文档库 最新最全的文档下载
当前位置:文档库 › 超高速磨削技术

超高速磨削技术

超高速磨削技术
超高速磨削技术

高速/超高速磨削技术

摘要:超高速点磨削是一种先进的高速磨削技术,它集成了高速磨削、CBN 超硬磨料及CNC 车削技术,具有优良的加工性能。对国内外高速磨削技术发展的作了比较详细的介绍,重点论述和分析了超高速点磨削的技术特征、关键技术和在汽车制造中的应用,最后分析了我国汽车工业发展超高速点磨削技术的必要性。

关键词: 超高速点磨削; 技术特征; 关键技术; 汽车工业

Abstract: Super-highspeed point-grinding is an advanced manufacture technology that hasintegrated high speed grinding,thin super-abrasive wheel and CNC turning technologies,and has m any excellent performance sin grindingshafts process. The development and the technical characters o f super-highspeed point-grinding were introduced,and the key technology and applicationon automobile manufacturing o f super-high speed point-grindingwere also analyzed. The significance of super-h igh speed point-grindingon automobile manufacturing was presented.

Keywords: Super-high speed point-grinding; Technicalcharacteristics;Key technology; Automobile manufacturing

1.国内外高速磨削技术简介

通常所说的“磨削”主要是指用砂轮或砂带进行去除材料加工的工艺方法。它是应用广泛的高效精密的终加工工艺方法。一般来讲,按砂轮线速度V的高低将磨削分为普通磨削( Vs < 45m/ s) 、高速磨削( 45≤ Vs<150m/s) 、超高速磨削(Vs≥150m/s)[1]。20世纪90年代以后,人们逐渐认识到高速和超高速磨削所带来的效益,开始重视发展高速和超高速磨削加工技术,并在实验和研究的基础上,使其得到了迅速的发展[2]。

1.1 国外磨削技术的发展

磨削加工是一种古老而自然的制造技术,应用范围遍布世界各地,然而数千年来磨削速度一直处于低速水平。20世纪后,为了获得高加工效率,世界发达国家开始尝试高速磨削技术[2]。在高速、超高速精密磨削加工技术领域,德国及欧洲领先,日本后来居上,美国则在奋起直追[3]。

1.1.1 欧洲磨削技术的发展情况

超高速切削的概念源于德国切削物理学家Carl.J.Salomon 博士1929 年所提出的假设,即在高速区当切削速度的“死谷”区域,继续提高切削速度将会使切削温度明显下降,单位切削力也随之降低[1]。

欧洲高速磨削技术的发展起步早。最初高速磨削基础研究是在20世纪60年代末期,实验室磨削速度已达210-230m/s。70年代末期,高速磨削采用CBN 砂轮。意大利的法米尔( Famir ) 公司在1973年9月西德汉诺威国际机床展览会上,展出了砂轮圆周速度120m/s的RFT-C120/ 50R 型磨轴承内套圈外沟的高速适用化磨床[1] 。德国的Guehring Automation 公司1983 年制造了功率60kW、转速10000r/min、砂轮线速度209m/s[4]和砂轮直径400mm 的强力磨床。该公司于1992 年成功制造出砂轮线速度为140-160m/s的CBN 磨床,线速度达180m/s的样机[5]。Aachen 大学、Bremm 大学等在实验室已完成了Vs为250m/s、350m/ s 的实验。瑞士Studer 公司开发的CBN 砂轮线速度在60m/s 以上,并向120-130m/s方向发展[2、6、7]。目前在试验室内正用改装的S45型外圆磨床进行

280m/s的磨削试验。瑞士S40高速CBN 砂轮磨床,在125m/s时,高速磨削性能发挥最为充分,在500m/s时也能照常工作。

1.1.2 美国磨削技术的发展情况

1967 年,美国的61m/s 磨床投入市场,1969 年生产出80m/s的高速无心磨床。1970 年,本迪克斯公司曾生产了91m/s切入式高速磨床。1971 年,美国Carnegie Mellon大学制造了一种无中心孔的钢质轮,在其周边上镶有砂瓦,其试验速度可达185m/s,工作速度达到125m/s,用于不锈钢锭磨削和切断,也可用于外圆磨削。1993 年,美国的 Edgetek Machine 公司首次推出的超高速磨床,采用单层CBN 砂轮,圆周速度达到了203m/ s,用以加工淬硬的锯齿等,可以达到很高的金属切除率。美国Connectiout 大学磨削研究与发展中心的无心外圆磨床,最高磨削速度250m/s,主轴功率30kW,修整盘转速12000r/min,砂轮自动平衡,自动上料。2000 年美国马萨诸塞州立大学的

S.Malkin 等人,以149m/s的砂轮速度,使用电镀金刚石砂轮通过磨削氮化硅研究砂轮的地貌和磨削机理。至2000年,T. W. Hwang 等人一直在进行超高速磨削研究。目前美国的高效磨削磨床很普遍,一个重要的研究方向是低损伤磨削高级陶瓷,试图采用粗精加工一次磨削,以高的材料去除率和低成本加工高品质的氮化硅陶瓷零件[8]。

1.1.3 日本磨削技术的发展情况

从20世纪60年代初日本首先提出高速磨削理论以来,尤其随着CBN 磨料的使用和其它高效磨削

技术的进步,超高速磨削在一些发达国家发展很快。日本高速磨削技术在近20年来发展迅速。1976 年,在凸轮磨床上开始应用CBN砂轮进行40m/ s的高速磨削。1985 年前后,在凸轮和曲轴磨床上,磨削速度达到了80m/s。1990 年后,开始开发160m/ s 以上的超高速磨床。1993 年前后,使

用单颗粒金刚石进行了250m/s的超高速磨削试验研究[9、10]。1994 年使用铍( Be)芯金刚石砂轮进

行了超高速磨削研究[11、12]。目前,实用的磨削速度已达到了200m/s。400m/s的超高速平面磨床

也已研制出来,该磨床主轴最大转速30 000r/ min,最大功率22kW,采用直径250mm 的砂轮,最

高周速达395m/s。并在30m/s-300m/s 速度范围内研究了速度对铸铁可加工性的影响。

日本的丰田工机、三菱重工、冈本机床制作所等公司均能生产应用CBN 砂轮的超高速磨床。至2000 年,日本已进行500m/s的超高速磨削试验。Shinizu 等人,为了获得超高磨削速度,利用改造

的磨床,将两根主轴并列在一起:一根作为砂轮轴,另一根作为工件主轴,并使其在磨削点切向速

度相反,取得了相对磨削速度为Vs+ Vw 的结果。因此,砂轮和工件间的磨削线速度实际接近1

000m/s[13]。这是迄今为止,公开报道的最高磨削速度。

1.2 国内磨削技术的发展情况

超高速磨削技术在国外发展十分迅速,在国内也引起了高度重视。我国高速磨削起步较晚,自

1958 年,我国开始推广高速磨削技术。1964年,磨料磨具磨削( 三磨) 研究所和洛阳拖拉机厂合

作进行了50m/s 高速磨削试验,在机床改装和工艺等方面获得一定成果[7]。1974 年,第一汽车厂、第一砂轮厂、瓦房店轴承厂、华中工学院、郑州三磨所等先后进行50m/ s-60m/ s的磨削试验; 湖南大学进行了60m/ s-80m/ s 高速磨削试验。1976年,上海机床厂、上海砂轮厂、郑州三磨

所、华中工学院、上海交通大学、广州机床研究所、武汉材料保护研究所等组成高速磨削试验小

组,对80m/s 和100m/s 高速磨削工艺进行了试验研究。1977 年,湖南大学在实验室成功地进行

了100m/ s 和120m/ s 高速磨削试验。1982 年10月,湖南大学进行了60m/s 高速强力凸轮磨削

工艺试验研究,为发展高速强力磨削凸轮轴磨床和高速强力磨削砂轮提供了实验数据。至1995

年,汉江机床厂使用陶瓷CBN砂轮,进行了200m/ s 的超高速磨削试验。广西大学于1997 年前后

开展了80m/ s 的高速高表面粗糙度的磨削试验研究工作。在2000年中国数控机床展览会

( CCMT’ 2000) 上,湖南大学推出了最高线速度达120m/s 的数控凸轮轴磨床[6]。2001年,广西

大学开展了高速磨削表面微观形貌的研究[2]。从2002 年开始,湖南大学开始针对一台250m/ s

超高速磨床主轴系统进行高速超高速研究,并在国内首次进行了磁浮轴承设计[14]。

1976 年,东北大学与阜新第一机床厂合作,研究成功F1101型60 m/ s 高速半自动活塞专用外圆磨床。到20世纪80 年代初,东北大学进行了大量的高速磨削试验研究。以东北大学为主开发的

YLM-1型双面立式半自动修磨生产线,磨削速度达到80m/s,磨削压力在2500N-5 000N 以上[6]。

20 世纪90年代至现在,东北大学一直在开展超高速磨削技术的研究,并首先研制成功了我国第一

台圆周速度200m/s、额定功率55kW 的超高速试验磨床,最高速度达250m/s[1]。

2.高速/超高速磨削的特点及关键技术

2.1 磨削机理

在高速超高速磨削加工过程中,在保持其它参数不变的条件下,随着砂轮速度的大幅度提高,单位

时间内磨削区的磨粒数增加,每个磨粒切下的磨屑厚度变小,则高速超高速磨削时每颗磨粒切削厚

度变薄。这导致每个磨粒承受的磨削力大大变小,总磨削力也大大降低[15]。超高速磨削时,由于

磨削速度很高,单个磨屑的形成时间极短。在极短的时间内完成的磨屑的高应变率(可近似认为等

于磨削速度) 形成过程与普通磨削有很大的差别,表现为工件表面的弹性变形层变浅,磨削沟痕两

侧因塑性流动而形成的隆起高度变小,磨屑形成过程中的耕犁和滑擦距离变小,工件表面层硬化及

残余应力倾向减小。此外,超高速磨削时磨粒在磨削区上的移动速度和工件的进给速度均大大加

快,加上应变率响应的温度滞后的影响,会使工件表面磨削温度有所降低,因而能越过容易发生磨

削烧伤的区域,而极大扩展了磨削工艺参数的应用范围[16-17]。

2.2 高速磨削加工特点

砂轮周速提高后,在单位宽度金属磨除率一定的条件下,单位时间内作用的磨粒数大大增加;如进

给量与普通磨削相同,则每颗磨粒的切削厚度变薄、负荷减轻。因此高速与超高速磨削有以下特点: (1) 生产效率高。由于单位时间内作用的磨粒数增加,使材料磨除率成倍增加,最高可达2000mm3/ (mm﹒s) ,比普通磨削可提高30%-100%;

(2) 砂轮使用寿命长。由于每颗磨粒的负荷减小,磨粒磨削时间相应延长,提高了砂轮使用寿命。磨削力一定时,200m/s磨削砂轮的寿命是80m/s 磨削的两倍;磨削效率一定时,200m/s 磨削砂轮的寿命则是80m/s磨削的7. 8倍。这非常有利于实现磨削自动化;

(3) 磨削表面粗糙度值低。超高速磨削单个磨粒的切削厚度变小,磨削划痕浅,表面塑性隆起高度减小,表面粗糙度数值降低;同时由于超高速磨削材料的极高应变率(可达10-4-10-6s-1),磨屑在绝热剪切状态下形成,材料去除机制发生转变,因此可实现对脆性和难加工材料的高性能加工;(4)磨削力和工件受力变形小,工件加工精度高. 由于切削厚度小,法向磨削力Fn相应减小,从而有利于刚度较差工件加工精度的提高。在切深相同时,磨削速度250 m/ s 磨削时的磨削力比磨削速度180m/s 时磨削力降低近一倍;

( 5) 磨削温度低。超高速磨削中磨削热传入工件的比率减小,使工件表面磨削温度降低,能越过容易发生热损伤的区域,受力受热变质层减薄,具有更好的表面完整性。使用CBN 砂轮200 m/ s 超高速磨削钢件的表面残余应力层深度不足10微米。从而极大地扩展了磨削工艺参数地应用范围. ( 6) 充分利用和发挥了超硬磨料的高硬度和高耐磨性的优异性能. 电镀和钎焊单层超硬磨料砂轮是超高速磨削首选的磨具. 特别是高温钎焊金属结合剂砂轮,磨削力及温度更低,是目前超高速磨削新型砂轮.

( 7) 具有巨大的经济效益和社会效益,并具有广阔的绿色特性. 高速超高速磨削加工能有效地缩短加工时间,提高劳动生产率,减少能源的消耗和噪声的污染.因超高速磨削热的70%被磨屑所带走,所以加工表面的温度相对低,所需磨削液的流量和压力可相对减少,使冷却液的需求量减少,能量需求减少,污染减少[18].

2.3 高速磨削技术

由于超高速磨削砂轮转速极高,对机床功率及性能、砂轮强度、振动、平衡、气流扰动、安全防护和冷却液注入等工艺措施提出了特殊要求. 因此与其相关的关键技术有:

(1) 超高速磨削砂轮技术.

高速超高速磨削砂轮应具有好的耐磨性、高的动平衡精度、抗裂性、良好的阻尼特性、高的刚度和良好的导热性,而且其机械强度必须能承受高速超高速磨削时的切削力等. 高速超高速磨削时砂轮主轴高速回转产生的巨大离心力会导致普通砂轮迅速破碎,因此必须采用基体本身的机械强度、基体和磨粒之间的结合强度均极高的砂轮.

超高速砂轮中间是一个高强度材料的基体圆盘,大部分实用超硬磨料砂轮基体为铝或钢. 在基体周围仅仅粘覆一薄层磨料. 粘覆磨料使用的结合剂有树脂、金属和电镀3 种,其中以单层电镀用的最多. 这是因为它的粘结强度高,易于做出复杂的形状,使用中不需要修整,而且基体可以重复使用. 近几年,美国诺顿( Norton) 公司还使用铜焊接法替代电镀研制出砂轮的磨粒突出比已达到70% ~ 80% ,结合剂抗拉强度超过了1533 N/ mm2 ,获得更大的结合剂强度和容屑空间.

高速超高速砂轮可以使用刚玉、碳化硅、CBN、金刚石磨料. 结合剂可以用陶瓷、树脂或金属结合剂等. 树脂结合剂的刚玉、碳化硅、立方氮化硼磨料的砂轮,使用速度可达125 m/ s. 单层电镀CBN 砂轮的使用速度可达250 m/ s,试验中已达340 m/ s. 陶瓷结合剂砂轮磨削速度可达200 m/ s. 同其他类型的砂轮相比,陶瓷结合剂砂轮易于修整. 与高密度的树脂和金属结合剂砂轮相比,陶瓷结合剂砂轮可以通过变化生产工艺获得大范围的气孔率. 特殊结构拥有40% 的气孔率. 陶瓷结合剂砂轮结构特点,使得修整后容屑空间大,修锐简单,甚至在许多应用情况可以不修锐.

在高速磨削中,一种新型的微晶氧化铝磨粒即SG( Seeded Gel) 磨粒已经引起人们的高度注意,SG 磨粒不仅具有高的硬度而且还具有良好的韧性,它的加工能力介于刚玉和CBN 磨粒之间,由于SG 磨粒在磨削加工中,辅助切削刃本身能发生自锐,所以磨削力和磨削区产生的热量明显降低,同时也减少了砂轮的磨损,从而提高材料的去除率和砂轮的修整间隔时间,SG 磨粒和CBN 磨粒相比不仅成本低,而且对磨削机床没有任何特殊的要求,砂轮的修整也和传统磨粒砂轮的修整方法相同. 在砂轮速度为125 m/ s 磨削回火钢的试验中比材料去除率已达100mm/ ( mm﹒s) .

此外,还要充分考虑砂轮与主轴连接的可靠性. 开发高精度、高刚度和良好的动平衡性能的砂轮与主轴的连接方式很必要. 为了保证砂轮在整个使用寿命中保持锋利,砂轮的结构需有利于磨粒分裂,优化磨粒的空间分布. 对于某些高速磨削,不但要有高的磨削效率,而且还要有高的磨削质量,为此对砂轮应有一套完善的修整技术.

(2) 超高速磨床主轴及其轴承技术

超高速磨削用主轴单元的性能在很大程度上决定了超高速磨床所能达到的最高磨削速度极限,因而,为实现高速超高速磨削,砂轮驱动和轴承转速往往要求很高. 主轴的高速化要求足够的刚度,回转精度高,热稳定性好,可靠,功耗低,寿命长等. 要满足这些要求,主轴的制造及动平衡,主

轴的支撑( 轴承),主轴系统的润滑和冷却,系统的刚性等是很重要的. 为减少由于磨削速度的提高而增加的动态力,要求砂轮主轴及主轴电机系统运行极其精确,且振动极小.

超高速磨削的砂轮主轴转速一般在10000r/min 以上,所传递的磨削功率通常为几十千瓦,因此要求主轴轴承的转速特征值非常高,还必须具有很高的回转精度和刚度,以保证砂轮圆周上的磨粒能均匀地参加切削,并能抵御超高速回转时不平衡质量造成的振动.

主轴轴承可采用陶瓷滚动轴承、磁浮轴承、空气静压轴承或液体动静压轴承等. 陶瓷球轴承具有重量轻、热膨胀系数小、硬度高、耐高温、高温时尺寸稳定、耐腐蚀、寿命高、弹性模量高等优点. 其缺点是制造难度大,成本高,对拉伸应力和缺口应力较敏感. 磁浮轴承的最高表面速度可达200 m/ s,可能成为未来超高速主轴轴承的一种选择. 目前磁浮轴承存在的主要问题是刚度与负荷容量低,所用磁铁与回转体的尺寸相比过大,价格昂贵. 空气静压轴承具有回转精度高,没有振动,摩擦阻力小,经久耐用,可以高速回转等特点. 用于高速、轻载和超精密的场合. 液体动静压轴承,无负载时动力损失太大,主要用于低速重载主轴[19].

高速超高速磨削的另一个特点是其主轴的无功功率损失随转速的增大而呈非线性增长. 例如,将磨削速度由80m/s 增大至180m/s 时,主轴的无功功率会由不足20% 升高至90% 以上. 高速范围内电机以恒功率方式工作,主轴转速增大时其输出转矩减小,无功功率的升高将导致磨削转矩减小. 因此,在增大主轴转速时必须考虑降低无功功率损失,以保证主轴有足够的转矩用于磨削.

(4) 磨削液及其供给技术

磨削表面质量、工件精度和砂轮的磨损在很大程度上受磨削热的影响. 尽管人们开发了液氮冷却、喷气冷却、微量润滑和干切削等,但磨削液仍然是不可能完全被取代的冷却润滑介质. 磨削液分为两大类: 油基磨削液和水基磨削液( 包括乳化液) . 油基磨削液润滑性优于水基磨削液,但水基磨削液冷却效果好.

高速磨削时,气流屏障阻碍了磨削液有效地进入磨削区,还可能存在薄膜沸腾的影响. 因此,采用恰当的注入方法,增加磨削液进入磨削区的有效部分,提高冷却和润滑效果,对于改善工件质量,减少砂轮磨损,极其重要. 常用的磨削液注入方法有: 手工供液法和浇注法、高压喷射法、空气挡板辅助截断气流法、砂轮内冷却法、利用开槽砂轮法等. 在超高速条件下,为了实现对磨削区的冷却,冲走切屑,磨削液的喷注必须有足够大的动量,以冲破砂轮周围的高速气流,使磨削液抵达磨削区. 故与普通磨削相比,磨削液的流量、压力均成倍增加. 此外,为了保证超高速磨削的表面质量,提高磨削液的利用率,减少磨削液中残留杂质对加工质量及机床系统的不良影响,必须采用一套高效高过滤精度的磨削液过滤系统. 从喷嘴喷注在砂轮上的磨削液,会在强大离心力作用下形成严重的油雾. 所以超高速磨床还要把磨削区封闭起来,并要及时抽出油雾,然后利用离心和静电的方法进行油气分离.

具有极高磨削效率的超高速磨床,一分钟会产生几公斤的磨屑. 能够及时干净地把这些磨屑从磨削液中过滤出来也是一个很重要的问题. 目前,多用离心机或硅藻土过滤系统对磨削液进行集中处理.

(5) 砂轮、工件安装定位及安全防护技术.

高速及超高速磨削砂轮动能很大,必须设置高强度半封闭或封闭的砂轮防护罩,罩内最好敷设缓冲材料,以吸收或减少砂轮碎块的二次弹射.

(6) 磨削状态检测及数控技术

高速超高速磨削加工中,由于砂轮线速度极高,砂轮由于超高速引起的破碎现象时常发生,砂轮破碎及磨损状态的监测是关系到磨削工作能否顺利进行和保证加工质量和零件表面完整性的关键; 在超高速加工中,砂轮与工件的对刀精度,砂轮与修整轮的对刀精度将直接影响到工件的尺寸精度和砂轮的修整质量,因此,在超高速磨削加工中,在线智能监测系统是保证磨削加工质量和提高加工生产率的重要因素. 目前,声发射技术已成功用于超高速磨削的无损检测,利用磨削过程中产生的各种声发射源,如砂轮与工件弹性接触、砂轮粘接剂破裂、砂轮磨粒与工件磨擦、工件表面裂纹和烧伤、砂轮与修整轮的接触等均可发射弹性波. 这些因素和工件材料、磨削条件、砂轮表面的状态等因素都有着密切的关系. 这些因素的改变必然会引起声发射信号的幅值、频谱等方面发生变化,这就使得我们可以通过检测声发射信号的变化来对磨削状态进行判别. 因此利用声发射技术可监测磨削裂纹和磨削烧伤、砂轮破碎砂轮磨损、砂轮与工件接触、砂轮与修整轮接触,并取得了令人满意的效果. 此外,工件尺寸精度、形状精度、位置精度和加工表面质量的在线监控技术,高精度、高可靠性、实用性强的测试技术与仪器都是高速超高速磨削所必不可少的关键技术[20].

3. 高速超高速磨削技术的应用

超高速磨削的应用技术有高效深切磨削、超高速外圆磨削、超高速精密磨削、快速点磨削、硬脆材料及难加工材料超高速磨削等.

3.1 高效深切磨削

高效深磨技术是近几年发展起来的一种集砂轮高速度(100-250m/s)、高进给速(0.5-10 m/min)和大切深(0.1-30mm)为一体的高效率磨削技术. 高效深磨概念是由德国Bremen 大学Werner 教授于1980年创立. 目前欧洲企业在高效深磨技术应用方面居领先地位.高效深磨可直观地看成是缓进给磨削和超高速磨削的结合. 与普通磨削不同的是高效深磨可以通过一个磨削行程,完成过去由车、铣、磨等

多个工序组成的粗精加工过程,获得远高于普通磨削加工的金属去除率( 磨除率比普通磨削高100-1000倍),表面质量也可达到普通磨削水平. 高效深切磨削工艺开始是使用树脂结合剂氧化铝砂轮,以80-100 m/s的高速来进行钻头螺旋沟槽的深磨. 由于它使用比缓进给磨削快得多的进给速度,生

产效率大幅度提高. 后来又进一步在CBN 砂轮基础上开发出200-300m/s的超高速深磨磨床,见表1.

表1 普通磨削、缓进给磨削、高效深切磨削工艺参数对比

file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtml1/01/clip_image002.jpg

高效深切磨削具有加工时间短( 一般为0. 1-10 s) 、磨削力大、磨削速度高的特点,除了应具备超高速磨削技术要求外,还要求机床具有高的刚度. 一般高效深磨要求机床主轴驱动功率比缓进给磨削

大3-6倍. 如用400mm砂轮至少需要50kW的功率.

3.2 超高速外圆磨削

提高砂轮速度有助于减少磨削表面粗糙度,可实现高效率超高速精密磨削. 超高速外圆磨削是使用150-200m/s及以上的砂轮周速和CBN砂轮,配以高性能CNC 系统和高精度微进给机构,对主轴、曲轴等零件外圆回转表面进行超高速精密磨削加工的方法. 它既能够保证高的加工精度,又可获得

高的加工效率.

这一技术在日本已成功应用于汽车工业部门. 例如,使用丰田工机株式会社GCH63B型CNC 超高

速外圆磨床来磨削加工余量达5 mm 的球墨铸铁凸轮轴,比磨除率可达174mm3/ (s﹒mm) ,砂轮磨削比可达33500. 以表面粗糙度Rz=3微米为上限,砂轮经过一次修整可连续磨削60个工件,磨后

表面呈现残余压应力,并可从毛坯直接磨为成品,省去了车工序及工序间的周转. 丰田工机GZ0型CNC 超高速外圆磨床装备了Toyo da State Bearing 轴承,用200m/s的薄片CBN 砂轮对回转体零件进行一次性纵向轨迹磨削完成整个工件的柔性加工.这些对生产管理和降低成本均具有重要意义. 德国Guhring Automation 公司RB625 超高速外圆磨床上,使用CBN 砂轮,也可将毛坯一次磨成主轴,每分钟可磨除2kg金属.超高速精密磨削是采用超高速精密磨床,并通过精密修整微细磨料磨具,采用亚微米级切深和洁净加工环境获得亚微米级以下的尺寸精度.

3.3 快速点磨削( Quick-point Grinding)

快速点磨削( Quick-pointGrinding) 是由德国Junker 公司Erwin Junker 先生于1994 年开发并取得专利的一种先进的超高速磨削技术. 它集成了超高速磨削、CBN超硬磨料及CNC 柔性加工三大先进技术,具有优良的加工性能,是超高速磨削技术在高效率、高柔性和大批量生产高质量稳定性方面的又一新发展. 该工艺主要用于轴、盘类零件加工.其CBN 或人造金刚石超硬磨料砂轮轴线在水平和

垂直方向与工件轴线形成一定倾角,使用薄砂轮与工件形成小面积点接触,综合利用连续轨迹数控技术,以超高速度磨削,可以合并车磨工序. 它既有数控车削的通用性和高柔性,又有更高的效率

和精度,砂轮寿命长,质量非常稳定,是新一代数控车削和超高速磨削的极佳结合,成为超高速磨削的主要技术形式之一.

德国目前在这项新技术的研究开发上处于领先地位. 目前已在国外汽车工业、工具制造业中得到应用,尤其是在汽车零件加工领域,即齿轮轴或凸轮轴等.这些零件大都包括入、轴颈、轴肩、偏心

及螺纹磨削过程,应用此项工艺可以通过一次装夹而实现全部加工,大大提高了零件加工精度及生产率.

快速点磨削的磨削过程不同于一般意义上的超高速磨削,其技术特征如下[21]:

①快速点磨削通过数控系统控制砂轮轴线在垂直方向与工件轴线的偏角为±0.5°(图1) ,在水平方向根据工件母线特征在0-30°范围内变化,最大限度减小砂轮/工件接触面积和避免砂轮端面与工件台肩干涉. 砂轮动平衡可在机自动完成,径向跳动精度在0.002 mm 内.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtml1/01/clip_image004.jpg

图1 快速点磨削

②快速点磨削采用厚度为4-6 mm 的超硬磨料薄砂轮,并采用”三点定位安装系统”专利技术快速安装,重复定位精度高,并可解决离心力造成的涨孔问题.

③为获得高磨除率和不使砂轮产生过大离心力,工件也作高速相对旋转(最高可达12000 r/min) ,实际磨削速度是砂轮和工件两者速度的叠加达到200-250m/s.

④磨削外圆时材料去除主要靠砂轮侧边完成,而周边仅起光磨作用. 因此,砂轮圆周磨损极慢,使

用寿命长( 最长可达1年) ,磨削比可达16000-60000,一片”快速点磨”砂轮可磨去数吨钢,砂轮修

整率低(每次修整可加工2×105个零件) ,生产效率比普通磨削提高6倍.

⑤装有两坐标数控金刚石滚轮修整器,在砂轮宽度方向磨损达10% 以上时自动精确修整,避免过

早修整以控制成本.

⑥砂轮与工件接触面积小,磨削力大大降低、磨削热少,同时砂轮薄、冷却效果好,因此磨削温度

大为降低,甚至可以实现冷态!加工,提高了加工精度和表面质量.

⑦由于磨削力极小,靠顶尖摩擦力即能使方便夹紧工件,被称为”顶尖磨削”和”削皮磨削”.

⑧由于采用CNC 实现复杂表面磨削,一次安装后可完成外圆、锥面、曲面、螺纹、台肩和沟槽等

所有外形加工. 它还可以使车磨工序合并,进一步提高加工效率.

⑨使用高速磨削油喷注进行冷却. 由于高速旋转砂轮将磨削油甩成油雾,加工必须在封闭环境中自

动进行,并需配有吸排风系统和高效率磨屑分离与油气分离单元.

用快速点磨削方法磨削主轴,装夹一次可完成外圆、轴肩、沟槽和紧固螺纹4个部位的磨削;磨凸

轮轴,装夹一次可完成轴颈、止推面肩部和端部外径3个部位的全部磨削,尺寸精度达到IT6,

Ra≤0. 8微米,周期时间150s,与传统工艺比较,大大节约了成本.

3.4 硬脆材料及难加工材料超高速磨削

随着现代高科学技术及产业化发展,工程陶瓷、功能陶瓷、单晶硅、红蓝宝石和光学玻璃等硬脆材

料获得日益广泛的应用. 用超硬磨料在高速或超高速条件下对硬脆材料进行磨削加工已成为几乎唯

一的加工手段. 在普通磨削条件下,磨粒浸入工件较深,磨屑主要料脆性断裂形式完成. 超高速磨削

单位时间内参加磨削的磨粒数大大增加,单个磨粒的切削厚度极薄,容易使陶瓷、玻璃等硬脆材料

以塑性变形形式产生磨屑,大大提高磨削表面质量和效率. 因此超高速磨削能实现对硬脆材料的延

性域磨削. 例如,在采用金刚石砂轮以160 m/ s 的磨削速度磨削氮化硅陶瓷,其磨削效率比80 m/ s

提高一倍,砂轮寿命为80 m/ s 和30m/ s 时的1.56倍和7倍[22].并且可获得良好的表面质量.

镍基耐热合金、钛合金、高温合金、高强度合金钢等难磨材料在普通磨削条件下的磨削加工性极差. 磨削时砂轮钝化迅速、磨削温度高、表面质量差. 而在超高速磨削条件下,磨屑变形速度接近静态

塑性变形应力波传播速度,材料变形应变率极高,塑性变形滞后,相当于材料塑性减小,降低了加

工硬化倾向、表面粗糙度数值和残余应力,从而可实现延性材料的”脆性”加工. 例如用200 m/s 磨削纯铝时,工件表层硬度为50 HV,表面粗糙度Ra2.2微米; 磨削速度为280 m/s 时,工件表层

硬度为45 HV,Ra 1.8m.可见,当磨削速度大于200 m/ s( 纯铝静态应力波的传播速度约为200

m/ s) 时,加工硬化及表面粗糙度数值下降,表面质量提高. 所以,在超高速磨削条件下,硬、

脆、高韧性、高塑性材料也可以获得良好的磨削加工性能. 在42届国际生产工程研究学会年会的

磨削委员会主题报告中就明确指出,对耐热合金、铝合金难加工材料的高性能加工应是超高速磨削

技术的重要应用领域[23].

4. 高速磨削在汽车业的应用

用超高速点磨削方法磨削主轴(图2),装夹一次可完成外圆、轴肩、沟槽和紧固螺纹4 个部位的磨削;磨凸轮轴(图3) ,一次装夹可磨削凸轮型面、主轴轴颈、两端轴颈、止推轴颈侧肩面和凸轮调整

座面外径,尺寸精度可达到IT6,Ra≤0. 8微米,周期时间为150s,与传统工艺比较,大大节约了成本(表2)。

file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtml1/01/clip_image006.gif

file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtml1/01/clip_image008.gif

图2 超高速点磨削加工主轴图3 超高速点磨削加工凸轮轴

表2 磨削凸轮轴的工艺对比

file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtml1/01/clip_image009.jpg

我国一汽大众汽车有限公司应用这一技术磨削发动机凸轮轴(图4) ,砂轮转速为4 300 r/min,砂轮

修整一次可磨削3000件。

file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtml1/01/clip_image011.gif

图4 磨削发动机凸轮轴

超高速点磨削技术相当于使用半永久性工具进行数控车磨合并加工,符合先进制造技术的发展趋

势。由于磨削温度低、磨料及能源消耗少,超高速点磨削技术也符合绿色制造要求,可以预计这项

新型磨削技术具有极大的发展潜力[24]。

5. 结束语

(1) 超高速磨削的最大优越性在它能越过磨削“热沟”的影响,减少传入工件的磨削热,从而可以减少或避免工件表面的磨削“烧伤”,保证工件的加工质量。而且,超高速磨削在应用中符合绿色制造的加工原则。

(2) 超高速磨削是提高磨削效率、降低工件表面粗糙度和提高工件加工质量的先进加工技术,尤其对硬脆材料能实现延性域磨削,对高强度难磨材料也能取得良好的磨削效果,这对某些领域是难得可贵的。

(3) 目前世界发达工业国家,如德国、美国、日本等超高速磨削加工技术己趋成熟,实际应用的超高速磨削速度在200- 300m/s之间,试验室磨削速度己达500m/s。中国超高速磨削研究起步较晚,到目前为止仅仅停留在试验室中,东北大学以蔡光起教授为首的研究小组在国家自然科学基金和教育部重大科学项目的资助下正在进行电镀、陶瓷结合剂CBN 砂轮的超高速高效、高精、快速点磨削的研究,最高磨削速度达200m/s,部分研究成果达到世界先进水平。

高速磨削技术的现状及发展前景

高速磨削技术的现状及发展前景 The Situ ation and Developing Vistas of High-Speed G rinding T echnology 荣烈润 摘 要:本文综述了高速磨削的概念、优势、关键技术、应用近况和发展前景。 关键词:高速磨削 动平衡 砂轮修整 精密高速磨削 高效深磨   Abstract:This paper introduced concept,advantages,key technical points,application and developing vistas of high2speed grinding technology. K ey w ords:high2speed grinding dynamic balancing grinding wheel trim precision high2speed grind2 ing high2efficiency deep grinding   0 引言 人们一直对于提高磨削的砂轮速度所带来的技术优势和经济效益给予了充分的注意和重视。但是在高速磨削过程中,工件受热变形和表面烧伤等均限制了砂轮速度的进一步提高,砂轮强度和机床制造等关键技术也使得高速磨削技术在一段时间内进展缓慢。当20世纪90年代以德国高速磨床FS-126为主导的高速磨削(High-speed Grinding)技术取得了突破性进展后,人们意识到一个全新的磨削时代已经到来。 高速磨削技术是磨削工艺本身的革命性跃变,是适应现代高科技需要而发展起来的一项新兴综合技术,它集现代机械、电子、光学、计算机、液压、计量及材料等先进技术成就于一体。随着砂轮速度的提高,目前磨削去除率已猛增到了3000mm3/ mm?s甚至更多,可与车、铣、刨等切削加工相媲美,尤其近年来各种新兴硬脆材料(如陶瓷、光学玻璃、光学晶体、单晶硅等)的广泛应用更推动了高速磨削技术的迅猛发展。日本先端技术研究会把高速加工列为五大现代制造技术之一。国际生产工程学会(CIRA)将高速磨削技术确定为面向21世纪的中心研究方向之一。 1 高速磨削的概念及优势 高速加工(High-speed Machining)概念首先由德国切削物理学家Card.J.Salomon于1931年提出,他发表了著名的Salomon曲线,创造性地预言了超越Taloy切削方程式的非切削工作区域的存在,提出如能大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。这对今后高速磨削的发展有着非常重要的启示,对于高速磨削技术的实用化起到了直接的推动作用。 高速磨削与普通磨削相比具有以下突出的技术优势: (1) 可大幅度提高磨削效率,减少设备使用台数。以往磨削仅适用于加工余量很小的精加工,磨削前须有粗加工工序和半精加工工序,需配有不同类型的机床。而高速磨削既可精加工又可粗加工,这样就可以大大减少机床种类,简化了工艺流程。 (2) 可以明显降低磨削力,提高零件的加工精度。高速磨削在材料切除率不变的条件下,可以降低单一磨粒的切削深度,从而减少磨削力,获得高质量的工件表面,尤其在加工刚度较低(如薄壁零件)的工件时,易于保证较高的加工精度。 (3) 成功地越过了磨削热沟的影响,工件表面层可获得残余压应力(这对工件受力有利)。 (4) 砂轮的磨削比显著提高,有利于实现自动化磨削。 (5) 能实现对硬脆材料(如工程陶瓷及光学玻璃等)的高质量加工。

高速超高速磨削技术发展与关键技术

* 国家自然科学基金资助项目(编号:50475052) 教育部科学技术研究重点项目(编号:104190) 高校博士学科点专项科研基金资助项目(编号:20040145001)高速超高速磨削技术发展与关键技术* 青岛理工大学 机械工程学院 ( 266033) 李长河 东北大学 机械工程与自动化学院 (110004) 修世超 蔡光起 摘 要 论述了高速超高速磨削加工技术的发展、特点以及关键技术。 关键词 高速超高速 磨粒加工 关键技术 1 高速/超高速磨削技术发展 超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。德国著名磨削专家T.Tawakoli 博士将超高速磨削誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。在1996年国际生产工程学会(CIRP )年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术。 高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining )的概念是由德国切削物理学家Carl.J.Salomon 博士于1931年首先提出,他发表了著名的Salomon 曲线,创造性地预言了超越Talor 切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。 通常将砂轮线速度大于45 m/s 的磨削称为高速磨削,而将砂轮线速度大于150 m/s 的磨削称为超高速磨削。超高速磨削在欧洲、日本和美国等发达国家发展较快。 欧洲高速超高速磨削技术的发展起步比较早, 最初在20世纪60年代末期就开始进行高速超高速 磨削的基础研究,当时实验室的磨削速度就已经达 到210~230 m/s 。20世纪70年代,超高速磨削开始采用CBN 砂轮。1973年9月意大利的Famir 公司在西德汉诺威国际机床展览会上,展出了砂轮圆周速度120 m/s 的RFT-C120/50R 型磨轴承内套圈外沟的高速实用化磨床。1979年德国Bremen 大学的P.G .Werner 教授撰文预言了高效深磨区存在的合理性,由此开创了高效深磨的概念。1983年德国Bremen 大学出资由德国Guhring Automation 公司制造了当时世界上第一台高效深磨的磨床,功率为60 kW ,转速为10 000 r/min ,砂轮直径为φ400 mm ,砂轮圆周速度达到了209 m/s 。德国Guhring Automation 公司于1992年成功制造出砂轮线速度为140~160 m/s 的CBN 磨床,并正在试制线速度达180 m/s 的样机。德国Aachen 大学、Bremen 大学在高效深磨的研究方面取得了世界公认的高水平成果,其方法是用高线速度、深切入、快进给进行磨削,可得到高效率、高质量的磨削效果。据Aachen 工业大学实验室的Koeing 和Ferlemann 宣称,该实验室已经采用了圆周速度达到500 m/s 的超高速砂轮,这一速度已突破了当前机床与砂轮的工作极限。另外Braunschweig 大学、Berlin 工业大学等也在进行此方面的研究。 瑞士Studer 公司开发的CBN 砂轮磨削线速度在60 m/s 以上,并向120~130 m/s 方向发展。S40 CBN 砂轮磨床,在125 m/s 时高速磨削性能发挥最为充分,即使在500 m/s 也能照常工作。目前在试验室内正用改装的S45型外圆磨床进行线速度为280m/s 的磨削试验。德国Kapp 公司很早就对超高速磨床的研制进行过尝试,目前该公司制造的高效深磨用超高速磨床利用线速度300 m/s 的砂轮在60 s 内对有10个沟槽的成组转子毛坯完成一次磨削成

超高速磨削及其砂轮技术发展

超高速磨削及其砂轮技术发展1 李长河1,蔡光起2 1 青岛理工大学机械工程学院,山东青岛(266033) 2东北大学机械工程与自动化学院,辽宁沈阳(110004) E-mail:sy_lichanghe@https://www.wendangku.net/doc/9b8802517.html, 摘要:高速超高速磨削加工是先进制造方法的重要组成部分,集粗精加工与一身,达到可与车、铣和刨削等切削加工方法相媲美的金属磨除率,而且能实现对难磨材料的高性能加工。本文主要论述了高速超高速磨削工艺技术的特点;分析了超高速砂轮用电镀或涂层超硬磨料(CBN、金刚石)的特点以及修整方法,介绍了在高速及超高磨床上得到广泛应用的德国Hofmann公司生产的砂轮液体式自动平衡装置。 关键词:超高速磨削,砂轮,关键技术 1. 超高速磨削的特点 超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。德国著名磨削专家T.Tawakoli.博士将超高速磨削誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。在1996年国际生产工程学会(CIRP)年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术[1]。 高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining)的概念是由德国切削物理学家Carl.J.Salomon博士于1931年首先提出,他发表了著名的Salomon曲线,创造性地预言了超越Talor切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。 通常将砂轮线速度大于45m/s的磨削称为高速磨削,而将砂轮线速度大于150m/s的磨削称为超高速磨削。砂轮周速提高后,在单位宽度金属磨除率一定的条件下,单位时间内作用的磨粒数大大增加;如进给量与普通磨削相同,则每颗磨粒的切削厚度变薄、负荷减轻。因此高速与超高速磨削有以下特点[2]: 1.1生产效率高。 由于单位时间内作用的磨粒数增加,使材料磨除率成倍增加,最高可达2000mm3/mm?s,比普通磨削可提高30%~100%。实验表明,200m/s超高速磨削的金属切除率在磨削力不变的情况下比80m/s磨削提高150%,而340m/s时比180m/s时提高200%。采用CBN砂轮进行超高速磨削,砂轮线速度由80m/s提高至300m/s时,比金属切除率由50mm3/mm·s提高至1000mm3/mm·s,因而可使磨削效率显著提高 1.2砂轮使用寿命长 1本课题得到国家自然科学基金资助项目(50475052)和教育部科学技术研究重大项目(104190)的资助。

高速切削

1. 论述高速切削的特点。 材料去除率高,切削力较小,工件热变形小,工艺系统振动小,可加工各种难加工材料,可实现绿色制造,简化加工工艺流程。高速切削追求高转速、中切深、快进给、多行程的加工工艺,高速切削加工可大大降低加工表面粗糙度,加工表面质量可提高1~2等级。加快产品开发周期,大大降低制造成本。 2.阐述高速切削技术研究体系、关键技术。 数控高速切削加工技术是建立在机床结构与材料、高速主轴系统、高性能CNC控制系统、快速进给系统、高性能刀具材料、数控高速切削加工工艺、高效高精度测试技术等许多相关的软件和硬件技术基础之上的一项复杂的系统工程,是将各单元技术集成的一项综合技术。关键技术:高速切削机理;高速切削刀具技术;高速切削机床技术;高速切削工艺技术;高速加工的测试技术。 3.阐述高速切削发展趋势。 机床结构将会具有更高的刚度和抗振性,使在高转速和高级给情况下刀具具有更长的寿命;将会用完全考虑高速要求的新设计概念来设计机床;在提高机床进给速度的同时保持机床精度;快换主轴;高、低速度的主轴共存;改善轴承技术;改进刀具和主轴的接触条件;更好的动平衡;高速冷却系统。(新一代高速大功率机床的开发和研制;新一代抗热振性好、耐磨性好、寿命长的刀具材料的研制及适宜于高速切削的刀具结构的研究;进一步拓宽高速切削工件材料及其高速切削工艺范围;高速切削机理的深入研究;高速切削动态特性及稳定性的研究;开发适用于高速切削加工状态的监控技术;建立高速切削数据库,开发适于高速切削加工的编程技术以进一步推广高速切削加工技术;基于高速切削工艺,开发推广干式(准干式)切削绿色制造技术;基于高速切削,开发推广高能加工技术) 4结合典型工件材料和加工工艺方法,讨论高速切削的速度范围。 (1)根据工件材料:刚才380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材1100m/min以上、塑料1150m/min以上时,认为是合适的速度范围。(2)根据加工工艺方法:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削5000~10000m/min,认为是合适的速度范围。 5讨论高速切削加工的切削力变化规律。 (1)切削用量对切削力的影响:背吃刀量ap增大,切削力成正比增加,背向力和进给力近似成正比增加。进给量f增大,切削力与增大,但切削力的增大与f不成正比(75%)(2)工件材料对切削力的影响:较大的因素主要是工件材料的强度、硬度和塑性。a材料的强度、

超高速加工技术的现状及发展趋势

目录 摘要 (1) 1 引言 (1) 2 超高速加工技术简介 (1) 2.1 超高速加工技术概况 (1) 2.2 超高速加工技术分类 (2) 2.3 超高速加工技术特点 (2) 3 超高速加工技术现状 (3) 3.1 超高速加工技术现状简述 (3) 3.2 国外超高速加工技术发展 (4) 3.3 国内发展情况 (5) 4 超高速加工技术发展趋势 (5) 谢辞 (8)

超高速加工技术的应用和发展趋势 摘要:本文介绍了超高速加工技术的概念、内容和发展现状,并分析了其发展动向。 关键词:高速加工技术、机械制造、应用、发展 1 引言 当前机械制造业为实现高生产率和追求利润,先进制造技术的应用越来越广泛而深入。超高速加工技术作为先进制造技术的重要组成部分,也已被积极地推广使用。20世纪20年代德国人Saloman最早提出高速加工(High Speed Cutting, 简称HSC)的概念,并1931 年申请了专利。50年代末及60年代初,美国和日本开始涉足此领域,在此期间德国已针对不同的超高速切削加工过程及有效的机械结构进行了许多基础性研究工作。随着超高速加工主轴技术的发展,使得刀具切削速度得到很大提高,70年代诞生了第一台HSC机床。真正将HSC技术应用于实践是在80年代初期,因飞机制造业为降低加工时间以及对一些小型特殊 零件的薄壁加工而提出了快速铣削的要求。自80年代中后期以来, 商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。超高速磨削技术在近20年来也得到长足的发展及应用。德国Guehring Automation公司在1983年制造出了当时世界第一台最具威力的60kW强力立方氮化硼(CBN)砂轮磨床,Vs达到140~ 160m/s。当今, 超高速加工已经在汽车、航空航天等领域获得应用。 2 超高速加工技术简介 2.1 超高速加工技术概况 超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。 超高速加工是实现高效率制造的核心技术,工序的集约化和设备的通用化使之具有很高的生产效率。可以说,超高速加工是一种不增加设备数量而大幅度提高加工效率所必不可少的技术。超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为 1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为 2000~9000m/min。各种切削工艺的切速范围为:车削700~7000m/min,铣削 300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。

超高速磨削加工的关键技术及其装备开发

1引言 为适应现代工业技术和高性能科技产品对机械零件加工精度、表面粗糙度与完整性、加工效率和批量化质量稳定性的要求,近年出现了一些先进的磨削加工技术,其中以超高砂轮线速度和超硬磨料砂轮为主要技术特征的超高速外圆磨削、高效深切磨削、快速点磨削技术的发展最为引人注目。 2超高速磨削技术 超高速磨削(Vs≥150m/s)是近年迅猛发展的一项先进制造技术,被誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。国际生产工程学会(CIRP)将超高速磨削技术确定为面向21世纪的中心研究方向之一。东北大学自上世纪80年代开始一直跟踪高速/超高速磨削技术发展,并对超高速磨削机理、机床设备及其关键技术等开展了连续性的研究,建造了我国第一台额定功率55kW、最高砂轮线速度达250m/s的超高速试验磨床,进行了超高速大功率磨床动静压主轴系统研究、电镀CBN超高速砂轮设计与制造、超高速磨削成屑机理及分子动力学仿真研究、超高速磨削热传递机制和温度场研究、高速钢等材料的高效深磨研究、超高速单颗磨粒CBN磨削试验研究、超高速磨削砂轮表面气流场和磨削摩擦系数的研究等,部分研究成果达到国际先进水平。 2.1超高速磨削技术特点 (1)大幅度提高磨削效率,设备使用台数少;(2)磨削力小、磨削温度低、加工表面完整性好;(3)砂轮使用寿命长,有助于实现磨削加工的自动化;(4)实现对难加工材料的磨削加工。 超高速磨削不仅可对硬脆材料实行延性域磨削,而且对钛合金、镍基耐热合金、高温合金、铝及铝合金等高塑性的材料也可获得良好的磨削效果[1、2]。超高速磨削纯铝的实验表明,当磨削速度超过200m/s(纯铝静态应力波速度)时,工件表面硬化程度和表面粗糙度值开始减小,表面完整性得到改善。因为加载速度提高使得塑性应变点后移,增加了材料在弹性小变形阶段被去除的机率。因此塑性材料静态应力波速是实现“脆性”加工的临界点。 超高速磨削加工的关键技术及其装备开发 蔡光起修世超 (东北大学机械工程与自动化学院沈阳,110004) 摘要:介绍了超高速磨削和快速点磨削的关键技术及国内外发展现状,以及东北大学在这一技术领域的研究成果,提出了跟踪国际先进超高速磨削加工技术,提高我国制造技术水平的途径和策略。 关键词:超高速磨削CNC快速点磨削 Keytechnologyandequipmentofsuper-highspeedgrinding CaiGuangqiXiuShichao (SchoolofMechanicalEngineering&Automation,NortheasternUniversity, Shenyang110004,China) Abstract:Thekeytechnologyandprogressofsuper-highspeedgrindingandquick-pointgrindingwereintroduced,andsomeresearchesandproductionsofNortheasternUniversityinthefieldwerealsopresented.Thestrategyandsignificancewereputforwardtoabsorbtheadvancedtechnologyofsuper-highspeedgrindingintheworldandpromoteourmanufacturingindustry. Keywords:Super-highspeedgrinding,CNC,Quick-pointgrinding

先进磨削技术的发展

先进磨削技术的新发展 摘要:磨削是指用磨料或磨具去除材料的加工工艺方法,磨削与车、铣削在常规加工材料上竞争可能难分高下。尽管硬车削已经替代了很多磨削加工,但由于粘结技术的进步、高级磨料的应用,磨削依然保持强势。作为先进制造技术中的重要领域,磨削加工技术已在机械、国防、航空航天、微加工、芯片制造等众多领域得到广泛应用。磨削加工的发展趋势正朝着采用超硬磨料、磨具,高速、高效、高精度磨削工艺及柔性复合磨削、绿色生态磨削方向发展。如今磨削加工的发展趋势,主要包括高速磨削、超高速磨削、精密和超精密磨削、缓进给磨削、高效深切磨削、砂带磨削及绿色磨削技术。我们也需要了解超高速磨削加工的机理及超高速磨削的优越性,把握高速超高速磨削加工技术的发展前景。 关键词:磨削精密磨削高效磨削超高速磨削 正文:磨削加工技术是利用磨料去除材料的加工方法,也是人类最早使用的生产技艺方法。18世纪中期世界上第一台外圆磨床问世,由石英石、石榴石等天然磨料构成,随后又研制出平面磨床。20世纪40年代末,人造金刚石出现;1957年立方氮化硼研制成功;随着磨削技术的发展,特别是超硬磨料人造金刚石砂轮与立方氮化硼党的应用,磨削加工范围日益增大,磨削加工精度和加工效率也不短提高。 磨削技术发展趋势 如今磨削加工技术正朝着高速化,精细化方向发展。因此,我们了解超高速磨削加工的机理及超高速磨削的优越性,把握高速超高速磨削加工技术的发展前景是很有必要的。主要包括高速磨削、超高速磨削、精密和超精密磨削、缓进给磨削、高效深切磨削、砂带磨削及绿色磨削技术 首先了解一下精密及超精密磨削机理,精密磨削一般使用金刚石和立方氮化硼等高硬度磨料砂轮,主要用金刚石修整刀具以极小而又均匀的微进给(10~15mm/min)对砂轮进行精细修整,以获得众多的等高微刃,加工表面的磨痕较细,加工过程中,由于微切削、滑移、摩擦等综合作用,加工工件达到了小的表面粗糙度值和高的精度要求。超精密磨削则采用较小的修整导程和较小的背吃刀量修整砂轮,靠超细微磨粒等高微刃的磨削作用进行磨削加工。现在我们就对以上提到的磨削技术详细了解一下。 高效磨削技术 高效磨削是一种先进的制造技术,在其不断的发展中达到了一个崭新的水平。所谓高效磨削,是指加大磨削负荷或提高砂轮线速度,增加单位时间金属比切除率和单位时间的金属去除量,以达到和车削、铣削那样高的金属切除率,或者甚至更高。高效磨削主要包括高速磨削、缓进给磨削、高效深磨和砂带磨削,现已成为磨削加工技术发展的总体趋势。高效磨削技术的大力推广可有效地提高磨削效率、加工质量、砂轮耐用度,并降低生产成本。 缓进给磨削 缓进给磨削是继高速磨削之后发展起来的一种高效加工方法,对成型表面的加工有显著的成效。缓进给磨削是强力磨削的一种,又称深切缓进给磨削或蠕动磨削。缓进给磨削与普通磨削的不同在于采用增大磨削深度、降低磨削速度、砂轮与工件有较大的接触面积和高的速度比,达到很高的金属切除率。磨削工件时,只需经过一次或数次行程即可磨到所需的形状和尺寸精度。由于砂轮的磨削深度大,致使砂轮与工件的接触面积加大,有效抑制了磨削时振动的产生,磨

(完整)超高速加工与超精密加工技术

超高速加工与超精密加工技术 一、技术概述 超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。 超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。 超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。 超精密加工当前是指被加工零件的尺寸精度高于0.1μ m,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μ m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。 超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。 二、现状及国内外发展趋势 1.超高速加工 工业发达国家对超高速加工的研究起步早,水平高。在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。 在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可

高速磨削和精密磨削中的一些问题

高速磨削和精密磨削中的一些问题 1、什么是高速磨削?与普通磨削相比,高速磨削有哪些特点? 答:高速磨削是通过提高砂轮线速度来达到提高磨削效率和磨削质量的工艺方法。它与普通磨削的区别在于很高的磨削速度和进给速度,而高速磨削的定义随时间的不同在不断推进,60年代以前,磨削速度在50m/s时即被称为高速磨削,而90年代磨削速度最高已达500m/s,在实际应用中,磨削速度在100m/s以上即被称为高速磨削。 高速磨削与普通磨削相比,它有以下特点: (1)在保持其它全部参数恒定情况下,只增加砂轮速度,将导致切削厚度减小,相应也减小作用于每一磨粒上的切削力。 (2)若相应于砂轮速度成正比增加工件速度,切削厚度可保持不变。在这种情况下,作用于每一磨粒上的切削力,以及磨削合力不改变。这样最大的优点是,在磨削力不变的情况下,材料去除率成比例增加。 2、试简述高速磨削对砂轮和机床的要求。 答:高速磨削砂轮必须满足下列要求: (1)砂轮的机械强度必须能承受高速磨削时的切削力; (2)高速磨削时的安全可靠性; (3)外观锋利; (4)结合剂必须具有很高的耐磨性以减少砂轮的磨损。 高速磨削对机床的要求:

(1)高速主轴及其轴承:高速主轴的轴承一般采用角接触滚珠轴承。为了降低主轴发热,提高主轴的最高转速,新一代的高速电动主轴绝大多数均采用油气润滑。 (2)高速磨床除具有普通磨床的功能外,还需满足以下特殊要求:高动态精度、高阻尼、高抗振性和热稳定性;高度自动化和可靠的磨削过程。 (3)砂轮速度提高以后,其动能也随之增加,如果发生砂轮破裂,显然会给人身和设备造成比普通磨削时更大的伤害,为此除要提高砂轮本身的强度以外,设计专门用于高速磨削的砂轮防护罩是保证安全的重要措施。 3、高速磨削中砂轮精密修整技术有哪些? 答:目前应用较为成熟的砂轮修整技术有: (1)ELID在线电解修整技术; (2)电火花砂轮修整技术; (3)杯形砂轮修整技术; (4)电解—机械复合整形技术 4、什么是精密磨削?试简述普通砂轮精密磨削中砂轮的选择原则。 答:精密磨削是指在精密磨床上,选择细粒度砂轮,并通过对砂轮的精细修整,使磨粒具有微刃性和等高性,磨削后,使被磨削表面所留下的磨削痕迹极其微细、残留高度极小,再加上无火花磨削阶段的作用,获得加工精度为1~0.1mm和表面粗糙度Ra为0.2~0.025mm的表面磨削方法。 普通砂轮精密磨削中砂轮的选择原则:

超高速磨削技术

高速/超高速磨削技术 摘要:超高速点磨削是一种先进的高速磨削技术,它集成了高速磨削、CBN 超硬磨料及CNC 车削技术,具有优良的加工性能。对国内外高速磨削技术发展的作了比较详细的介绍,重点论述和分析了超高速点磨削的技术特征、关键技术和在汽车制造中的应用,最后分析了我国汽车工业发展超高速点磨削技术的必要性。 关键词: 超高速点磨削; 技术特征; 关键技术; 汽车工业 Abstract: Super-highspeed point-grinding is an advanced manufacture technology that hasintegrated high speed grinding,thin super-abrasive wheel and CNC turning technologies,and has m any excellent performance sin grindingshafts process. The development and the technical characters o f super-highspeed point-grinding were introduced,and the key technology and applicationon automobile manufacturing o f super-high speed point-grindingwere also analyzed. The significance of super-h igh speed point-grindingon automobile manufacturing was presented. Keywords: Super-high speed point-grinding; Technicalcharacteristics;Key technology; Automobile manufacturing 1.国内外高速磨削技术简介 通常所说的“磨削”主要是指用砂轮或砂带进行去除材料加工的工艺方法。它是应用广泛的高效精密的终加工工艺方法。一般来讲,按砂轮线速度V的高低将磨削分为普通磨削( Vs < 45m/ s) 、高速磨削( 45≤ Vs<150m/s) 、超高速磨削(Vs≥150m/s)[1]。20世纪90年代以后,人们逐渐认识到高速和超高速磨削所带来的效益,开始重视发展高速和超高速磨削加工技术,并在实验和研究的基础上,使其得到了迅速的发展[2]。 1.1 国外磨削技术的发展 磨削加工是一种古老而自然的制造技术,应用范围遍布世界各地,然而数千年来磨削速度一直处于低速水平。20世纪后,为了获得高加工效率,世界发达国家开始尝试高速磨削技术[2]。在高速、超高速精密磨削加工技术领域,德国及欧洲领先,日本后来居上,美国则在奋起直追[3]。 1.1.1 欧洲磨削技术的发展情况 超高速切削的概念源于德国切削物理学家Carl.J.Salomon 博士1929 年所提出的假设,即在高速区当切削速度的“死谷”区域,继续提高切削速度将会使切削温度明显下降,单位切削力也随之降低[1]。 欧洲高速磨削技术的发展起步早。最初高速磨削基础研究是在20世纪60年代末期,实验室磨削速度已达210-230m/s。70年代末期,高速磨削采用CBN 砂轮。意大利的法米尔( Famir ) 公司在1973年9月西德汉诺威国际机床展览会上,展出了砂轮圆周速度120m/s的RFT-C120/ 50R 型磨轴承内套圈外沟的高速适用化磨床[1] 。德国的Guehring Automation 公司1983 年制造了功率60kW、转速10000r/min、砂轮线速度209m/s[4]和砂轮直径400mm 的强力磨床。该公司于1992 年成功制造出砂轮线速度为140-160m/s的CBN 磨床,线速度达180m/s的样机[5]。Aachen 大学、Bremm 大学等在实验室已完成了Vs为250m/s、350m/ s 的实验。瑞士Studer 公司开发的CBN 砂轮线速度在60m/s 以上,并向120-130m/s方向发展[2、6、7]。目前在试验室内正用改装的S45型外圆磨床进行 280m/s的磨削试验。瑞士S40高速CBN 砂轮磨床,在125m/s时,高速磨削性能发挥最为充分,在500m/s时也能照常工作。 1.1.2 美国磨削技术的发展情况 1967 年,美国的61m/s 磨床投入市场,1969 年生产出80m/s的高速无心磨床。1970 年,本迪克斯公司曾生产了91m/s切入式高速磨床。1971 年,美国Carnegie Mellon大学制造了一种无中心孔的钢质轮,在其周边上镶有砂瓦,其试验速度可达185m/s,工作速度达到125m/s,用于不锈钢锭磨削和切断,也可用于外圆磨削。1993 年,美国的 Edgetek Machine 公司首次推出的超高速磨床,采用单层CBN 砂轮,圆周速度达到了203m/ s,用以加工淬硬的锯齿等,可以达到很高的金属切除率。美国Connectiout 大学磨削研究与发展中心的无心外圆磨床,最高磨削速度250m/s,主轴功率30kW,修整盘转速12000r/min,砂轮自动平衡,自动上料。2000 年美国马萨诸塞州立大学的 S.Malkin 等人,以149m/s的砂轮速度,使用电镀金刚石砂轮通过磨削氮化硅研究砂轮的地貌和磨削机理。至2000年,T. W. Hwang 等人一直在进行超高速磨削研究。目前美国的高效磨削磨床很普遍,一个重要的研究方向是低损伤磨削高级陶瓷,试图采用粗精加工一次磨削,以高的材料去除率和低成本加工高品质的氮化硅陶瓷零件[8]。

磨削技术的发展及关键技术

磨削技术的发展及关键技术 周志雄,邓朝晖,陈根余,宓海青 (湖南大学,长沙市,410082) 1 磨削技术发展概述 一般来讲,按砂轮线速度V s 的高低将磨削分为普通磨削(V s <45 m/s)、高速磨 削(45≤V s <150 m/s)、超高速磨削(V s ≥150 m/s)。按磨削精度将磨削分为普通磨 削、精密磨削(加工精度1 μm~0.1 μm、表面粗糙度R a 0.2 μm~0.1 μm)、超精 密磨削(加工精度<0.1 μm , 表面粗糙度R a ≤0.025 μm)。按磨削效率将磨削分为普通磨削、高效磨削。高效磨削包括高速磨削、超高速磨削、缓进给磨削、高效深切磨削(HEDG)、砂带磨削、快速短行程磨削、高速重负荷磨削。 高速高效磨削、超高速磨削在欧洲、美国和日本等一些工业发达国家发展很快,如德国的Aa chen大学、Bremm大学、美国的Connecticut大学等,有的在实验室 完成了V s 为250 m/ s、350 m/s、400 m/s的实验。据报道,德国Aachen大学正在 进行目标为500 m/s的磨削实验研究。在实用磨削方面,日本已有V s =200 m/s的磨床在工业中应用。 我国对高速磨削及磨具的研究已有多年的历史,如湖南大学在70年代末期便进行了80m/s、1 20 m/s的磨削工艺实验;前几年,某大学也计划开展250 m/s的磨削研究(但至今尚未见到这方面的报道),所以说有些高速磨削技术还只是实验而已,尚未走出实验室,技术还远没有成熟,特别是超高速磨削的研究还开展得很少。 在实际应用中,砂轮线速度V s 一般还是45~60 m/s。 国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削的研究,以获得亚微米级的尺寸精度。微细磨料磨削,用于超精密镜面磨削的树脂结合剂砂轮的金刚石磨粒平均直径可小至4 μm。日本用激光在研磨过的人造单晶金刚石上切出大量等高性一致的微小切刃,对硬脆材料进行精密磨削加工,效果很好。超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025 μm。日本开发了电解在线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料的高精度、高效率的超精密磨削。作平面研磨运动的双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高的平面度。电泳磨削技术也是一种新的超精密及纳米磨削技术。 随着磨削技术的发展,磨床在加工机床中也占有相当大的比例。据1997年欧洲机床展览会(E MO)的调查数据表明,25%的企业认为磨削是他们应用的最主要的加工

高速切削技术

高速切削的加工技术(2008-08-20 14:07:47) 标签:高速切削min主轴转速刀具兰 生公司数控机床杂谈 高速切削的加工技术 在现代机械切削加工技术中,高速切削正在越来越多地被人提及,其技术已开始被使用,随之而来的,首先是高速机床,那么,高速切削与传统切削技术究竟有什么不同? 其实现的条件是什么? 实现它有哪些益处? 其适用性怎么样呢? 本文将试图回答这些问题,并且尽可能结合目前在世界上居领先水平的瑞士MIKRON公司的机床的结构、特点来分析,用它同目前国内仍在普遍应用的传统的加工方法和切削理论相比较,促进高新技术在国内的应用和普及。 缩短加工时的切削与非切削时间,对于复杂形状和难加工材料及高硬度材料减少加工工序,最大限度地实现产品的高精度和高质量,是我们提高劳动生产率、实现经济性生产的一个重要的目标。 有人认为,一提高速加工,就是主轴转速要几万转;只要主轴转速一达到几万转,就可以实现高速切削,这其实是不全面的。 随着科学技术的发展,现代机床已经具备了下面的条件,也只有具备这些条件,才会使得高速切削成为可能。 1.机电一体化的主轴,即所谓电主轴。现代化的主轴是电机与主轴有机地结合成一体,采用电子传感器来控制温度,自有的水冷或油冷循环系统,使得主轴在高速下成为“恒温”;又由于使用油雾润滑、混合陶瓷轴承等新技术,使得主轴可以免维护、长寿命、高精度。由于采用了机电一体化的主轴,减去了皮带轮、齿轮箱等中间环节,其主轴转速就可以轻而易举地达到0~42000r/min,甚至更高。不仅如此,由于结构简化,造价下降,精度和可靠性提高,甚至机床的成本也下降了。噪声、振动源消除,主轴自身的热源也消除了。MIKRON公司便采用了本集团“STEP-TEC”公司生产的电主轴,这种电主轴采用了其特别的、最先进的矢量式闭环控制、高动平衡的主轴结构、油雾润滑的混合陶瓷轴承,可以随室温调整的温度控制系统,确保主轴在全部工作时间内温度衡定。 何为矢量式闭环控制呢?其实就是借助数/模转换,将交流异步电动机的电量值变换为直流电模型,这样,既可实现用无电刷的交流电机来实现直流电机的优点,即在低转速时,保持全额扭矩,功率全额输出,主轴电机快速起动和制动。以UCP710机床切削45#钢为例,用STEP-TEC的主轴铣削,铣刀直径?63mm, 主轴转速为1770r/min,金切量为540cm3/min;在无底孔钻孔时,钻头直径?50mm, 转速1350r/min,可一次钻出,而无需常用的先打中心孔,而后钻孔再扩孔的方法。 2.机床普遍采用了线性的滚动导轨,代替过去的滑动导轨,其移动速度、摩擦阻力、动态响应,甚至阻尼效果都发生了质的改变。用手一推就可以将几百公斤甚至上千公斤的重工作台推动。其特有的双V型结构,大大提高了机床的抗扭能力;同时,由于磨损近乎为零,导轨

高速磨削

高速磨削 高速磨削是国内外正在大力研究并逐步推广的一种先进的机械加工方法 , 它是近代磨削加工技术发展的一种新工艺 , 与普通磨削相比 , 其优点是能够大大提高被加工工件的精度 , 降低零件表面粗糙度。随着科学技术的不断进步和发展 , 对零件的加工精度和生产率提出了更高的要求 , 高速磨削技术更加显示出它的重要性。 1 国外高速磨削技术的现状与发展趋势 早在上世纪 50年代 , 国外就已经开始研究高速磨削 , 到 60年代 , 许多国家在高速磨削方面的研究更加得到普遍重视 , 并取得了许多成功经验 , 如日本京都大学工学部冈村健二郎教授首先提出了高效磨削理论 , 当时在日本也是盛行一时。德国阿亨大学Optiz教授系统地发表了 60m /s高速磨削的实验结果。在 70年代 , 高速磨削在许多工业国家迅速发展 , 60m /s以上高速磨床品种超过 50种 , 少数磨床磨削速度达到 125m /s, 到了 80年代 , 许多国家继续在提高磨削速度上进行努力 , 但是高速磨削并未按原先预料的情况发展 , 它受到许多条件的制约 , 如受到机床结构、动态特性、砂轮速度及磨料耐磨性等的限制 , 实际上在这个时期磨削速度的提高也受到了一定的限制。近年来 , 高速磨削加工技术又有了很大发展 , 主要表现在以下几个方面 : (1)高速磨削机理方面。在越过能产生磨削热损伤的国限带之后 , 磨削用量进一步加大不仅不会使热损伤加剧 , 反而会使其不再发生。这一发现 , 开拓出一个广阔的高速磨削参数领域 , 为实现超高速的磨削提供了理论基础 , 加上人造金刚石和立方氮化硼在砂轮制造中的大量应用 , 高速磨削得以再度兴起 , 并实现了线速度高于普通磨削 5 - 6倍甚至更高的超高速磨削。 (2)高速磨削的有利环节。继喷雾润滑轴承和空气润滑轴承之后 , 利用磁力承受负荷的磁悬浮轴承已进入实用阶段 , 它的转速可以在主轴强度所能承受的限度内任意提高。砂轮自动平衡技术得到进一步发展 , 现已研制出全自动砂轮平衡系统。在高压冷却系统方面 , 国外不少厂家生产的高速磨床都装有高压冷却喷嘴和高压清洗喷嘴、油雾分离装置、油温冷却装置等。90年代 , 市场上已出现了磨削速度为 80 ~ 140m /s的磨床 , 实验室磨削速度已经达到250m /s。 (3)磨削速度。今年以来 ,由于应用了可承受高回转速度的钢合金基体单层电镀 CBN 砂轮和磁悬浮主轴轴承,使得磨削速度有了很大的提高。在德国高速磨削技术发展迅速,其研究成果将高速磨削技术推向一个高水平。同时 , 美国、日本和欧洲的一些国家也在大力发展高速磨削技术。德国 DAPP公司生产出的高速缓进给磨床主轴转速达 6 ×104r /m in砂轮线速度 250m /s;德国阿亨大学正在积极开展研究 500m /s超高速磨削。 2 国内高速磨削技术的发展 我国高速磨削技术的研究起步较晚 , 与国外有较大的差距。自1958年开始推广高速磨削技术 , 当时第一汽车厂、第一砂轮厂等相继试验成功 50m /s 高速砂轮 , 并进行磨削试验。 1964年 , 郑州磨料磨具磨削研究所和洛阳拖拉机厂合作进行 50m /s高速磨削试验 , 在机床改装和工艺等方面获得一定效果。 1975年 ,河南省南阳机床厂试制成功MS1332型80m/s高速外圆磨床 , 至1977年 , 全国已有 17个省市 770台磨床采用 50m /s高速磨削技术,湖南大学

高速磨削的技术关键

高速磨削的技术关键 1.高速主轴 高速磨削时对砂轮主轴的基本要求与高速铣削时相似,各种主轴的类型、构造及其优缺点 与高速铣不同之处在于砂轮直径一般大于铣刀的直径。由于制造和调整装交等误差,更换砂轮或者修整砂轮后甚至在停车后重新起动时,砂轮主轴必须进行动态平衡。所以高速磨削主轴须有连续自动动平衡系统,以便能把由动不平衡引起的振动降低到最小程度,保证获得低的工件表面粗糙度。 目前市场上有许多不同的动平衡系统产品,主要有下列两类:机电动平衡系统和电液动平衡系统。 (1)机电动平衡系统如图38所示,它由两块内装电子驱动元件并可在轴上相对转动的平衡重块3,紧固法兰2和信号无线传输单元1组成。整个平衡系统构成一个完整的部件,装在磨床主轴4内,如图39所示。进行动平衡时,主轴的动不平衡振幅值由振动传感器测出,动不平衡的相位则通过装在转子内的电子元件测量。相应的电子控制信号驱动两平衡块1作相对转动,从而达到平衡的目的。这种平衡装置的精度很高,平衡后的主轴残余振动幅值可控制在0.1~1μm。该系统的平衡块在断电时仍保持在原位置上不动,所以停机后重新起动时主轴的平衡状态不会发生变化。 电液平衡系统的原理如图40所示,振动传感器装在主轴箱上,带有喷口的法兰装在主轴端部,一个具有三个或四个空腔的平衡环固定在转子上。进行平衡时,控制系统根据振动不平衡的幅值和相位向相应的空腔喷射液体。该液体一般为磨削用的冷却润滑液,万一空腔有泄漏也不会影响机床正常工作。主轴停止转动后,喷入空腔的液体仍然保留在原来的地方,主轴重新起动时,平衡状态不会发生变化。为了维持主轴和砂轮一直处于最佳平衡状态,则可启动自动平衡程序,对主轴进行连续自动平衡。 图38 机电动平衡系统 1—信号无线输送单元 2—紧固法兰3—内装电子驱动元件的平衡重块4—磨床主轴

相关文档