文档库 最新最全的文档下载
当前位置:文档库 › 直埋热网管道固定支墩设计分析

直埋热网管道固定支墩设计分析

直埋热网管道固定支墩设计分析
直埋热网管道固定支墩设计分析

直埋热网管道固定支墩设计分析

摘要:热电厂热网管道及城市集中供热管道常采用直埋方式敷设,但对直埋管道固定支墩设计分析的相关理论及处理方法并不完善,本文在工程实践基础上,对固定支墩尺寸设计、样式、配筋计算进行了分析总结,为类似设计提供参考。

关键词:供热管道;固定支墩;土压力;设计

引言

目前,随着我国热电厂的建设和北方地区城市集中供热的发展,热力管道敷设越来越广泛。管道敷设方式主要为架空、地沟和直埋。

架空方式不但占据地下空间,而且需要地上空间,影响美观,在地上空间有限的厂区及城市很受限制。

地沟敷设方式需要年年进行维修,供热成本较高,同时接缝多,热损失大,能源浪费严重,施工周期长,对城市交通影响大,工程造价高等问题。

经过近年来的应用证明,供热管道直埋敷设具有良好的社会效益和经济效益,优点如下:工程造价低;热损失小,节约能源;防腐、绝缘性能好、使用寿命长;占地少、施工快、有利于环境保护和减少施工扰民。因此,直埋方式已成为供热管道最普遍采用的敷设方式。

同架空敷设、地沟敷设供热管道一样,直埋供热管道上设置固定支墩,其目的同样是限制管道轴向位移。固定支墩一般为钢筋混凝土结构。

1 固定支墩形状及间距

固定支墩形状通常采用长方体、倒“T”形体、箱式等,其中长方体、倒“T”形体固定支墩应用较多,箱式固定支墩和管道阀门小室、补偿小室、泄水排气小室等合用,以降低土建造价。

为了节约投资,固定支墩间距应尽可能的大,同时固定支墩间距必须满足下列条件:管道的热伸长量不得超过补偿器所允许的补偿量;管道因膨胀和其他作用而产生的推力,不得超过支墩所能承受的允许推力。

2 固定支墩设计

2.1 固定支墩受力荷载

固定支墩主要承受管道的热膨胀冷缩约束力、内压不平衡力和活动段位移产

消防管道支架设置的高度和间距

寸和型式应根据现场实际情况确定,支架上孔眼应采用钻床进行开孔,严禁使用电、气焊进行开孔。支架上孔眼的孔径比所穿螺栓直径大1~2mm为宜;支架上飞边毛刺要及时打磨掉,其端头要进行倒角处理。 支架上焊缝要饱满且无夹渣,除埋入砼中的部分外,应及时刷防锈漆做好防护处理。 支架安装时,成排支架一定要先放线后安装,并确保同层支架高度一致。立管支架一般要求以1.5~1.8m为宜。层高5m以上,平均设置两个管卡。 对干、立管支架安装定位,应考虑布置美观,管道支架的最大间距应符合下表的要求。 公称直径(mm) DN25 DN32 DN40 DN50 DN80 DN100 DN150 支架最大间距(m) 保温管道2.0 2.5 3.0 3.0 4.0 4.5 6.0 不保温管道3.5 4.0 4.5 5.0 6.0 6.5 8.0 管道支架在梁上安装时,膨胀螺栓位置应处于梁的中线以上,这样可以使管道对梁的外力,不落在梁弯矩最大的地方,管子与支架抱箍必须牢固美观,且接触紧密. 其实算支架是个施工经验活,管道不同的连接方式、不同的安装位置那么支架的样式会不同,安装间距也不同。 1、支架的样式:支架主要的样式有"门"型或“U”支架,也叫防晃支架(多用在DN100及以上的管径)、“L”型或“角尺”支架(多用在小管径及贴墙立管上)。

2、支架的间距:支架的最大间距是有规范的,这个你可以百度的,但实际安装时支架间距比规范要小,法兰连接、螺纹连接时的支架间距要比沟槽连接时大。以消防中最常见的沟槽为例:DN65~DN150的支架间距一般在4~4.5米左右(支架间距设置时跟梁的间跨有关,因支架经常贴梁边安装),DN25~DN50的支架间距一般在3~3.5米左右。 3、支架的选材:单根DN100、单根DN150的管道一般会选5#角钢或5#槽钢或6#槽钢;两根共用支架时会选8#或10#槽钢;三根管共用时会选10#或12#槽钢;DN50~DN80在喷淋中用量较小,DN65在消火栓中用量较多,一般按5#角钢考虑;DN25~DN40一般按3#或4#角钢考虑。 4、支架计算:支架计算时吊臂长度的确实是关键,所以要确定管道标高与楼板底标高(因消防管一般按贴梁底安装考虑,所以梁高很关键),一般地下室支架吊臂较长,楼层内稍短。 所以喷淋管支架大致估算:150 100 管按5#槽钢间距4.5米,“U”型支架,单个支架用材1.5米计,80 65 50 管按5#角钢间距4.5米,“U”型支架,单个支架用材1.5米计,40 32 25管按4#角钢间距3.5米,“L”型支架,单个支架用材1.2米

采暖固定支架及补偿器

快速设计热水采暖系统固定支架和补偿器 简介:对设计中经常遇到的热水(95/70℃)采暖系统的固定支架和管道补偿器的设计计算和设置问题进行了 归纳总结,给出了具体设计方法和实例。 关键字:热水采暖固定支架补偿器 1 引言 固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之 处,望各位指正。 2 设计计算 系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径 已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补

直埋供热管道设计

热水直埋供热管网的设计 天津市热电设计院 李春庆 1 概述: 国内外直埋技术的发展已有60余年的历史,由于直埋管道具有不影响环境美化、施工简便、工期短、维修工作量少的特点,因此特别是近三十年来热水供热管道直埋敷设发展迅速,相应形成了一整套直埋敷设的设计原理和计算方法。80年代初,我国首次在一些城市的热网工程中采用从北欧国家引进的直埋保温管进行直埋敷设,经历了二十年的发展,无论在预制保温管的生产和安装技术上,还是在直埋供热管网的设计理论和方法上,我国的供热管道直埋技术都得到了飞速发展,直埋敷设现已成为我国城市热网的主要敷设方式。 早在70年代,北京煤气热力设计研究院就将当时已应用于火力发电厂汽水管道上的应力分类法推广到直埋供热管网上,其最显著的特点是对温度应力采用安定性分析,这样,直管段通常可采用既不预热也不补偿的无补偿冷安装方式。然而,在80年代中,我国很多的直埋供热管网使用的都是从北欧引进的预制保温管,这样,很多设计单位也相应地采用了北欧的弹性分析法进行直埋管网设计。采用弹性分析时,为保证管道始终处于弹性状态,直管段通常要采用设置补偿装置、预热或设置一次性补偿器的安装方式。进入90年代,多年的直埋热网运行经验,让我国大多数设计人员认识到,在直管段对温度应力采用弹性分析的确过于保守,越来越多的设计人员开始应力分类法进行直埋管道的强度设计。此时,北欧也已意识到这一点,1993年版的《ABB供热手册》中介绍了一种管道应力已超过弹性范围的冷安装方式,接着在1996年版的欧洲标准《区域供热整体式预制保温管的设计、计算和安装》和1997年为解释该标准而出版的《集中供热手册》中则明确地提出应力分类法。 1999年,在唐山市热力公司、北京市煤气热力设计研究院、哈尔滨建筑大学和沈阳市热力设计研究院等单位的努力下,历经六年的国家行业标准《城镇直埋供热管道工程技术规程》(CJJ/T81-98)颁布实施,标准明确规定了采用应力分类法进行直埋热力管道的强度设计,标准的颁布也标志着我国直埋管道设计理论进入了国际先进水平。但目前国内《规程》中所给定的管道受力等计算图表中数据均限制管径在DN500以下。然而随着我国供热事业的飞速发展,规程适用范围已不能满足实际热网的需要,城市热网

管道支架制作安装标准规范-管道支架规范

管道支架制作安装标准规范 一、编制说明 管道安装在机电安装工程中占较大的比重,而管道支架的制安在管道安装中扮演着主要的角色,它直接关系到管道的承重流向及观感。目前各实施项目中制安的各种管道支架,各有特点,但也暴露出不少缺点,而且有些支吊架不但影响观感,更存在着安全隐患,为了消除管道支吊架存在的各种隐患,使管道支吊架制安达到较高水平,特制定机电公司管道支吊架的统一标准做法,目的使在机电公司的管道支架制安达到标准化,统一化。 二、角钢类支吊架的制安 1、倒吊式: 倒吊式支吊架材料适用表 吊架钢材适用管道倒吊钢板膨胀螺栓 L30×30≤DN25δ=6 100×100M8×80 L40×40DN32~DN50δ=8 110×110M10×85 2、龙门式

龙门式支吊架材料适用表 支架型材适用管道倒吊钢板膨胀螺栓L30×30≤DN25~DN40δ=6 100×100M8×80 L40×40DN50~DN150δ=8 110×110M10×85 3、单支角钢支架 单支角钢式支吊架材料适用表 支架型材适用管道膨胀螺栓备注 30 5~10 (根据角钢大小而 选定,其余倒角类 同。)

L30×30≤DN25M8×80适用于Ⅰ型L40×40DN32~DN80M10×85适用于Ⅰ型L50×50DN100~DN150M12×100适用于ⅠL30×30DN25~DN50M8×80适用于ⅡL40×40DN60~DN150M10×85适用于Ⅱ4、水平式支架 I型:水平龙门式 20-30 Ⅱ型:水平单支角钢组合式 (两角钢距离可根据 水平长度移动准确后 焊接。) 水平式支架材料适用表

直埋管道固定墩设置探究

直埋管道固定墩设置探究 摘要: 管道固定墩计算结果通常非常惊人,管线固定墩的推力动辄几十吨,固定墩的尺寸也到了数米的程度。如此巨大的固定墩消耗了相当多的混凝土,并且增加了巨大的施工难度。如何更准确的计算固定墩的实际所需推力,并减少固定墩的尺寸及安装空间,无疑是一个需要探讨的课题。 关键词:固定墩;推力;伸长量;少量位移 1 概述 当管道因温度变化发生热胀冷缩是,若管线受到约束,管线内便产生热应力。为保护管道与管接头、管道弯头、及其他一些附件正常安全工作,就必须在管道上设置固定墩以限制管段的位移在允许的范围之内。管道固定墩计算结果通常非常惊人,管线固定墩的推力动辄几十吨,固定墩的尺寸也到了数米的程度。如此巨大的固定墩消耗了相当多的混凝土,并且增加了巨大的施工难度。如何的计算固定墩的实际所需推力,并减少固定墩的尺寸及安装空间,无疑是一个需要探讨的课题。 2 工程实例 在直罗~富县原油插输工程中,输油管道规格为Φ163×5.6(6.3)PSL2 B级钢管,40mm厚泡沫黄夹克保温,总长度92.88km,沿线多为山地、河谷等。管道共设有80余个固定墩,分别设于管道出土段、穿跨越等处。管道运行温度为60℃,安装温度为20℃,温差为40℃。固定墩设计推力为5t,单个固定墩尺寸为1.4m×1.5m×1.2m,消耗混凝土约2.5m3。 通常,固定墩的计算公式为: N=FEαΔT 式中F——管壁截面积(m2); E——管材弹性模量(Pa),一般取2.06×1011Pa; α——管材线膨胀系数(cm/cm·℃),钢管为1.2×10-5/℃; ΔT——安装温度和运行温度差(℃)。 此计算结果仅考虑限制管线变形产生的应力,论计算推力很大。一般对固定支墩的推力为公式计算值乘一个折减系数。折减系数取1/2~1/3。 直罗~富县原油插输工程中,管道最高运行温度为60℃,安装温度为20℃,计算推力为30t。

热力管道支架间距与安装方式

1、热力管道固定支架的间距: 热力管道固定支架的最大允许跨距可按下表执行<地沟或架空敷设>: 注:上述形式支架中未规定的及其它形式的支架请按国家相关规范执行; 热力管道支架及波纹膨胀器 为了保证工程质量,规范热力管道支架及膨胀器的制作、安装,特对本公司热力管道中常用的管道支架和膨胀器的制作、安装作如下规定: 一、滑动导向支架: 滑动导向支架用于只允许有轴向位移的场合,其对水平摩擦力无严格限制。安装参考图如下:

1、当管道DN<100时,钢板A=6mm<厚>; B=8mm<厚>; C:角钢L40X40X5; 2、当管道200≥DN≥100时,钢板A=8~10mm<厚>; B=8~10mm<厚>; C:角钢L50X50X6; 3、当管道300≥DN>200时,钢板A=10~12mm<厚>; B=10~12mm<厚>; C:角钢L63X63X8 4、当管道400≥DN>300时,钢板A=10~12mm<厚>;B=12~14mm<厚>;C:角钢L63X63X10 5、H视管道保温厚度定为:50~150mm; 6、E视管道膨胀量定为:200~300mm;

7、热力管道滑动导向支架安装时,管托中心应向管道膨胀方向相反的方向偏移1/2位移量<与管架中心距>;见附图 8、支架采用焊接制作,其中:管托与管道间满焊<注意:管托与管架间不许点焊>级指示 9、支架在管道中安装时应严禁在距离支架50mm以内的管道上设置焊口。 10、管架制作安装完后,涂二道防锈底漆,二道面漆; 二、滑动支架: 滑动支架属活动支架中的一种,用于承受管道垂直荷载并允许有水平位 移,其对水平摩擦力无严格限制。 1、各材料规格、要求可按照上述滑动导向支架中的规定。 2、其安装参考图与上述滑动导向支架相同,仅没有其中的导向角钢C。 三、固定支架: 固定支架用于管道不允许有任何位移的的场合;

《城镇直埋供热管道工程技术规范》

1 总则 1.O.1为统一我国城镇直埋供热管道工程的设计、施工及验收标准,促进直埋管道技术的发展和推广,制定本规程。1.O.2本规程适用于供热介质温度小于或等于150℃、公称直径小于或等于DN500mm的钢制内管、保温层、保护外壳结合为一体的预制保温直埋热水管道。 1.O.3在地震、湿陷性黄土、膨胀土等地区应遵守《室外给水排水和煤气热力工程抗震设计规范》(GB50032)、《湿陷性黄土地区建筑规范》(GBJ25)、《膨胀土地区建筑地基技术规范》(GBJ112)的规定。 1.O.4直埋供热管道工程设计、施工和验收除应符合本规程外,尚应符合《城市热力网设计规范》(CJJ34)、《城市供热管网工程施工及验收规范》(C J J28)等国家现行有关标准的规定。

2术语和符号 2.1术语 2.1.1 屈服温差temperature difference of yielding 管道在伸缩完全受阻的工作状态下,钢管管壁开始屈服时的工作温度与安装温度之差。 2.1.2固定点fixpoint 管道上采用强制固定措施不能发生位移的点。2.1.3活动端free end 管道上安装套筒、波纹管、弯管等能补偿热位移的部位。2.1.4锚固点natural fixpoint 管道温度变化时,直埋直线管道产生热位移管段和不产生热位移管段的自然分界点。 2.1.5 驻点 stagnation point 两侧为活动端的直埋直线管段,当管道温度变化且全线管道产生朝向两端或背向两端的热位移,管段中位移为零的点。2.1.6锚固段fully restrained section 在管道温度发生变化时,不产生热位移的直埋管段。2.1.7过渡段partly restrained section 一端固定(指固定点或驻点或锚固点),另一端为活动端,当管道温度变化时,能产生热位移的直埋管段。2.1.8单长摩擦力friction of unit lengthwise pipeline 沿管道轴线方向单位长度保温外壳与土壤的摩擦力。2.1.9过渡段最小长度m i n i m u m f r i c t i o n l e n g t h 直埋管道第一次升温到工作循环最高温度时受最大单长摩擦力作用形成的由锚固点至活动端的管段长度。2.1.10过渡段最大长度maxi mum fr icti on lengt h

直埋热力管道的强度设计计算

直埋热力管道的强度设计计算 【摘要】本论文以管道直埋技能的概述为分析对象,并对直埋供热管道的效果及应力特色进行了阐述,结合该实际情况,对直埋热力管道的强度设计计算进行了探讨。 【关键词】直埋,热力管道,强度设计 一、前言 随着当今施工水平的不断提高,生产和生活中对施工过程以及施工质量的要求也日益渐高。因此,积极采用科学的方法,不断完善直埋热力管道的强度设计计算就成为管道施工中十分紧迫的问题。 二、管道直埋技能的概述 管道直埋技能通常优于有沟埋敷,当前已运用于供热、输油等工程范畴。关于这类疑问,经过数值办法处置,过于杂乱。实践运用中假定保温层外表面温度均匀散布,这样就简化为单层域复连通疑问,该疑问已有解析解。事实上,保温层外表面温度是不均匀散布的。这些年在研讨保温层准静态热力损害以及管道强度和安稳性,剖析埋设区土壤的冻融状况和土壤的热物性改变等许多技能疑问都需求对直埋管道保温层及其土壤邻域的温度场和热流密度进行较精确的剖析,前述简化办法必定致使温度场核算欠精确,以致不能满意后继演算的需求。 三、直埋供热管道的效果及应力特色 所有使管道发生内力及应力的要素都称为效果(又称荷载)。不一样类型的效果,使管道发生不一样性质的应力,进一步能够致使不一样办法的损坏。温度和压力是热力管道上最主要的两种效果。关于直埋管道,还有轴向位移发生的土壤轴向摩擦力和侧向位移发生的土壤侧向紧缩反力。别的,在管道有些布局不连续处会发生应力会集,对应的应力称为峰值应力。峰值应力不会致使明显的变形.但循环改变的峰值应力,也会构成钢管内部布局的损害,致使管道疲惫损坏。因为土壤的均匀支撑,管道的自重没有发生自重弯曲应力,故通常忽略不计。可是关于热网中常用的管道,其公称壁厚要远远大于该压力所需的规划壁厚,内压发生的实践应力也就远远小于管材的屈服应力。相反,因为管道中热胀变形不能彻底开释,使管道发生了较大的轴向压力和压应力,其间轴向压应力能够与屈服应力处于同一数量级上。因而,在直埋敷设热力管道中,内压的影响较小,管道发生爆裂的能够性很小,而温度的影响则较大,管道强度规划中应主要思考温度改变发生的循环塑性变形和疲惫损坏。 四、直埋热力管道的强度设计计算 1、直埋供热管道热力核算

直埋管道固定墩设置探究

直埋管道固定墩设置探究 1 概述 当管道因温度变化发生热胀冷缩是,若管线受到约束,管线内便产生热应力。为保护管道与管接头、管道弯头、及其他一些附件正常安全工作,就必须在管道上设置固定墩以限制管段的位移在允许的范围之内。管道固定墩计算结果通常非常惊人,管线固定墩的推力动辄几十吨,固定墩的尺寸也到了数米的程度。如此巨大的固定墩消耗了相当多的混凝土,并且增加了巨大的施工难度。如何的计算固定墩的实际所需推力,并减少固定墩的尺寸及安装空间,无疑是一个需要探讨的课题。 2 工程实例 在直罗~富县原油插输工程中,输油管道规格为Φ163×5.6(6.3)PSL2 B级钢管,40mm厚泡沫黄夹克保温,总长度92.88km,沿线多为山地、河谷等。管道共设有80余个固定墩,分别设于管道出土段、穿跨越等处。管道运行温度为60℃,安装温度为20℃,温差为40℃。固定墩设计推力为5t,单个固定墩尺寸为1.4m×1.5m×1.2m,消耗混凝土约2.5m3。 通常,固定墩的计算公式为: N=FEαΔT 式中F——管壁截面积(m2); E——管材弹性模量(Pa),一般取2.06×1011Pa; α——管材线膨胀系数(cm/cm·℃),钢管为1.2×10-5/℃; ΔT——安装温度和运行温度差(℃)。 此计算结果仅考虑限制管线变形产生的应力,论计算推力很大。一般对固定支墩的推力为公式计算值乘一个折减系数。折减系数取1/2~1/3。 直罗~富县原油插输工程中,管道最高运行温度为60℃,安装温度为20℃,计算推力为30t。 实际需要的推力可能要远小于计算推力,是因为: (1)固定支墩不能绝对固定,稍有位移将使推力减小。 (2)埋地弯头或管道的出土段的弯头处都有土壤反力的作用,它与推力方向相反,因此使推力减小。土壤对弯头的推力与弯头位移、土壤性质和夯实程度等有关,难以精确计算。 3 管道的伸长量 管道埋于土壤中,伸长或者收缩受到土壤摩擦力的作用。摩擦的阻力的大小与管线的长度成正比,当管线达到一定长度是,摩擦阻力将平衡温度应力引起的轴向力,管

城市热力管道固定支架的设计

快速设计热水采暖系统固定支架和补偿器 本站收集2007-07-20 17:28:46 相关网站 快速设计热水采暖系统固定支架和补偿器1 引言固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之处,望各位指正。 2 设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △ X=0.012(t1-t2)L △ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 [img]/jzlt/UploadFiles_9990/200610/200610816595942.gif[/img](2 ) 2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z” 型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 2.5 3 3.5 4 5 5.5 6 6 2.3 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应用广泛。设计时可以根据工程具体情况选用。 3 例题[已知] 如图1所示,某民用建筑95/70℃热媒供热管道a-b段长度为32m,b-c段长度为24m,c-d段长度为63m,d-e段长度为48m,管径如图所示。 [求] 计算管道热伸长量,设置补偿器和固定支架。 [解] 首先按照公式(2)计算可得 a-b段管道热伸长量=38.4mm b-c段管道热伸长量=28.8mm c-d段管道热伸长量=75.6mm d-e段管道热伸长量=57.6mm

一定要真正理解供热管道直埋敷设方式分为有补偿直埋敷设

一、在设计和施工中,一定要真正理解供热管道直埋敷设方式分为有补偿直埋敷设 及无补偿直埋敷设两种方式,确实掌握两种方式各自的工作原理,特点及其应用场合,以便在设计上合理选用,施工上安全、可靠、经济。 1、首先要掌握概念:有补偿直埋敷设方式,是通过管线自然补偿和补偿器(如方形和波纹管补偿器)来解决管道热伸长量的,从而使热应力为最小;无补偿直埋敷设,简单地说就是管道在受热时没有任何补偿措施,而是靠管材本身强度来吸收热应力。 2 无补偿敷设方式的基本原理:在安装管道时,首先给管道加热到一定温度,然后将管道焊接固定,当管道恢复到安装温度时(温度降低),管道预先承受了一定的拉应力。当管道通热工作时,随着温度的升高,管道应力为零,当继续升温时,管道的压应力增加,当温度升到工作温度时,管道的压应力 (热应力)仍小于许用应力。这样,管道可以不用补偿装置而正常工作了。这种无补偿方式应用第四强度理论,施工时需要对管道预热,施工比较麻烦,但国内外已有大量工程实践,理论计算可靠,能确保安全。另一种无补偿方式是近几年由中国北京煤气热力设计院提出的计算方法和应力分类采用安定性分 析,应用第三强度理论。这种方式充分发挥钢材塑性潜力,施工方便,无需预热。 3 两种敷设埋设深度考虑不同因素。高密度聚乙烯外套管一是当确定采用有补偿直埋敷设方式时,埋设深度只考虑由于地面荷载的作用不会破坏管道的稳定便可,从经济、施工方便等方面考虑。当采用有补偿直埋敷设方式时,尽量浅埋,一般覆土厚度大于0.6米即可,且与管径大小无关。二是当采用无补偿直埋敷设方式时,埋设深度要考虑管道的稳定要求,稳定性当采用不预热的无补偿直埋敷设管道时,主要与覆土厚度有关,一般比有补偿埋得深, 行,覆土厚度应与管径大小成正比。 4 设计中究竟采用无补偿敷设还是有补偿敷设方式,原则是直管道较长,中间分支较少,供热介质不超过100℃时,应优先选用无补偿敷设方式,否则,应考虑有补偿敷设方式。具体的热网主干线应采用无补偿敷设方式,而分支庭院管网则应采用有补偿敷设方式,但目前有的设计者偏爱有补偿敷设,应提倡优化设计。二、施工前必须对生产高温预制直埋保温管的厂家进行调研,进场后认真进行检验,对不合格的保温管拒绝使用。三、在直埋管道施工中,焊接是一项保证工程质量的关键工作。管道施 工 1 必须是取得合格证书的焊工,方可在合格证书准许的范围内施焊,没有合格证书的焊工绝对不能参加焊接施工。 2 焊接管接头时,应做好工作坑,且应注意接头打坡口及接头焊接质量。四、固定支架,各种井室的施工质量直接影响工程质量和管道的使用寿命,如井室防水不好,将使部件因浸水遭到破坏。 因此,应认真施工,确保施工质量。五、必须重视直埋管管道的打压,在满足打压条件下,首先进行灌水排净空气,然后分两步做: 1 强度试验:把管道内的压力升至工作压力的1.5倍后,在稳压10分内无渗漏。 2 严密性试验:把管内的压力降至工作压力时,用1kg的小锤在焊缝周围对焊缝逐个进行敲打检

管道及支架技术规范模板

1 管道及支架 1. 总则 1.1 说明本章说明给水及排水系统的管道及其它设备的规格和安 装所需的各项技术要求。 1.2 一般要求 1.2.1所有送达工地的管道均应为全新的, 并带有色带、标识 以利辩认不同的等级; 1.2.2所有管道应按施工图纸安装; 1.2.3管道接头不应藏在墙身或地板之内; 1.2.4管道应借管套越过墙壁、地台。若管道所穿越之结构需 要防水密封时, 须用铸铁防水法兰管套接驳; 1.2.5配合施工进度提交所有有关管道的安装资料; 1.2.6所有跨越楼宇伸缩缝的管道必须采用波纹伸缩器连接 1.2.7在安装需配合吊顶时, 承包单位须负责调整管道的高低 使符合吊顶高度, 费用由承包单位承担。若管道须早于 吊顶安装时, 承包单位应预先获得顾问工程师发出预定 高度的指令后方可进行; 1.2.8所有管道如装设于室内如有结露的可能, 必须提供保温 材料; 1.2.9任何情况下, 镀锌钢管不得采用焊接方法。 1.3 质量保证

3.1.1.1所有管道装配人员和设备安装人员均应具有在 本行业中至少三年以上有关的工作经验; 3.1.1.2所有供本工程使用的管道和配件均应符合 国标、BS、ASTM、JIS、DIN、ISO 及凯悦国际的标准要求; 3.1.1.3所有烧焊技工必须具备由有关政府机关签发的 有效上岗证书。 1.4 资料呈审 4.1.1.1提交管道支架和固定支架详图供审批; 4.1.1.2提交管道测试和清洁净化程序供审批; 4.1.1.3在测试和投入运行之后须提交完整的测试报 告。 2.产品 4.1.2 管道工程材料 4.121除特别的注明外,给水系统管道规格应符 合下列的要求,而材料标准见设备材料一 览表:

城市直埋式供热管道固定墩的结构设计浅析

城市直埋式供热管道固定墩的结构设计浅析 1、城镇供热管道设计 1.1直埋供热管道的应力 无论多大的直径埋管道,管道内部压力产生的压力主要是管介质和管道轴向摩擦当土壤的轴向位移,和管土的侧向位移横向压缩反应。压力产生的内部压力和土壤侧向压缩反应引起的二次应力计算方法根据现有“城”的直埋供热管道工程技术规范(CJJ / t81 - 98)计算,但现有的土压力引起的轴向摩擦“纪律”忽略管道本身重量的影响,这在小直接埋管道强度计算是没有问题,但是对于大直埋管道由于管道本身自重大,当发生管道轴向位移时,由自重产生的管道和土壤之间的摩擦不应被忽视。 1.2过渡段长度计算 当补偿装置的两端直接管间距大于过渡段的长度限制(最大长度的摩擦)两次,可以形成两个(自然)锚点之间的无偿部分(自然锚固段);当补偿设备间距小于或等于两次过渡段的长度,由一个静止的点分为两个过渡段(补偿)。没有补偿直埋敷设方式冷安装条件: 根据弹性理论分析(1.35σeq[美国])或更低,只要温差不大于弹性安装温差,直管道直埋敷设方式不允许安装补偿器和无偿,管道在弹性状态下运行。换句话说,当安装一个温差大于弹性温差,直部分中不允许存在锚定,必须安装补偿器,设置补偿器的最大间距是管存在过渡段的锚固长度的两倍。过渡段长度可以根据现有的停滞时期在单轴应力和摩擦。 弹性温度(58.0 ~ 67.4℃)和管道工作压力(1.0 ~ 2.5 Mpa),公称直径(dn40 - 1000)。采暖管道安装温度计算在10℃,供水温度的设计一般都大于80℃,温度低于80℃,因此,无论第二网络,直接埋管供水管道必须安装补偿装置、回水管可以考虑无偿。 根据弹塑性理论分析(σeq 3(σ)或更少),等效应力小于屈服极限的两倍,引入安全系数后,取而代之的是容许应力的3倍。基于弹性稳定性分析的温度(121.0 ~ 149.3℃)也增加了许多,这样,即使水温高达140℃,采用直线冷段和安装没有补偿直埋敷设方式。然而,由于高应力检查值,需要三通,弯头等应力集中在本地配件在必要的加强措施。基于弹塑性理论分析,类似于弹性理论,在安装温

2019-2020年火力发电厂管道支吊架验收规程.doc

火力发电厂管道支吊架验收规程 DL/T 1113—2009 1范围 本标准规定了管道支架制造与安装质量要求、检验方法和验收要求。 本标准适用于火力发电厂管道及核电厂非核级管道支吊架的检验与验收,也适用于火力场设备用支吊架的检验与验收。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T197 普通螺纹公差 GB/T1239.2 冷卷圆柱螺旋弹簧技术条件 GB/T1239.4 热卷圆柱螺旋弹簧技术条件 GB/T1804 一般公差未注公差的线性和角度尺寸的公差 GB/T2516 普通螺纹极限偏差 GB/T5267.1 紧固件电镀层 GB/T9799金属覆盖层钢铁上的锌电镀层 GB/T12361——2003 钢质膜锻件通用技术条件 GB/T13912 金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法 DL/T616 火力发电厂汽水管道与支吊架维修调整导则 DL/T675电力工业无损检验人员资格考核规则 DL/T678电站钢结构焊接通用技术条件 DL/T752火力发电厂异种钢焊接技术规程 DL/T819火力发电厂焊接热处理技术规程 DL/T869——2004火力发电厂焊接技术规程 DL/T931 电力行业理化检验人员资格考试规则

JB/T4730.4——2005 JB/T4730.5——2005 3. 术语和定义 下列术语和定义适用于本标准。 3 1 管道支吊架pipe support and hanger 用以承受管道蘅裁、控制管邋位移和振动,并将管道旃载传递到承载建筑结构上的各种组件或装置。一般由管部、功能件、连接件和根部组成。 3.2 管部pipe attachment 管道连接部件的简称。它是与管道或其绝热麒直接相连的部件,常见的有管夹、管卡、管废、焊接吊板等。 3.3 功能件functional part 实现各种类型支吊架功能的部件或组件,常见的有恒力支吊架、变力弹簧支吊架、刚性支吊架、弹簧减振器、液压阻尼器等。 3.4 连接件 connection part 管道支吊架中间连接部件的简称.它是用以连接管部与功能件、管部与根部、功能件与根部以及自身相互连接的部件,常见的有螺纹吊杆、花篮螺母、环形耳子、U形耳子、吊板等。 3.5 根部structural attachment 管道支吊架生根部件的简称。它是支吊装置与承载结构直接连接的部件,包括悬臂粱、简支粱、三脚架等辅助钢结构。 3.6 恒力支吊架constant support hanger

直埋供热管道设计浅析

直埋供热管道设计浅析 发表时间:2018-02-11T14:33:29.480Z 来源:《建筑学研究前沿》2017年第28期作者:刘欣 [导读] 随着《城镇直埋供热管道工程技术规程》(以下简称为规程)的发布,技术已经很成熟,实际运用也越来越广泛。鹤壁市淇滨热力有限公司河南鹤壁 458030 摘要:直埋供热管道的设计要按照《城镇直埋供热管道工程技术规程》的条文规定来执行。本文简要的分析了直埋供热管道的设计、施工,以供参考。 关键词:直埋;供热管道;设计 1设备安装、材料说明 近年来,在供热外网工程中普遍采用直埋供热管道,直埋敷设方法同传统的地沟敷设方法相比具有占地少、施工周期短、维护量小、寿命长等诸多优点,近些年来预制保温管施工技术也有了很大的发展,已颁布的《城镇直埋供热管道工程技术规程》标志着直埋技术在我国已经趋于成熟,因此,在供热管道的施工中,直埋敷设越来越多地被采用。 (1)供热管线采用钢管,外管道连接均采用焊管;阀门与管材采用法兰连接。材料供应方式:主材及配件均由业主供应,施工单位只负责安装。 (2)材料进场:进场的所有材料均分类堆放整齐。钢管、水泥,底部均设垫木,砂石料底部进行平整后铺垫红砖,配件及零星材料均堆放在库房的架了上,对场地精心布局、合理使用,材料现场应保持清洁,归类整齐,并有排水设施,为保持现场环境清洁,所有拉运材料的车辆均加以覆盖,避免在置办期间管道内进入杂物,造成施工完毕后清扫不便,也避免了抛撒和爆灰,影响当地居民的正常生活。2材料设备验收 管材、管件及设备运至现场后,必须由材料员(质检员配合)逐根、逐件的检查外保温层、防腐层及管口椭圆度、壁厚等质量指标并做好标记记录,检验记录包括验收项目,标准、结果、检验人和检验日期,不合格品不准使用。管材管件设备进场后,应备有合格证、材质单无产品合格证的不能接收。 3管材的运输与储存 供热管材管件均有规格、生产厂的厂名和执行的标准号,在管件上有明显的商标和规格,并符合 GB/T29047-2012 标准的规定,管材管件具体要求指标如下:管材应水平堆放在平整的地面上,不得不规则堆放。当用支垫物支垫时,支垫宽度不得小于75mm,其间距不得大于 1m,外悬的端部不宜大于500mm。管材储存时,摆放应平整,撂放高度不超过2米。管材在运输时及装卸过程中,禁止剧烈撞击抛掷。管材运输时,管与管之间需留有一定的间隙,层与层之间用垫木隔开,并且高度不超过2米。在管材运输过程中,保证管壁不受损伤前提下不同直径的管材允许套装。管材与管件在运输、装卸和搬运时应采用不小于50mm的吊装带轻放,不得抛、摔、拖。4《城镇直埋供热管道工程技术规程》规程适用条件 《城镇直埋供热管道工程技术规程》适用于供热介质温度≤150℃、公称直径≤DN500的钢制内管、保温层、保护外壳结合为一体的预制保温直埋热水管道。这里对适用条件提出了两个界限,即温度界限和管径界限。在规程总则的条文说明中给出了详细的解释,温度条件是设计热网经济性和安全性的重要参数,针对的是预制保温管的保温材料耐温能力、使用寿命,另外根据现有理论在强度方面这个温度也是安全的;采用管径界限是因为规程中在强度计算、管道热伸长计算中对荷载做了简化,对小管径误差不大,对大管径而言计算结果会有较大偏差,是不安全的。在使用本规程时必须满足其适用条件。 5直埋敷设方式 直埋敷设分有补偿敷设和无补偿敷设两种。无补偿敷设具有投资省、工期短和施工简便的优点;有补偿敷设相对于无补偿敷设来说,投资较大、占地较多、工期较长、施工较复杂。因此在满足管网安全的前提下,要优先采用无补偿敷设方式,近几年来在工程实践中应用的越来越多。 6管网的布置与敷设 在确定了各单体建筑的入口之后,结合管网综合图来布置管线,满足热力管道与其他管线的间距要求。管网的其他要求如管道覆土深度、排气泄水、分支管三通弯头的保护、阀门附件的要求等详见规程中的具体要求。 规程中明确提出,应力验算采用目前国内外先进的应力分类法。应力分类法是将管道上的应力分为一次应力、二次应力和峰值应力三类,并采用相应的应力验算条件。 一次应力:是由管道内压及持续外载产生的应力(力作用)。当应力达到甚至超过屈服极限时,管道将产生较大变形甚至破坏。这种应力是非自限性的,应力验算采用弹性分析或极限分析。 二次应力:是由于管道热胀冷缩等变形受约束而产生的应力(位移作用)。当部分材料超过屈服极限时,由于产生小量的塑性变形,变形协调得到满足,变形就不再继续发展。它具有自限的特点,采用安定性分析。 峰值应力:指管道或附件(如三通等)由于局部结构不连续或局部热应力效应而产生的应力增量。它的特点是不引起显著的变形,是一种导致疲劳裂纹或脆性破坏的可能原因,必须根据管道整个使用期限所受的循环荷载进行疲劳分析。但对低循环次数的供热管道,对在管道上出现峰值应力的三通、弯头等局部应力集中处,可采用简化公式,计入应力加强系数进行应力计算。在计算中,直埋供热管道的一次应力的当量应力不应大于钢材在计算温度下的基本许用应力;二次应力及一次应力的当量应力变化范围不应大于钢材在计算温度下基本许用应力的三倍;管道局部应力集中部位的一次应力、二次应力和峰值应力的当量应力变化幅度不应大于钢材在计算温度下基本许用应力的三倍。 根据安定性理论,当直管段的当量应力变化范围满足下列表达式的要求时,管系中允许有锚固段存在:бj=(1-v)бt-αE(t2-t1)≤3[б] 式中бj——内压、热胀应力的当量应力变化范围,MPa; v——钢材的泊松系数;

蒸汽管道直埋敷设设计的探讨

蒸汽管道直埋敷设设计的探讨 杨平修高远 摘要:探讨蒸汽管道直埋敷设和补偿、固定墩设置防滑移及倾覆、系统的排汽和疏水 关键词:蒸汽管道直埋敷设固定墩防滑移和倾覆排气和疏水 0.引言 蒸汽直埋管道敷设已被广泛的应用于城市热力网设计,下面笔者就设计、协助热力公司进行现场热力系统调试中,对蒸汽管道直埋敷设遇到的问题进行探讨。 在蒸汽直埋管道工程设计过程中,应根据热负荷的大小和发展情况,按照蒸汽的压力、温度和地形、土壤结构等因素进行设计计算、选择管材及保温结构,设置补偿器和控制阀门以及排汽阀、疏水阀,布置直埋管道固定支墩。 1.蒸汽管道直埋敷设和补偿 (1)蒸汽管道的直埋敷设 蒸汽管道直埋敷设主要为城市热力管网的热源管道,目前常用的预制直埋保温管最高运行温度为140℃,蒸汽压力小于0.3MPa。压力大于0.3MPa的蒸汽直埋保温管道,其保温应根据介质温度采用五层高温复式保温结构形式,由工作钢管向外分为硅酸铝减阻层、硅酸钙瓦高温隔热层、铝箔反射层、聚氨脂保温层及高密度聚乙烯保护层。其技术指标必须符合《高密度聚乙烯外护管聚氨脂泡沫塑料预制直埋保温管》CJ/T114的要求。蒸汽管道采用直埋敷设与传统的地沟敷设相比具有占地少、不需砌地沟、不需做防水工程、施工周期短等优点,在保证施工质量的前提下,直埋敷设在地下的蒸汽管道维护工作量小,直埋敷设的蒸汽管道使用寿命可达40~50年,而地沟敷设的蒸汽管道使用寿命仅20年。由于复合保温埋地蒸汽管各保温材料与管道紧密结合,没有缝隙,保护层也是严密的,加上土壤也起保温作用,减少热损失,节能效果好,很适合城市热力建设的需要。 (2)直埋蒸汽管道的补偿 埋地蒸汽管道分有补偿敷设和无补偿敷设两种,无补偿埋地管道适用距离较

地下有压管道支墩结构设计

地下有压管道支墩结构设计 摘要:在核电站工程中,在室外场地中存在大量直埋有压管道。这些管道在平、立面角度改变或管径改变处,由于内压力会产生外推力。外推力大小受管径、管道压力以及转角角度等因素影响。当外推力对管道产生破坏作用不能忽略时,需设置支墩来保证管道的安全。本文就支墩结构设计的受力状态做简要的分析。 关键词:支墩土压力地下水 受场地条件、工艺要求等因素限制,核电站室外场地管线布置错综复杂,同时支墩会受到场地条件限制,在设计时应具体问题具体分析。水平弯头、堵头以及水平三通对支墩产生水平方向的力;在改变管道标高的上弯或下弯管处,支墩除水平分力外,还有垂直向分力;当有支墩高度范围内有地下水的影响时,还应该考虑地下水的影响。 1、支墩水平受力状态 支墩的水平抗推力,主要由土压力,支墩和地面摩擦力FF组成。 支墩可以近似的看成挡土墙。根据现有的土力学理论,土压力根据挡土墙位移方向和墙后土体的受力状态,分为三种不同的土压力,即静止土压力P0、主动土压力Fa和被动土压力Fp。当挡土墙静止不动,土体处于弹性平衡状态时,土对墙的压力为静止土压力;当挡土墙向离开土体方向偏移至达到极限平衡状态时,土对墙的压力为主动土压力;当挡土墙向土体方向偏移至土体达到极限平衡状态时,土对墙的压力为为被动土压力。土压力和墙身位移的位移关系如图1所示。相同土体的情况下,被动土压力Fp大于主动土压力Fa,而被动土压力所需的位移δp大大超过了δa。 当管道对位移有严格要求时,支墩不允许产生位移,此时位移δ=0,支墩两侧均受到静止土压力P0,大小相等,方向相反。此时,水平抗推力为支墩和地面摩擦力FF。FF与支墩自重以及上部覆盖土的重力G以及支墩和地面的摩擦系数f有关。 当管道的水平力大于摩擦力FF时,支墩将向抗推力侧产生位移δ。在当位移δ为δa时,支墩迎推力侧的土体达到极限平衡状态,产生主动土压力Fa,而支墩抗推力侧位移尚未达到δp;当位移δ为δp时,支墩迎管道侧土体已经被破坏产生滑动面,抗推力侧土体达到极限平衡状态,产生被动土压力Fp。此时水平抗推力最大。 经相关研究,被动土压力的位移δp往往要达到2%~10%H(H为支墩高度)是才能产生被动土压力。当土体达到被动土压力时,位移δ可能已经远远大于管道接头设计允许值,故设计时应对被动土压力Fp乘以一个折减系数来进行折减,

直埋供热管道工程设计

直埋管断面布置尺寸参考(mm) 注:放坡角60°,或放坡比1:1.5。 弹性分析法直埋管过渡段长度(m)驻点轴向应力(kN)及热伸长量(mm) 注:工作压力1.6MPa、温差130℃,摩擦系数0.4,热胀系数12.6×10-6℃-1。

安定分析法直埋管过渡段长度(m)驻点轴向应力(kN)及热伸长量(mm) 注:工作压力1.6MPa、温差130℃,摩擦系数0.4,热胀系数12.6×10-6℃-1。 热水管网水力计算表

注:一次网(130℃/70℃,Kd=0.5mm,γ=958.4kg/m3) 热水管网允许流速(《城市供热手册》汤惠芬范季贤) 热水管网经济比压降(《城市供热手册》汤惠芬范季贤) 注:使用范围7~10km,设一级中继泵站时比压降取推荐值的1.2倍,设有两级时取1.4倍。 直埋热水管道工程设计 医药化工项目外管设计工作中,常会出现直埋热水管道的设计方案,针对该设计工作,综合规范、标准图集、论文、制造商等各渠道而来的技术资料、工程案例和经验,现做如下初步概括的总结和阐述: 直埋热力管道分为无补偿直埋敷设和有补偿直埋敷设。无补偿直埋敷设又可分为冷安装无补偿、预应力无补偿。预应力无补偿有分为机械拉伸、敞槽预热、一

次补偿等多种形式。预热方式又分为热水、热风和电热等。一般DN800以下的管道可设计为冷安装无补偿方式。 一、直埋管的稳定性验算 (1)整体稳定性分析:直埋管最小覆土深度应满足垂直稳定性要求,一般而言,大于DN700的直管道不必从垂直稳定性考虑限制其埋深。 (2)局部稳定性分析:公称直径不大于DN800、工作温差小于85℃时,不会出现局部失稳;当供水温度大于130℃、公称直径大于DN800时,采用标准壁厚的钢管,在锚固段可能会出现局部皱结。 二、直埋管的强度验算 无补偿管段强度验算有两种强度验算理论:弹性分析法(第四强度理论)和安定分析法(弹塑性分析,第三强度理论)。 直埋管的安定条件判断,根据应变大小可分为不发生任何塑性变形 (△ε≤2εs,|ε|<εs,安定状态)、发生有限塑性变形(△ε≤2εs,|ε|>εs安定状态),发生循环塑性变形(△ε>2εs,不安定状态) (1)极限分析:为防止管道出现塑性流动,必须保证一次应力小于屈服极限σs。考虑安全因素后,设计应保证一次应力不大于许用应力[σ]。 (2)安定分析:为使管道处于安定,必须保证一次应力(工作压力产生的内力,包括轴向应力和环向应力)与二次应力(热应力,升温产生轴向压应力,降温产生轴向拉应力)共同作用下当量应力变化范围小于2倍屈服极限σs。考虑安全因素后,用抗拉强度σb代替2σs。管道安定条件:当量应力变化范围不大于 3[σ]。

相关文档