文档库 最新最全的文档下载
当前位置:文档库 › 测定电流互感器极性的常用方法

测定电流互感器极性的常用方法

测定电流互感器极性的常用方法
测定电流互感器极性的常用方法

测定电流互感器极性的常用方法

(1)直流法。

在电流互感器的一次绕组(或二次绕组)两端,通过按钮开关接入1.5~3V干电池。假设一次绕组的首端L1接电池正极,尾端L2接电池负极;在二次绕组两端接一低量程直流电压表或电流表,仪表的正极接二次绕组的K1端,负极接K2端。当按下按钮开关电路接通时,若直流电压表或电流表指针向正方向起;松开按钮开关电路断开时,直流电压表或电流表指针向反方向起,则说明电流互感器为减极性,是正确的。反之为加极性。直流法测定电流互感器的极性,简便易行,结果准确,是工程实践中最常用一种方法。

(2)交流法。

将电流互感器的一次绕组尾端L2和二次绕组尾端K2连接在一起,在匝数较多的二次绕组两端K1和K2之间接入1~5V的交流电压U1,再用10V以下小量程的交流电压表分别测量一次绕组两端Ll和L2间的电压U2、Kl和L1间的电压U3,若U3=U1 -U2,则为减极性;若U3 =U1+U2,则为加极性。

在试验中应注意使接人的电压U1尽量低,只要电压表的读数能看清楚即可,以免电流过大损坏绕组。为使读数清楚,电压表的量程应选得小一些。

当电流互感器的变比为5及以下时,用交流法测定电流互感器的极性既简单,又准确。但电流互感器的变比较大(10以上)时,因U2数值较小,U3和U1数值接近,电压表读数不易区分大小,故不易

采用此法测定极性。

(3)仪器法。

一般的电流互感器校验仪都带有极性指示器,因此,在测定电流互感器误差之前,仪器可预先检查极性。若极性指示器没有指示,则说明被试电流互感器极性正确(减极性)。

电流互感器极性及方向保护的问题

谈谈对于极性与方向保护的理解 以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢? 所谓减极性接线就就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还就是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果就是流入,那么二次侧应该就是流出;一次侧如果就是流出,那么二次侧就就是流入。 为什么一次电流与二次侧电流要相反呢? 其实这个相反就是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置?保护装置! 这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又就是流入了!! 因此,减极性的接法的目的就是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!! 减极性具体接线接线 具体来

说比方说当流变P1侧指向母线,则二次上应该将三根S1 与短接三根S2成为一根后总计4根线接入保护装置。 当流变P2侧指向母线,则二次上应该将三根S2 与短接三根S1成为一根线后总计4根线接入保护装置。 对于电压互感器而言 也存在一个极性问题,采用减极性接线的目的也就是要保证二次设备感受到的电压要与一次电压相一致。 再说说方向保护 对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性: 当正方向故障时一次侧电压超前电流30°左右 当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°) 既然流变与压变均采用减极性接法,也就就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了! 再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次侧?我们必须遵循一定的规范,这个规范就就是减极性接法!! 如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可

电流互感器变比检验的简便方法(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 电流互感器变比检验的简便方法 (2021版)

电流互感器变比检验的简便方法(2021版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到(需大容量调压器);其二,需要的标准电流互感器或升流器的体积大,造价

电流互感器极性常见的几个问题

电流互感器极性常见的几个问题 在电力系统中,因为电流互感器极性接线错误导致保护装置误动或拒动的现象时有发生,严重影响供电系统的稳定运行。同样,电流互感器的极性接线在化工厂应用中也显得尤为重要。本文就化工厂常见的一些电流互感器极性问题进行总结,并给出相应整改措施。 标签:电流互感器;极性;保护装置;措施 1 前言 电流互感器(CT)是将一次侧大电流转换成可供计量、测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离。它的一次、二次绕组都是由两个端子引出,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置的正确动作,也影响电力系统的在线监测及故障处理,严重时还会引起人身安全。 2 电流互感器极性 为了便于正确接线和理论分析,电流互感器的一次绕组和二次绕组的引出端子都标有极性符号。一次绕组P1为首端,P2为末端;二次绕组S1为首端,S2为末端。通常用“.”“*”等符号标记,表示同极性,即P1、S1(或P2、S2)为同名端。通常电流互感器采用减极性原则(同名端流入,同名端流出)标注,规定当一次侧电流从首端P1流入,由末端P2流出;二次侧电流从首端S1流出,末端S2端流入。 3 电流互感器极性常见的几个问题 结合本化工厂实际,保护1为南瑞RCS-9671CS变压器差动保护装置;保护2、3、4为施耐德MiCOM P140馈线管理保护装置系列下的P143装置,相间/零序过电流保护可自由设置方向;保护5为施耐德MiCOM P640 变压器保护装置系列下的P643装置。 3.1 变压器或线路差动保护CT接线 变压器或线路差动保护保护范围内两侧CT采用180度極性接线,为了满足被保护对象正常运行或区外故障时,二次侧差流近似于零,保护不会动作;区内故障时,二次侧差流近似等于两倍短路电流,保护动作。 3.2 针对35kV IV母进线和馈线(带方向) ①4#主变进线保护2所示CT极性:电流方向指向母线,为反方向动作;②4#热电站升压变高压侧后备保护4所示CT极性:电流方向指向主变,为正方向

电流互感器检查变比电流电压方法

电流互感器变比检查电流法电压法 文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。 不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。 电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。 从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。 电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。 1试验方法分析 现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。 1.1电流法 1.1.1 试验原理 电流法检查电流互感器变比试验接线图如图1所示。

电流互感器极性的判断

怎样测量电流互感器的极性 电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。 测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。 1直流法 见图1。用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。 图1直流法测电流互感器极性 2交流法

见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来, 在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U 及U3的数值如U3=U1-U2为减极性;若U3=U1+U2为加极性。 2 图2交流法测电流互感器极性 注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。 3仪表法 一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。 高压电流互感器极性的判断

按规定电流互感器在交接及大修前后应进行极性试验,防止接线时将极性弄错,造成继电保护回路上和计量回路中的保护装置错误动作和不能正确地进行计量,因此必须在接线时做极性试验。 判断电流互感器极性的方法有三种,分别为直流法、交流法、仪器法。其中最方便、最实用的是直流法,用一只普通的1号干电池,一根0.5米长的连接线,一只指针式万用表,最好是MF-500型的,上面带有微安挡,指针偏转角度大,显示比较直观。把万用表左侧旋钮调整到A直流电流挡位,右侧旋钮调整到50微安刻度;判断极性时一般两个人一起操作,其中一个人把万用表的正极红表笔接电流互感器二次侧的S1端,负极黑表笔接S2端,另一个人把连接线一端固定在电流互感器一次侧P2端,连接线的另一端和干电池负极锌片端接触,使干电池的正极瞬间碰触电流互感器的一次侧P1端,会发现万用表指针正偏(向右偏)之后,又马上返回,这说明极性正确,为负极。然后红表笔接S2端黑表笔接S3端,或红表笔接S3端黑表笔接S4端,指针偏转情况应与上述相同;如指针

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

电流互感器极性及方向保护的问题

谈谈对于极性和方向保护的理解 以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢 所谓减极性接线就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果是流入,那么二次侧应该是流出;一次侧如果是流出,那么二次侧就是流入。 为什么一次电流和二次侧电流要相反呢 其实这个相反是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置保护装置! 这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又是流入了!! 因此,减极性的接法的目的是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!! 减极性具体接线接线 具体来

说比方说当流变P1侧指向母线,则二次上应该将三根S1 和短接三根S2成为一根后总计4根线接入保护装置。 当流变P2侧指向母线,则二次上应该将三根S2 和短接三根S1成为一根线后总计4根线接入保护装置。 对于电压互感器而言 也存在一个极性问题,采用减极性接线的目的也是要保证二次设备感受到的电压要和一次电压相一致。 再说说方向保护 对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性: 当正方向故障时一次侧电压超前电流30°左右 当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°) 既然流变和压变均采用减极性接法,也就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了! 再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次

侧我们必须遵循一定的规范,这个规范就是减极性接法!! 如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际是反方向,判断为反方向其实为正方向,那么就乱了套了! 这就再一次印证了我们经常说的 对于方向性保护,一定要注意二次接线,极性不要搞错了 交流电每时每刻电流、电压的大小和方向均是在不停变化的,我们常说假设电流由母线流向线路为正,其实是指某个瞬间交流电流由母线流向线路。 但是不管电流电压怎么变化方向,但是有一点需要切记,电流和电压之间的相位关系具有一定的规律性,即电流和电压矢量之间的夹角肯定是有规律的! 由此可见掌握方向保护(不管是方向过电流还是零序方向保护或者其他方向保护)的精髓就是要记住 正方向和反方向故障时电流和电压之间的相位关系。

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X 分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2

分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—

电流互感器检测项目及试验

、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换 成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏?几百千伏,标准二次电压通常是100V和100V/两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培?几万安培,标准二次电流通常有5A、1A、0.5A等。 1. 电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为①。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通①的关系为: 图1.1电压互感器原理 2. 电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通①也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。

即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3. 互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2 或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图 1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4. 电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2 )电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3 )电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次 绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5. 电压互感器型号意义 第一个字母:J —电压互感器。

电流互感器结构及原理

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产生 的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额 定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3 特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图

电流互感器二次出线的极性要求及确定方法

电流互感器二次出线的极性要求及确定方法 [摘要] 分析了继电保护、计量、测量、故障录波等相关装置对电流互感器二次出线极性的要求,并介绍了极性确定步骤,最后给出了某电厂的发变组TA二次出线的极性配置示意图。 关键词电流互感器二次出线极性配合 0 引言 电气二次设备,如继电保护装置、测量装置、计量装置、安全自动装置等,都需要通过电流互感器来反映一次侧电流值,从而实现保护、测量等功能。电流互感器的传递变换具有极性,其二次出线极性的确定将对相关电气二次设备功能的实现造成影响,特别是保护装置用TA 的二次出线极性出现错误时将导致保护的误动或拒动,严重时将危及一次设备乃至电网的安全。 1 电流互感器的二次出线极性要求 GB1208-2006《电流互感器》规定:电流互感器中标有P1(L1)、S1(K1)的所有端子在同一瞬间具有同一极性,即P1(L1)与S1(K1)是同极性关系。其中,P1、P2(L1、L2)在电流互感器的本体上有标注(变压器套管TA除外,需由设备厂方和单体试验方提供TA的一次指向信息);S1、S2(K1、K2)在电流互感器的二次接线端子处有标注。值得注意的是,国外TA必须通过产品的出厂说明书和单体试验来获取极性信息。 1.1 与继电保护装置的配合 1.1.1电流差动保护 电流差动保护需要对一次设备各侧TA二次电流的矢量进行差流计算,因此需要综合考虑各侧TA极性的配合。对于变压器差动保护中组别引起的相差,目前微机保护均通过软件来计算补偿,所以各侧TA二次接线均采用“Y”接法。至于电流差动保护,由于各侧TA有0°和180°两种接线方式,因此要根据保护装置的具体要求来确定TA的极性。表1为几种国内常见的电流差动保护的极性要求。 差流为矢量差: 差流为矢量和:

常用的电流互感器检测电路分析

常用的电流互感器检测电路分析 在高频开关电源中,需要检测出开关管、电感等元器件的电流提供给控制、保护电路使用。电流检测方法有电流互感器、霍尔元件和直接电阻取样。采用霍尔元件取样,控制和主功率电路有隔离,可以检出直流信号,信号还原性好,但有μs级的延迟,并且价格比较贵;采用电阻取样价格非常便宜,信号还原性好,但是控制电路和主功率电路不隔离,功耗比较大。 电流互感器具有能耗小、频带宽、信号还原性好、价格便宜、控制和主功率电路隔离等诸多优点。在Push-Pull、Bridge等双端变换器中,功率变压器原边流过正负对称的双极性电流脉冲,没有直流分量,电流互感器可以得到很好的应用。但在Buck、Boost等单端应用场合,开关器件中流过单极性电流脉冲;原边包含的直流分量不能在副边检出信号中反映出来,还有可能造成电流互感器磁芯单向饱和;为此需要对电流互感器构成的检测电路进行一些改进。 2 电流互感器检测单极性电流脉冲的应用电路分析根据电流互感器磁芯复位方法 的不同,可有两种电路形式:自复位与强迫复位。自复位在电流互感器原边电流脉冲消失后,利用激磁电流通过电流互感器副边的开路阻抗产生的负向电压实现复位,复位电压大小与激磁电流和电流互感器开路阻抗有关。强迫复位电路在原边直流脉冲消失期间,外加一个大的复位电压,实现磁芯短时间内快速复位。 电流互感器检测电路 常用的电流互感器检测电路如图1(a)所示。 图1(b)表示原边有电流脉冲时的等效电路,电流互感器简化为理想变压器与励磁电感m模型,s为取样电阻。 当占空比<时,在电流互感器原边电流脉冲消失后,磁芯依靠励磁电流流过采样电阻s产生负的伏秒值,实现自复位〔如图1(d1)~(i1)所示〕,由于采样电阻s很小,所以负向复位电压较小;当电流脉冲占空比很大时(>,复位时间很短,没有足够的复位伏秒值,使得磁芯中直流分量d增大,有可能造成磁芯逐渐正向偏磁饱和〔如图1(d2)~(i2)所示〕,失去检测的作用,所以自复位只能应用于电流脉冲占空比<的场合。

电流互感器极性测试方法

电流互感器极性测试方法 摘要:介绍一种新型便携式电流互感器极性测试仪,该测试仪由大容量可充电 蓄电池、电压监视器、信号发生采集及分析装置、蓄电池充电装置等组成,具有 操作方便,可循环使用及环保等优点。使用该测试仪,无需重复更换电池,由单 人操作即能实现各电压等级电流互感器极性测试工作。 关键词:便携;三相;电流互感器;极性 1 研究背景 1.1 电流电流互感器工作原理 电流电流互感器原理和我们电力系统中的变压器一样,依据电磁感应原理, 所不同的是,电流电流互感器的工作环境更趋近于理想化,一次侧和二次侧之间 的能量交换不多,更多的是测量功能,其简图如图1所示。它的工作原理是串接 在电路中,通过电磁感应,将一次侧的大电流按一定的变比一定的极性变为二次 侧的小电流,将各准确等级绕组按规范要求串入各保护测量回路。 使一次侧通过电流,二次侧将指针式万用表的电流档串入系统。也就是干电池法测量电 流电流互感器的极性。具体的操作方法是,检测极性时,模拟电流互感器一次侧流过电流, 分别短接干电池的正负端到电流电流互感器一次侧的P1\P2;将指针式电流表的两端分别接 到电流电流互感器二次输出端。通过接通瞬间在电流互感器一次侧产生的电流,使仪表指针 正偏或者反偏来判断电流互感器极性的正确与否。该种方法存在的问题:①变压器线圈或大 容量电流电流互感器(750kV套管电流电流互感器)具有很大的电感,故使用常规的小容量 电池,指针式万用表的指针偏转不明显;②短接干电池时,干电池快速放电,损耗大,寿命短,余下废旧干电池污染环境,且不可持续利用;③短接法仅能对电流互感器单相进行就地 极性测试工作,不具备室内对整个回路进行准确测试功能;④数字式万用表的读数一闪而过,不易判断极性接线是否正确。 2.2 研究的必要性 为了解决上述问题,降低工作过程中的风险,简化试验流程,方便调试班组进行极性测 试工作,需要研究制作一种新型简易的便携式电流电流互感器极性测试装置。 2.3 主要研究内容 迫切需要研究制作一种新型简易的电流电流互感器极性测试装置,方便调试班组进行极 性测试工作。项目采用的设备如图3所示。 图 3 新型电流电流互感器极性测试仪 便携式电流互感器测试仪操作简单,测试仪一次输出三组接线,分接到电流电流互感器 A/B/C三相的一次接头。在测试仪主机通过选择按钮选择需测试相别,按下确认按钮,发出 合闸脉冲信号,户外一次信号发生器接收到该脉冲信号,实现一次回路瞬间导通,通过主机 采集的二次信号,即可以确认电流电流互感器的极性是否正确。技术关键点及创新点: ①便携式电流互感器测试仪针对不同电流互感器容量大小不一、设备可重复利用性不高 等问题,通过增加可充电蓄电装置与信号发生和信号采集分析回路,达到简化操作的目的。 ②便携式电流电流互感器测试仪将二次采集与分析回路与外部一次回路通过无线技术联系。 ③测试回路克服传统单相验证回路及指针万用表测试线长度不够等因素导致测试仅能就 地单相进行,而采用无线技术后可实现在室内对整个回路的完整测试。 ④便携式电流电流互感器测试仪可由测试人员单人操作完成极性测试工作,使测量更灵敏,操作更规范。 2.4 先进性分析 克服常规的小容量电池,仅单相就地测试以及灵敏度低等问题。它主要是通过大容量可 充电蓄电池,来实现电池容量增加,这样可以实时监测电池电量,满足各种电压等级要求;

互感器极性及其接线安全技术示范文本

互感器极性及其接线安全技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

互感器极性及其接线安全技术示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在生产实践中,由于电流互感器极性及接线不正确, 造成保护装置误动和拒动,由此而引起的停电事故时有发 生,这在克拉玛依电网已发生过多起,且故障多发生在主 变差动保护、110kV线路保护及母差保护中。例如:石西 地区110kV陆良变电站及35kV莫北变电站都因1,2号 主变差动保护电流互感器极性及接线存在问题,造成多次 全站失电。因此,正确判断电流互感器的极性及二次接线 的正确性是非常重要的。 1 极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断

电流互感器极性以及正确的电流互感器二次接线。 1.1电流互感器的极性判断 电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。 1.2正确的电流互感器的二次接线方式 (1)变压器按Y/△-11接线时,两侧电流之间有30。的相位差,即同相的低压侧电流超前高压侧电流30。,为了

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

电流互感器变比检验的简便方法通用版

操作规程编号:YTO-FS-PD192 电流互感器变比检验的简便方法通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电流互感器变比检验的简便方法通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到

电流互感器电压互感器常见故障处理

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器)(1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随

较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常(2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断

零序电流互感器安装注意事项(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 零序电流互感器安装注意事项 (通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

零序电流互感器安装注意事项(通用版) 10kV中性点经低电阻接地系统在全国大城市电网上普遍采用。变电站、开闭站10kV线路零序保护装置采用外附零序电流互感器方式使用越来越多,由于过去零序电流互感器使用不多,所以在安装使用上发现了许多问题,有的甚至于造成零序保护装置在接地故障时拒动,保护越级。 1安装存在的问题 (1)零序电流互感器应装在开关柜底板上面,应有可靠的支架固定。但有些厂家或施工单位将零序电流互感器安装在开关柜底板下面的支架上,更有甚者将零序电流互感器捆绑在电缆上,这违背了开关柜全封闭原则,既不安全,也不防尘,更不防小动物,留下很多隐患。 (2)电缆终端头穿过外附零序电流互感器后,电缆金属屏蔽接地

线与外附零序电流互感器的相对位置不正确。根据《北京地区电气工程安装规程》规定:三芯电力电缆终端处的金属护层必须接地良好;塑料电缆每相铜屏蔽和钢铠应锡焊接地线(油浸纸绝缘电缆铅包和铠装应焊接地线),电缆通过零序电流互感器时,电缆金属护层和接地线应对地绝缘,电缆接地点(电缆接地线与电缆金属屏蔽的焊点)在互感器以下时,接地线应直接接地(见图1);接地点在互感器以上时,接地线应穿过互感器接地(见图2),接地线必须接在开关柜内专用接地铜排上,接地线须采用铜绞线或镀锡铜编织线,接地线的截面必须符合规程要求。在检查中发现有些电缆接地线该穿零序电流互感器时未穿,一些不该穿零序电流互感器的反倒穿了,造成事故接地零序保护不能正确动作。 (3)由于电缆终端头做得比较大,造成电流互感器磁路不闭合。目前常用的10kV电力电缆为三芯交联聚乙稀电缆,截面多为240mm2、300mm2,电缆外径较粗再加上三芯手套附加的热溶密封胶就更粗,零序电流互感器套不上去,施工中就拆开零序电流互感器接口,电缆套过来了,接口却忘记恢复;有的恢复了,但接口恢复不严;更

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

相关文档
相关文档 最新文档