区的电供需矛盾和用水紧张状况,同时也积累了很多设计、制造、安装和运行经验,为发展我国大型空冷机组奠定了良好的基础。山西交城义旺铁合金制备电厂6MW直接空冷机组是我国首台投产的直接空冷机组;2003年11月,我国首台大容量空冷机组在大同平旺电厂1号机组(200MW)顺利完成96h试运并移交生产,2003年12月,2号机组也顺利建成投产;2004年9月、10月,山西漳山发电有限责任公司的2台300MW直接空冷机组相继完成168h试运行并移交生产;山西华能榆社电厂2×300MW直接空冷机组于2004年投产;大同第二发电厂2×600MW直接空冷机组于2005年4月投产;同时山西、内蒙古、东北等地还有许多空冷机组在建设中。上述的2×200MW、2×300MW、2×600MW机组添补了我国大型直接空冷机组的空白,标志着我国发电厂空冷技术已经跟上了世界的脚步,为我国大型直接空冷机组的发展取得了宝贵的经验。表1-4给出了我国空冷机组应用情况。

三、直接空冷技术的发展趋势

㈠直接空冷机组朝着高参数、大容量方向发展

由于空冷凝汽器制造技术不断发展,直接空冷机组的参数和容量也在不断增大,由原来的超高压、亚临界向超临界、超超临界发展。我国哈尔滨汽轮机制造有限公司已和大同第二电厂签署了制造2台600MW超临界直接空冷汽轮发电机组的协议。不就的将来,超超临界直接空冷汽轮机发电机组也会问世。

㈡空冷散热器向“大而少”方向发展

即空冷凝汽器的管排数减少,长度增加。

㈢通风方式趋向“多样化”

针对机械通风冷却方式的部分缺点,目前已经开发出采用自然通风塔的直接空冷系统,自然通风由于通风塔的存在,消除了热风再循环的影响,另外,由于取消了风机,减少了厂用电,不再有风机噪声危害。

㈣应用范围扩大

随着水资源的日益匮乏,直接空冷汽轮机的应用范围不断扩大,不但用于干燥地区,而且用于水资源相对比较充沛的地区;不但用在火电机组,而且用于核电厂、燃气-蒸汽联合循环电站。

第三节空冷电厂的总体特点

当发电厂采用空冷系统后,对整个发电厂的生产工艺流程有重大影响。现将

空冷电厂的总体特点简述如下。

⑴改变厂址选择条件。空冷电厂全厂耗水量按设计装机容量计算约为

0.3~0.35m3/(GW·s),因而厂址的选择基本上不受水源的限制,避免以水定厂址、以水定容量规模等问题,在缺水的煤矿坑口和靠近负荷中心区建造大容量发电厂成为可能。

⑵空冷设备地位重要。空冷电厂所需的散热器体积庞大,价格昂贵,已成为电厂的主要设备之一。

⑶节约用水。当今,湿冷电厂的全部耗水量约为1m3/(GW·s),空冷电厂可以节约湿冷电厂全厂耗水量的65%以上,是火电厂节水量最多的一项技术。同时缩小了电厂水资源工程建设规模,降低了水资源工程的投资费用。

⑷减轻了对环境的污染。由于空冷电厂没有逸出水雾汽团,不发生淋水噪声,更没有冷却水对天然水体的排放,减轻对环境的污染。

⑸大幅度的减少发电厂的占地面积成为可能。当采用直接空冷系统时,不仅可以取消湿冷系统的大型湿冷塔、水泵房、深埋地下管线等占地面积,还可以在空冷凝汽器平台下面布置电气变压器,充分利用主厂房A列外侧空间。当采用海勒式间接空冷系统时,有可能将主厂房或湿法烟气脱硫系统、烟囱布置在空冷塔内。

⑹空冷装置需要较大的施工组装场地和较为复杂的调试措施。

⑺空冷电厂的带负荷能力受到环境风向、风速、风温的影响大。

⑻空冷发电厂的全场热效率较低,发电标准煤耗率大。

第二章发电厂空冷系统设备

第一节直接空冷系统设备

直接空冷系统,又称空气冷却系统,是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换,所需的冷却空气通常由机械通风方式供应。直接空冷的凝气设备称为空冷凝汽器(ACC),组成空冷凝汽器的若干管束称为散热器。

直接空冷汽水系统如图2-1所示,汽轮机排汽通过粗大的排汽管送到室外的空冷凝汽器内,轴流冷却风机使空气流过散热器外表面,将做完功的排汽冷凝成水,凝结水再经泵送回去轮机的回热系统。

现代大中型直接空冷机组均采用了A形框架组合的KD型顺逆流凝汽器,其汽轮机排汽冷凝系统主要由空冷凝汽器(ACC)、排—配汽管道系统、凝结水收集系统、排汽(抽真空)系统、散热器清理系统及控制系统等组成。有代表性的

300MW直接空冷系统示意图,见图2-2

一、直接空冷凝汽器(ACC)

凝汽器作为汽轮发电机组的一部分,它的作用就是把汽轮机排出的乏汽凝结成水,与真空抽汽装置一起维持汽轮机排汽缸和凝汽器内的真空,并把凝结水收回作为锅炉的补给水。

在直接空冷凝汽器中,汽轮机排出的蒸汽在装有翅片管束的椭圆形或扁形管内流动,冷空气在翅片管外对蒸汽直接冷却。

㈠空冷凝汽器的分类

1.根据空冷凝汽器的结构型式

空冷凝汽器的结构有顺流式、逆流式、顺逆流联合式三种。

⑴顺流式

汽轮机排汽沿配汽管由上而下进入空冷凝汽器被冷凝,冷凝后的凝结水的流动方向与蒸汽流动方向相同,称之为顺流式空冷凝汽器。具有凝结水液膜较薄、传热效果好、气阻也小等优点。

⑵逆流式

汽轮机排汽沿配汽管由下向上进入空冷凝汽器被冷凝,冷凝后的凝结水的流动方向与蒸汽流动方向相反,称之为逆流式空冷凝汽器。气阻大、传热效果差。

⑶顺逆流联合式

空冷凝汽器绝大数采用顺逆流联合式的结构,即以顺流为主、逆流为辅,且两者间散热面积维持一定比例。

2.根据冷却空气的提供方式

直接空冷凝汽器的冷却用空气可通过自然通风和强制通风的方式供给,空冷凝汽器相应地分为自然通风直接空冷凝汽器和强制通风直接空冷凝汽器。

最新液压传动技术发展现状与前景展望

液压传动技术发展现状与前景展望 摘要:对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。关键词:液压传动;工业应用;发展趋势 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统[1]。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段[2]。 2 液压传动的发展简史 液压传动是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920 年以后,发展更为迅速。1925 液压元件大约在19 世纪末20 世纪初的20 年间,才开始进入正规的工业生产阶段[2]。年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域[4]。 3 液压传动的优缺点 3.1 与机械传动、电气传动相比,液压传动具有以下优点 1.液压传动的各种元件,可以根据需要方便、灵活地来布置。 2.重量轻、体积小、运动惯性小、反应速度快。 3.操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。 4.可自动实现过载保护。

液压传动技术在自动化生产中的应用

液压传动技术在自动化生产中的应用 摘要:液压传动控制当前主要应用于钢铁领域,通过液压来实现能量传递。由 于该技术具有操作便捷性、应用灵活性以及控制方便等方面的特点,钢铁企业普 遍重视液压控制技术的应用。有压流体是液压传动的能源介质来实现机械设备的 自动控制。本文浅析液压传动技术在自动化生产中的应用。 关键词:应用;自动化生产;液压传动技术 引言 帕斯卡原理是液压传动技术的根本性理论依据,即液体自身存在着较强的均 匀性,因此内部压强一致,某一系统处于平衡状态下,活塞的大小直接决定了所 施加压力的大小,使液体保持静止的状态。以液体为介质,在传递作用下可以通 过不同端来产生不同的压力。 1液压传动的优缺点 1.1优点 (1)液压系统中的动力元件、执行元件、控制元件等,能够根据需要灵活布局,使用方便。(2)在同等功率情况下,液压装置体积小、质量小,单位质量输出功率大。(3)操作控制简单,在液压系统运行过程中便可实现无级调速。(4)安全可靠, 具备过载保护功能。(5)液压传动中,由于功率损失产生的热量可以被液体带走, 避免了产生局部过度温升。(6)自动化程度高。液压传动能够使机器实现自动化、 智能化。若采用电液联合控制,则自动化程度更高,且能够实现远程遥控。正是 因为具备上述优点,液压传动在机械钢铁和国防建设等领域得到了广泛的应用。 液压传动的优点是其他传动形式无法比拟的,所以在未来具有广阔的发展前景。 1.2缺点 (1)流体易泄漏。液压系统内充满了大量的流体,由于流体在运行过程中受到 阻力且会发生泄漏,一方面造成场地污染,另一方面也增加了安全隐患。(2)受温 度影响较大。液压系统对工作环境的温度要求较严格,不能在过高或过低的温度 环境中正常运行。(3)液压元件价格昂贵。由于液压系统易泄漏,为了减少该种现 象的发生,液压元件制作精度通常较高,这就使得成本大大增加。(4)传动比易受 影响。液压系统中流体的泄漏会一定程度地影响传动比。(5)维修难度大。通常液 压传动出现问题时,不易维修。虽然上述这些缺点有部分已被改善(如泄漏问题),但是还存在其他问题需要解决。因此,今后在液压方面要着重对这些问题进行研 究探索。 2基于单一技术的传动方式 2.1机械传动 对于部分以机械方式进行驱动的传送装置来说,由于只能够采用平均负荷系 数较小的发动机,变速类型只局限为有级变速,只能够应用于通用客货汽车等对 于调整范围要求较低的设备中。而对于作业速度恒定以及对经济性指标较为敏感 的家用机械设备,该技术则具有主体性地位。 2.2液力传动 该技术的优势在于能够达到输出扭矩-转速特性,在换挡式机械变速器的配合 下能够避免出现传动装置过载的问题。由于变矩器自身有着较小的负荷应力以及 较大的功率密度,生产成本相对较低,能够大范围投入到坦克、重型机械等设备中。 2.3电力传动

(发展战略)液压技术国内外发展方向最全版

(发展战略)液压技术国内 外发展方向

液压技术国内外发展趋势 液压技术发展趋势 液压技术是实现现代化传动和控制的关键技术之壹,世界各国对液压工业的发展都给予很大重视。世界液压元件的总销售额为350亿美元。据统计,世界各主要国家液压工业销售额占机械工业产值的2%~3.5%,而我国只占1%左右,这充分说明我国液压技术使用率较低,努力扩大其应用领域,将有广阔的发展前景。液压气动技术具有独特的优点,如:液压技术具有功率重量比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,且易和微电子、电气技术相结合,形成自动控制系统。因此,液压气动技术广泛用于国民经济各部门。可是近年来,液压气动技术面临和机械传动和电气传动的竞争,如:数控机床、中小型塑机已采用电控伺服系统取代或部分取代液压传动。其主要原因是液压技术存在渗漏、维护性差等缺点。为此,必须努力发挥液压气动技术的优点,克服缺点,注意和电子技术相结合,不断扩大应用领域,同时降低能耗,提高效率,适应环保需求,提高可靠性,这些都是液压气动技术继续努力的永恒目标,也是液压气动产品参和市场竞争是否取 胜的关键。 液压产品技术发展趋势 由于液压技术广泛应用了高科技成果,如:自控技术、计算机技术、微电子技术、可靠性及新工艺新材料等,使传统技术有了新的发展,也使产品的质量、水平有壹定的提高。尽管如此,走向21世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。其主要 的发展趋势将集中在以下几个方面。 减少损耗,充分利用能量 液压技术在将机械能转换成压力能及反转换过程中,总存在能量损耗。为减少能量的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失;减少或消除系统的节流损失,尽量减少非安全需要的溢流量;采用静压技术和新型密封材料,减少摩擦损失;改善液压系统性能,采用负荷传感系统、二 次调节系统和采用蓄能器回路。 泄漏控制 泄漏控制包括:防止液体泄漏到外部造成环境污染和外部环境对系统的侵害俩个方面。今后,将发展无泄漏元件和系统,如发展集成化和复合化的元件和系统,实现无管连接,研制新型密封和无泄漏管接头,电机油泵组合装置等。无泄漏将是世界液压界今后努力的重要方向之壹。 污染控制 过去,液压界主要致力于控制固体颗粒的污染,而对水、空气等的污染控制往往不够重视。今后应重视解决:严格控制产品生产过程中的污染,发展封闭式系统,防止外部污染物侵入系统;应改进元件和系统设计,使之具有更大的耐污染能力。同时开发耐污染能力强的高效滤材和过滤器。研究对污染的在线测量;开发油水分离净化装置和排湿元件,以及开发能清除油中的气体、水分、化学物质和微生物的过滤元江及检测装置。 主动维护 开展液压系统的故障预测,实现主动维护技术。必须使液压系统故障诊断现代化,加强专家系统的开发研究,建立完整的、具有学习功能的专家知识库,且利用计算机和知识库中的知识,推算出引起故障的原因,提出维修方案和预防措施。要进壹步开发液压系统故障诊断专家系统通用工具软件,开发液压系统自补偿系统,包括自调整、自校正,在故障发生之前进行补偿,这是液压行业努力的方向。 机电壹体化

空冷技术的发展及应用

空冷技术的发展及应用 班级:动本0719 学号:0742021934 姓名:高晓刚

空冷技术的发展及应用 随着工农业生产的发展,许多城市及地区相继出现生产与生活用水日益紧张的局面,水已成为制约国民经济发展的主要因素之一。内蒙古、山西等北方地区是我国的能源基地,蕴藏着丰富的煤炭资源,可为大火力发电厂提供充足的燃料,同时又是水资源最为缺乏的地区。在这种状况下,直接空冷技术的应用在很大程度上解决了这些地区“富煤缺水”的难题。 1.1湿式冷却方式 湿式冷却方式分直流冷却和冷却塔2种。湿式直流冷却一般是从江、河、湖、海等天然水体中汲取一定量的水作为冷却水,冷却工艺设备吸取废热使水温升高,再排入江、河、湖、海。当不具备直流冷却条件时,则需要用冷却塔来冷却。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气。 1.2干式冷却方式 在缺水地区,补充因在冷却过程中损失的水非常困难,采用空气冷却的方式能很好地解决这一问题。空气冷却过程中,空气与水(或排汽)的热交换,是通过由金属管组成的散热器表面传热,将管内的水(或排汽)的热量传输给散热器外流动的空气。当前,用于发电厂的空冷系统主要有3种,即直接空冷系统、带表面式凝汽器的间接空冷系统(哈蒙式空冷系统)和带喷射式(混合式)凝汽器的间接空冷系统(海勒式空冷系统)。直接空冷就是利用空气直接冷凝从汽轮机的排气,空气与排气通过散热器进行热交换。海勒式间接空冷系统主要由喷射式凝汽器和装有福哥型散热器的空冷塔构成,系统中的高纯度中性水进入凝汽器直接与凝汽器排汽混合并将加热后的冷凝水绝大部分送至空冷散热器,经过换热后的冷却水再送至喷射式凝汽器进行下一个循环。极少一部分中性水经过精处理后送回锅炉与汽机的水循环系统。哈蒙式间接空冷系统又称带表面式凝汽器的间接空冷系统,在该系统中冷却水与锅炉给水是分开的,这样就保证了锅炉给水水质。哈蒙式空冷系统由表面式凝汽器与空冷塔组成,系统与常规的湿冷系统非常相似。据统计目前世界上空冷系统的装机容量中,直接空冷系统约占43%,表面式凝汽器间接空冷系统约占24%,混合式凝汽器间接空冷系统约占33%。 2直接空冷系统的工作原理 汽轮机排汽在空冷凝汽器中被空气冷却而凝结成水,排汽与空气之间的热交换是在表面式空冷凝汽器内完成。在直接空冷换热过程中,利用散热器翅片管外侧流过的冷空气,将凝汽器中从处于真空状态下的汽轮机排出的热介质饱和蒸汽冷凝,最后冷凝后的凝结水经处理后送回锅炉。 3直接空冷凝汽器的发展现状 直接空冷技术的发展主要是围绕直接空冷凝汽器管束进行的。空冷凝汽器是空冷机组冷端的主要部分,汽轮机排汽将几乎全部在凝汽器中冷凝成冷凝水。汽轮机排出的蒸汽在凝汽器翅片管束内流动,空气在凝汽器翅片管外流动对蒸汽直接冷却。从提高冷却效率角度出发,一般在管束下面装有风扇机组进行强制通风或将管束建在自然通风塔内,在现有运行的机组中,强制通风方式由于其可调控性能较好等优点而广泛应用。直接空冷凝汽器由于特点突出,已经逐渐在世界各国进行技术研究并逐步推广应用。由于间接空冷凝汽器系统相对于直接空冷凝汽器系统设备多、造价高、维修量大、运行难度大且可靠性较差,所以它将只是水冷凝汽器系统和直接空冷凝汽器系统之间的一个过渡,直接空冷凝汽器将是今后

液压传动在汽车上的应用

液压传动在汽车上的应用 近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,汽车的各项性能都有了很大地提高,尤其是 现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。汽车工业成为衡 量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习 与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。 现在汽车都在向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保的方向发展。在这些发展中液压 气压与液力传动技术起了主导作用。液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构 和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。 气压传动与液压传动一样,主要用于实现动力远程传递、电气控制信号转换等。由于其工作介质是气体, 因此工作安全、系统泄漏对环境污染也小,但受气体可压缩性大的影响,系统的灵敏性不如液压传动。如液压 汽车制动装置的制动滞后时间为0.2S,而气压汽车装置的制动滞后时间是0.5S,而且气压系统的噪音也大, 自动润滑性能也差。 下面举几个例子介绍液压气压与液力传动在汽车传动系统中的具体应用。 1.液压动力转向系统液压动力转向系统是在液压动力转向系统的基础上增设了电子控制装置。该系统能够 根据汽车行驶条件的变化对助力的大小实行控制,使汽车在停车状态时得到足够大的助力,以便提高转向系统 操作的灵活性。当车速增加时助力逐渐减小,高速行驶时无助力,使操纵有一定的行路感,而且还能提高操纵 的稳定性。另外,液压系统一般工作压力不高,流量也不大。 2.液力自动变速器液力自动变速器在现代汽车上用得也越来越多。使用液力变速器可以简化驾驶操作,使 发动机的转速控制在一定的范圉内,避免车速急剧变化,有利于减少发动机振动和噪音,而且能消除和吸收传 动装置的动载荷,减少换档冲击,提高发动机和变速器的使用寿命。 3.汽车防抱死液压系统ABS即汽车防抱死系统,其主要功能是在汽车制动时,防止车轮抱死。无论是气压 制动系统还是液压制动系统,ABS均是在普通制动系统的基础上增加了传感器、ABS执行机构和ABS电脑三部分。液压制动系统ABS广泛应用于轿车和轻型载货汽车上。气压制动系统ABS丰要用于中、重型载货汽车上,所装用的ABS按其结构原理主要分为两种类型:用于四轮后驱动气压制动汽车上的ABS和用于汽车列车上的ABS。气顶液压制动系统ABS兼有气压和液压两种制动系统的特点,应用于部分中重型汽车上。

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

液压传动论文

液压传动论文 液压传动,是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 在伦敦用水作为工作介质, 以水压机的形式将其应用于工业上, 诞生了世界上第一台水压机。1905 年将工作介质水改为油, 又进一步得到改善。 第一次世界大战(1914 -- 1918) 后液压传动广泛应用, 特别是1920 年以后, 发展更为迅速。液压元件大约在19 世纪末20 世纪初的20 年间, 才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers) 发明了压力平衡式叶片泵, 为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G · Constantimsco) 对能量波动传递所进行的理论及实际研究;1910 年对液力传动( 液力联轴节、液力变矩器等) 方面的贡献,使这两方面领域得到了发展。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。目前,液压传动发展的动向, 概括有以下几点: 1. 节约能源, 发展低能耗元件, 提高元件效率; 2. 发展新型液压介质和相应元件, 如发展高水基液压介质和元件, 新型石油基液压介质; 3. 注意环境保护, 降低液压元件噪声; 4. 重视液压油的污染控制; 5. 进一步发展电气-液压控制,提高控制性能和操作性能; 6. 重视发展密封技术,防止漏油; 7. 其它方面,如元件微型化、复合化和系统集成化的趋势仍在继续发展,对液压系统元件的可靠性设计、逻辑设计,与电子技术高度结合,对故障的早期诊断、预测以及防止失效的早期警报等都越来越准确. 一、液压传动的主要优点 与机械传动、电气传动相比,液压传动具有以下优点: (1)液压传动的各种元件、可根据需要方便、灵活地来布置; (2)重量轻、体积小、运动惯性小、反应速度快; (3)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); (4)可自动实现过载保护; (5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; (6)很容易实现直线运动;

直接空冷系统研究现状与发展前景

直接空冷系统研究现状与发展前景 摘要:随着我国经济技术的不断发展,人们的生活水平日益提高,也加快了许多行业的提升。在中国北方地区富煤缺水,因此,大型火力发电厂多采用直接空冷技术。从直接空冷系统的 研究现状、直接空冷技术研究方法以及该技术有待解决的关键问题等方面进行论述,并对发 展前景进行预测。 关键词:直接空冷系统;研究现状;发展前景 引言 直接空冷系统是指汽轮机排汽在空冷凝汽器中被空气冷却而凝结成水,排汽与空气之间的交 换是在表面式空冷凝汽器内完成的。在直接空冷系统的整个换热过程中,空冷翅片管内部流 过的是蒸汽,外侧流过的是冷空气,蒸汽被冷却凝结成水,汇集到排气装置,经凝泵、给水 泵等升压后送回锅炉。电厂直接空冷技术应用已有几十年的历史,现就空冷系统现状运行中 存在的几个问题进行分析总结,并阐述应对措施。 1直接空冷系统研究的重要性 国内应用空冷系统的电厂大多位于西北、华北等地区,该系统耗水少的优点得到了社会的认可,但是由于自身空气热比容小,导致空冷机组存在运行背压高、能耗大、效率低等一些问题,尤其在夏季温度较高时,严重时会导致汽轮机的背压超过安全运行标准,迫使机组降负 荷运行。在冬季,汽轮机排汽热量损失对于低品位的采暖供热而言则具有积极作用,应充分 利用机组乏汽余热提高机组循环热效率。目前,电厂针对空冷系统节能降耗改造比较多,其中 又分为直接空冷系统和间接空冷系统两个方面,直接空冷系统节能改造可分为直接空冷尖峰 冷却改造和供热改造两部分。前者以解决空冷机组夏季运行背压高、能耗大、效率低等一些 问题为目的;后者则是利用冬季机组排汽的热量来满足扩大供热的需求,充分再利用余热, 从而提高机组的热效率。 2直接空冷系统研究现状 2.1直接空冷凝汽器研究 对于直接空冷系统,核心构件是空冷凝汽器。提高凝汽器的冷却效果有利于机组安全、经济 运行。针对此,很多学者对直接空冷凝汽器传热性能进行了研究。国内外学者通过实验和数 值模拟研究了多种因素对直接空冷凝汽器传热性能的影响。环境温度升高或排气量增大都会 导致排汽压力升高,不同环境温度、排汽热负荷下凝汽器存在最佳真空。通过实验可以研究 直接空冷凝汽器传热特性,得到翅片侧Nu随Re的变化曲线及传热系数实验关联式。建立数 学模型可以分析不同环境条件下空冷凝汽器传热性能,得到主要运行参数与空气温度、空气 流速之间的关系。凝汽器积灰会导致传热系数降低,排汽压力升高,影响传热性能,需要定 期投运吹扫系统。利用CFD技术计算研究直接空冷凝汽器干式吹扫系统喷嘴结构特性,得出 最佳吹扫收缩角为40°,喷嘴圆柱长度越短,则流动变化越剧烈,喷嘴圆柱直径增大,则吹 扫能力增强。杨立军等对比研究以凝结蒸汽量和以凝汽器压力作为性能考核标准的区别,指 出仅考核凝汽器传热能力会导致传热面积过大,系统投资增加,提出以传热系数保证值作为 直接空冷凝汽器性能考核的补充指标。 2.2轴流风机研究 直接空冷系统采用轴流风机强制通风散热,多台风机同时工作存在集群效应。风机的运行状 况会引起机组背压波动,由结构、环境风、其他风机引起的进口空气流场变形可能导致风机 性能和容积效率显著降低、风机叶片振动,空气质量流速减少影响空冷凝汽器的冷却效果。 对此国内外学者对空冷岛大直径轴流风机做了大量研究。

液压传动技术的发展状况及发展趋势

液压传动技术的发展状况及发展趋势 班级:模具2班 姓名:蔡腾飞 学号:130101020071

液压传动技术的发展状况及发展趋势 摘要:液压传动有许多突出的优点,因此它的应用非常广泛.如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等关键词:液压传动工业应用发展方向优点及缺点 一、液压传动的发展概况 液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有两三百年的历史,但直到20世纪30 年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。20世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术、及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求 二、液压传动的工业应用 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。 三、液压传动的发展方向 1.减少能耗,充分利用能量 液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,

液压传动技术的现状及发展

液压传动技术的现状及发展 班级:13级模具二班 姓名:王金露 学号:

液压传动技术的现状及发展【摘要】液压作为一个广泛应用的技术,在未来有更广泛的前景,随着计算机的深入发展,液压控制系统可以和只能的技术,计算机的技术等技术结合起来,这样能够在更多的场合中发挥作用,也可以更加精巧的,更加灵活的完成预期的控制任务。与机械传动相比,液压传动更容易实现其运动参数和动力参数的控制。近年来,液压技术迅速发展,液压元件日臻完善,使得液压传动在机械系统中的应用突飞猛进,液压传动具有的优势也日渐凸显。随着液压技术与微电子技术,计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行业走驱动系统发展中发挥越来越重要的作用。世界各国对液压工业的发展都给予很大重视。 【关键词】液压装置,计算机,自动控制,微电子 【引言】液压传动技术是工业上最常见的一门技术,他是利用各种元件根据帕斯卡原理来达到力的传递所设计的一种技术。液压传动技术根据其自身的特点在工业上得到了广泛的应用,但也相应的有一

定的局限性。为了给用户提供更全面、更可靠、更物美价廉的自动化,保证产品质量的均一性,减轻单调或繁重的体力劳动,提高生产效率,降低生产成本就需要对液压传动技术不断的创新,因此对于机器的性能、质量、可靠性的要求不断提高,液压传动技术必将在工程机械行业的发展中发挥出越来越重要的作用。 【正文】 液压传动是根据17世纪帕斯卡提出的液体静压力传动原理 而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼,在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。第一次世界大战后液压传动广泛应用,特别是 1920 年以后,发展更为迅速。 1925 液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克对能量波动传递所进行的理论及实际究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。第二次世界大战期间,在美国机床中30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20多年。在1955年前后,日本迅速发展液压传动,1956年成立了“液压工业会”。近30年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着

液压传动简介

哈尔滨铁道职业技术学院毕业论文 毕业题目:液压传动论文 学生:傅立金 指导教师:卜昭海 专业:工程机械 班级:08机械一班 年月

目录 摘要 (3) 一.绪论 (3) 二.液压传动技术的应用简单介绍(行走驱动) (5) 三.液压传动的特点和基本原理 (6) 四.液压传动的常见故障及排除方法 (8) 五.液压传动的广阔前景 (10) 六.总结 (11)

液压传动论文 摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 一.绪论 ----社会需求永远是推动技术发展的动力,降低能耗,提高效率,适应环保需求,机电一体化,高可靠性等是液压气动技术继续努力的永恒目标,也是液压气动产品参与市场竞争是否取胜的关键。 ----由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。综合国内外专家的意见,其主要的发展趋势将集中在以下几个方面: 1.减少能耗,充分利用能量 ----液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题: ①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 ②减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。 ③采用静压技术,新型密封材料,减少磨擦损失。 ④发展小型化、轻量化、复合化、广泛发展3通径、4通径电磁阀以及低功率电磁阀。 ⑤改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。 ⑥为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 2.主动维护 ----液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 ----要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有

电厂空冷技术论文

目录 摘要 第一章发电厂空冷系统的方式 1.1 海勒式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 1.2 哈蒙式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 1.3 直接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5 第二章空冷技术在发电厂的应用场合及技术经济特性 2.1 空冷技术的应用‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.2 空冷技术的经济特性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 第三章发电厂空冷技术的应用概况及发展趋势 3.1 发电厂空冷与环境…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 3.2 国内外空冷技术的发展概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11 3.3 空冷技术的发展趋势‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 参考文献

摘要 目前我国火力发电厂多采用水冷技术,面对越来越紧迫的水资源缺乏问题,火力发电行业的发展受到极大挑战,而空气冷却相比普通湿冷塔技术可以节水大约2/3。文章介绍目前在国外许多大型火电机组项目中采用的各种类型的空气冷却技术及我国火力发电行业采用空气冷却技术的历史和发展现状为了推广空冷技术在电厂的应用,特做此设计以供大家参考。

第一章发电厂空冷系统的方式 发电厂空冷技术从提出到现在约有50年的历史,并在国际上有了迅速发展,目前已出现单机容量686MW的空冷机组。在干旱地区,空冷技术发展尤为迅速,并出现了多种类型,如直接空冷、干湿联合冷却机组等。发电厂空冷技术已成为当前发电厂建设中的一个热门课题。 当前用于发电厂的空冷系统主要有三种,即直接空冷、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。直接空冷多采用机械通风方式,20世纪90年代以来,比利时哈蒙—鲁姆斯公司提出采用自然通风,两种间接空冷多采用自然通风。 第一节海勒式间接空冷系统 混合式凝汽器间接空冷系统又称海勒式间接空冷系统,其发电厂如图所示。 1—锅炉; 2—过热器; 3—汽轮机; 4—喷射式凝汽器; 5—凝结水泵;6—凝结水精处理装置; 7—凝结水升压泵; 8—低压加热器; 9—除氧器;10—给水泵; 11—高压加热器; 12—冷却水循环泵; 13—调压水轮机;14—全铝制散热器; 15—空冷塔; 16—旁路节流阀; 17—发电机 该系统由喷射式凝汽器和装有福哥型散热器的空冷塔构成。系统中的冷却水都是高纯度的中性水。中性冷却水进入凝汽器直接与汽轮机排汽混合并将其冷凝。受热后的冷却水绝大部分由冷却水循环泵送至空冷塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。 海勒式间接空冷系统的优点:①以微正压的低压水系统运行,较易掌握,可与中背压汽轮机配套;②冷却系统消耗动力低,厂用电耗少,占地面积中等。缺点是:①铝制空冷散热器耐冲洗,耐抗冻性能差;②空冷散热器在塔外布置易受大风影响其带负荷能力;③设备系统复杂。

浅析液压传动技术的应用对汽车性能的改善(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅析液压传动技术的应用对汽车 性能的改善(2021版)

浅析液压传动技术的应用对汽车性能的改善 (2021版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 液压传动技术在现代汽车上应用的越来越广泛,对于汽车性能带来了多方面的变革,如动力性、制动性、操控稳定性、行驶平顺性、通过性等汽车性能的改善,液压传动技术的应用,均起到了主导作用。 汽车工业随着科学技术的进步而不断发展,尤其是现代汽车上广泛使用了微电脑、机电液一体化的高新技术,使得汽车的各项技术性能有了较大程度的提高,其中液压传动技术的应用,起到了主导作用。 液压传动技术应用到汽车上,通过与电子技术、机械技术等相结合,促进了汽车的多项性能发生了变革性的改善,主要是制动性、操控稳定性、行驶平顺性、通过性、动力性等,使得汽车不断向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保等方向发展。 2.1液压传动技术与汽车制动性能 汽车制动性是指汽车行驶时在短距离内停车且维持行驶方向稳定,以及汽车在长坡时维持一定车速的能力。汽车的制动性能评价指

空冷凝汽器工作原理

空冷凝汽器工作原理 1 凝汽器冷却方式: 1.1湿式冷却方式湿式冷却方式分直流冷却和冷却塔2种。 湿式直流冷却一般是从江、河、湖、海等天然水体中汲取一定量的水作为冷却水,冷却工艺设备吸取废热使水温升高,再排入江、河、湖、海。 当不具备直流冷却条件时,则需要用冷却塔来冷却。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气。 1.2干式冷却方式在缺水地区,补充因在冷却过程中损失的水非常困难,采用空气冷却的方式能很好地解决这一问题。空气冷却过程中,空气与水(或排汽)的热交换,是通过由金属管组成的散热器表面传热,将管内的水(或排汽)的热量传输给散热器外流动的空气。 当前,用于发电厂的空冷系统主要有3种,即直接空冷系统、带表面式凝汽器的间接空冷系统(哈蒙式空冷系统)和带喷射式(混合式)凝汽器的间接空冷系统(海勒式空冷系统)。 直接空冷就是利用空气直接冷凝从汽轮机的排气,空气与排气通过散热器进行热交换。 海勒式间接空冷系统主要由喷射式凝汽器和装有福哥型散热器的空冷塔构成,系统中的高纯度中性水进入凝汽器直接与凝汽器排汽混合并将加热后的冷凝水绝大部分送至空冷散热器,经过换热后的冷却水再送至喷射式凝汽器进行下一个循环。极少一部分中性水经过精处理后送回锅炉与汽机的水循环系统。 哈蒙式间接空冷系统又称带表面式凝汽器的间接空冷系统,在该系统中冷却水与锅炉给水是分开,这样就保证了锅炉给水水质。哈蒙式空冷系统由表面式凝汽器与空冷塔组成,系统与常规的湿冷系统非常相似。 据统计目前世界上空冷系统的装机容量中,直接空冷系统约占43%,表面式凝汽器间接空冷系统约占24%,混合式凝汽器间接空冷系统约占33%。 2直接空冷系统的工作原理 汽轮机排汽在空冷凝汽器中被空气冷却而凝结成水,排汽与空气之间的热交换是在表面式空冷凝汽器内完成。在直接空冷换热过程中,利用散热器翅片管外侧流过的冷空气,将凝汽器中从处于真空状态下的汽轮机排出的热介质饱和蒸汽冷凝,最后冷凝后的凝结水经处理后送回锅炉。 3直接空冷凝汽器的发展现状 3.1直接空冷凝汽器的作用直接空冷技术的发展主要是围绕直接空冷凝汽器管束进行的。空冷凝汽器是空冷机组冷端的主要部分,汽轮机排汽将几乎全部在凝汽器中冷凝成冷凝水。汽轮机排出的蒸汽在凝汽器翅片管束内流动,空气在凝汽器翅片管外流动对蒸汽直接冷却。从提高冷却效率角度出发,一般在管束下面装有风扇机组进行强制通风或将管束建在自然通风塔内,在现有运行的机组中,强制通风方式由于其可调控性能较好等优点而广泛应用。直接空冷凝汽器由于特点突出,已经逐渐在世界各国进行技术研究并逐步推广应用。由于间接空冷凝汽器系统相对于直接空冷凝汽器系统设备多、造价高、维修量大、运行难度大且可靠性较差,所以它将只是水冷凝汽器系统和直接空冷凝汽器系统之间的一个过渡,直接空冷凝汽器将是今后电厂冷却系统发展的重要方向。 3.2直接空冷凝汽器的发展现状电厂空冷凝汽器技术的开发应用已有几十年的历史。德国早在1939年就建成了采用空气冷却的发电机组。1950年匈牙利的海勒教授首次提出电站间接空冷技术,电站空冷技术发展到现在已经经历了由不成熟到成熟的发展过程。空冷系统的翅片管散热器按材料分有:铝管铝翅、钢管铝翅以及钢管钢翅3种。按结构分,现在空冷系统普遍采用的有4种:圆形铝管镶铝翅片、热浸锌椭圆钢管套矩形翅片、大直径热浸锌椭圆钢

液压传动在汽车上的应用(正式版)

文件编号:TP-AR-L3242 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 液压传动在汽车上的应 用(正式版)

液压传动在汽车上的应用(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,汽车的各项性能都有了很大地提高,尤其是现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。汽车工业成为衡量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。 现在汽车都在向着驾驶方便、运行平稳、乘坐舒

适、安全可靠、节能环保的方向发展。在这些发展中液压气压与液力传动技术起了主导作用。液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。 气压传动与液压传动一样,主要用于实现动力远程传递、电气控制信号转换等。由于其工作介质是气体,因此工作安全、系统泄漏对环境污染也小,但受气体可压缩性大的影响,系统的灵敏性不如液压传动。如液压汽车制动装置的制动滞后时间为0.2S,而气压汽车装置的制动滞后时间是0.5S,而且气压系统的噪音也大,自动润滑性能也差。 下面举几个例子介绍液压气压与液力传动在汽车传动系统中的具体应用。

液压与气压传动技术

《液压与气压传动技术》复习题 一、单项选择题:在给定选项中选出唯一的正确答案) 1.液压与气压传动是以流体为工作介质并以其()来进行能量传递和转换一种传动方式。 (A)流动的动能;(B)静压力势能;(C)总机械能;(D)总动量。2.利用液体传递力或转矩的理论基础是()。 (A)帕斯卡原理;(B)流量连续性方程;(C)伯努利方程;(D)质量守恒定律。3.液压传动与气压传动相比,气压传动的稳定性较差,这主要是因为空气()。(A)粘性几乎为零,(B)没有一定的体积,(C)具有较大的可压缩性,(D)容易泄露。4.液压系统中油液的压力是由()决定的,这是液压传动的一个重要概念。 (A)外界负载;(B)油泵;(C)液压阀;(D)液压油。 5.理论上讲,执行元件的运动速度与负载的大小无关,但实际上,在液压传动中执行元件的速度会随负载增大而减小,这主要是因为系统中()。 (A)运动部件间存在摩擦;(B)液压系统不可避免存在泄露; (C)液压油内存在粘性阻力的消耗;(D)液压油具有一定压缩性。6.在液压系统中。因()加剧金属液压元件表面腐蚀的现象,称为气蚀。 (A)液压油的酸、碱性;(B)液压油的压力过大; (C)运动部件间的摩擦;(D)空穴现象。 7.由液压泵密闭容积的结构尺寸,经计算得到的单位时间内该容积的变化量就是泵的()。 (A)实际流量;(B)额定流量;(C)理论流量;(D)平均流量。 8.液压泵的总效率在数值上等于其机械效率与容积效率的()。 (A)之和;(B)之差;(C)乘积;(D)比值。 9.一台额定压力为6.3MPa的液压泵,其出口接油箱,则该泵的工作压力就是()。 (A)7.3MPa;(B)6.3MPa;(C)5.3MPa;(D)0。 10.外啮合齿轮泵的泄露是导致其输出压力不能太高的主要原因,在该类泵的各种泄露途径中,最最主要的泄漏途径是()。 (A)齿轮轴与轴承间的配合间隙;(B)两齿轮的轮齿啮合处的间隙; (C)齿顶圆与泵体内孔间的径向间隙;(D)齿轮端面与泵盖间的轴向间隙。11.叶片泵的叶片数目越多,泵的()。 (A)输出的液压油流量越小;(B)输出的液压油压力越小; (C)输出的液压油流量脉动频率越小;(D)输出的液压油压力脉动越小。

相关文档