文档库 最新最全的文档下载
当前位置:文档库 › 二次函数与几何综合面积问题(供参考)

二次函数与几何综合面积问题(供参考)

二次函数与几何综合面积问题(供参考)
二次函数与几何综合面积问题(供参考)

1文档来源为:从网络收集整理.word

二次函数与几何综合--面积问题

? 知识点睛

1.“函数与几何综合”问题的处理原则:_________________,__________________.

2.研究背景图形:

①研究函数表达式.二次函数关注

____________,一次函数关注__________.

② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型

①割补求面积——铅垂法: ②转化法——借助平行线转化:

若S △ABP =S △ABQ , 若S △ABP =S △ABQ , 当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时,

PQ ∥AB .

AB 平分PQ .

x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC . (1)求抛物线的解析式.

(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形

【思路分析】

读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式.

再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】

解:(1)由2

23y ax ax a =+-

可知(30)A -,

,(10)B ,, ∵OA OC =,

∴(03)C -,

, 将(03)C -,

代入2

23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】

(1)整合信息,分析特征:

由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3

注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP . 【过程示范】

如图,过点P 作PQ ∥y 轴,交AC 于点Q ,易得:3AC l y x =--

2文档来源为:从网络收集整理.word

设点P 的横坐标为t ,则2

(23)P t t t +-,

, ∵PQ ∥y 轴, ∴(3)Q t t --,,

∴223(23)3(30)Q P PQ y y t t t t t t =-=---+-=---<<, ∴2139

()(30)222

ACP C A S PQ x x t t t =?-=---<<△ ∵3

02

-

<, ∴抛物线开口向下,且对称轴为直线32

t =-, ∴当32t =-

时,ACP S △最大,为278

. 第三问:平行四边形的存在性 【思路分析】 分析不变特征:

以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素:

要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线. 画图求解:

先根据平行四边形的判定来确定EF 和AB 之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.

①AB 作为边时,依据平行四边形的判定,需满足EF ∥AB 且EF =AB ,要找EF ,可借助平移.点E 在对称轴上,沿直线容易平移,故将线段AB 拿出来沿对称轴上下方向平移,确保点E 在对称轴上,来找抛物线上的点F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E 点坐标,利用平行且相等表达抛物线上F 点坐标,代入抛物线解析式求解. ②AB 作为对角线时,依据平行四边形的判定,需满足AB ,EF 互相平分,先找到定线段AB 的中点,在旋转过程中找到EF 恰好被AB 中点平分的位置,因为E 和AB 中点都在抛物线对称轴上,说明EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F 点坐标. 结果验证:

画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】

(3)①当AB 为边时,AB ∥EF 且AB =EF , 如图所示,设E 点坐标为(-1,m ),

当四边形是□ABFE 时,由(30)A -,

,(10)B ,可知,F 1(3代入抛物线解析式,可得,m =12, ∴F 1(3,12);

当四边形是□ABEF 时,

由(30)A -,

,(10)B ,可知,F 2(-5,m )可得,m =12,

圆与二次函数难度题(含答案)

水尾中学中考专项训练(压轴题)答案 1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长. 解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形 ∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90° ∴∠DCF =30°,∴DF = 1 2 CD =3,CF =3DF =3 ∴BF =BC +CF =1+3=4 ∴BD = BF 2 +DF 2 = 16+3 =19 ∵AC =23,BC =1,∴AB = AC 2 +BC 2 = 13 ∵BE +DE =BD ,∴AB 2 -AE 2 + AD 2 -AE 2 =BD 即 13-AE 2 + 12-AE 2 =19 ∴13-AE 2 =19- 12-AE 2 两边平方得:13-AE 2=19+12-AE 2-2 19(12-AE 2 ) 整理得:19(12-AE 2 ) =9,解得AE = 7 19 57 2.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上 AC ︵ 的中点. (1)如图1,P 为 ABC ︵ 的中点,求证:PA +PC =3PD ; (2)如图2,P 为 ABC ︵ 上任意一点,(1)中的结论还成立吗?请说明理由. (1)证明:连接AD ∵D 为AC ︵ 的中点,P 为 ABC ︵ 的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° D D P 图1 图2

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

二次函数与面积专题训练

二次函数专题训练——抛物线与图形面积 1、抛物线y=x 2 -4x-5交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 面积为 2、若抛物线y=-x 2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为 . 3、已知二次函数y=x 2 –21x-2 3与x 轴交于A 、B 两点,顶点为C ,则△ABC 的面积为 . 4、若抛物线y=x 2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________. 5、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = ,c = . 6、已知二次函数y=ax 2 +bx+c 的图象经过(-1,2 5 - ),B(0,-4),C(4,0)三点,则二次函数解析式是_______,顶点D 的坐标是_______,对称轴方程是_______, =_______ 7、已知二次函数y=-2 1x 2+x+4的图象与x 轴的交点从右向左为A 、B 两点,与y 轴交点为C ,顶点为D ,求四边形ABCD 的面积 _______ 9、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-12,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)、求二次函数的解析式; (2)、P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)、P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1 ,求P 点坐标。 10、如图,抛物线8102 +-=ax ax y 经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且 AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.

二次函数与几何综合压轴题题型归纳 学生版

标准实用 二次函数综合压轴题型归类、要学会利用特殊图形的性质去分析二次函数与特殊图形的关系教学目标:1 2、掌握特殊图形面积的各种求法 1、利用图形的性质找 点重点、难点: 2、分解图形求面积 一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总????22x?AB??yy?x:1、两点间的距离公式BAAB x?xy?y??BABA,ABC??的坐标为::线段的中点2 、中点坐标 22??y?kx?bk?0y?kx?bk?0)的位置关系:)与((直线212112??k?bk?kb?k)两直线相交 且(1)两直线平行(2212112??kk?b?1bk?k? 3()两直线重合(4)两直线垂直且2121213、 一元二次方程有整数根问题,解题步骤如下: ?和参数的其他要求确定参数的取值范围;①用②解方程,求出方程的根;(两种形式:分式、 二次根式) ③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 ??22mxm5<m02m?1=x?mx-的值。为整数,求例:关于的一元二次方程有两个整数根,且 x轴的交点为整数点问题。(方法同上)、4二次函数与??2mx3x?y?mx?3m1?为正整数,试确定轴交于两个不同的整数点,且例:若抛物线与此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 文案大全. 标准实用 2mxm0?2m?mx3?3(m?1)x?为何值,方程总为实数)(已知关于,求证:无论的方程有一个固定的根。1x0?m?时,解:当;??3?1?m?3??2x?2?x?1?x0?m0??3m??;、时,当,, 12m2m m为何值,方程总有一个固定的根是1。综上所述:无论 6、函数过固定点问题,举例如下: 2mm2?my?x??mx为何值,该抛物线总经过一个固已知抛物线(,求证:不论是常数)定的点,

二次函数与圆结合的压轴题Word版

图6 x y F E H N M P D C B A O 二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线3 2 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

二次函数与面积专题

重庆市巴川中学初2019级九上数学专题训练三 ——二次函数与面积问题 班级______姓名_______等级________ 题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数). 例1、定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标. 图1 图2

练习1. 如图,已知抛物线322++-=x x y 与x 轴交于点A 和点B ,与y 轴交于点C ,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点. (1)直接写出点A 、B 、C 、D 的坐标,并求出S △ABD ; (2)求出直线BC 的解析式; (3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.

题型二:已知二定点,在抛物线上求一动点,使三角形面积最大 例2.如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(-1,0),C点坐标是(-4,-3). (1)求抛物线的解析式; (2)若点E是位于直线AC的上方抛物线上的一动点,试求△ACE的最大面积及E点的坐标;(3)在(2)的条件下,在抛物线上是否存在异于点E的P点,使S△PAC=S△EAC,若存在,求出点P的坐标;若不存在,请说明理由. 变式:在抛物线上是否存在点P,使S△PAC=S△ABC,若存在,求出点P的坐标;若不存在,请说明理由.

一次函数的应用、二次函数与几何知识的综合应用练习题

2012届一次函数的应用、二次函数与几何知识的综合应用练习题 1、某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是 会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书, 若每月租书数量为x 册. (1)写出零星租书方式应付金额y 1(元)与租书数量x (册)之间的函数关系 式; (2)写出会员卡租书方式应付金额y 2(元 )与租书数量x (册)之间的函数关 系式; (3)小军选取哪种租书方式更合算? 2、某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知 大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购 车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最 省的方案,并求出该方案所需费用. 3、如图,抛物线y = 2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. 4、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物 线交x 轴于另一点C (3,0). 第3题图

⑴ 求抛物线的解析式; ⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求 出符合条件的Q 点坐标;若不存在,请说明理由. 5、已知双曲线x k y 与抛物线y=ax 2+bx+c 交于A(2,3)、B(m,2)、c(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积, 6、已知函数y=mx 2-6x +1(m 是常数). ⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值. 7、如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一 个交点为B ,且与y 轴交于点C . 第5题图

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

九年级数学:二次函数与图形面积

二次函数与图形面积 练习题 基础题 知识点 二次函数与平面面积 1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( ) A .60 m 2 B .63 m 2 C .64 m 2 D .66 m 2 2.用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为( ) A .20 B .40 C .100 D .120 3.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是 ( ) A.6425 m 2 B.43 m 2 C.83 m 2 D .4 m 2 4.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( ) 5.如图,利用一面墙(墙的长度不超过45 m),用80 m 长的篱笆围一个矩形场地.当AD =________时,矩形场地的面积最大,最大值为________. 6.如图,在△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,点P 从点A 开始沿AB 向B 点以2 cm/s 的速度移动,点Q 从点B 开始沿BC 向C 点以1 cm/s 的速度移动,如果P ,Q 分别从A ,B 同时出发,当△PBQ 的面积为最大时,运动时间t 为________s.

7.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________ cm2. 8.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少? 9.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

二次函数与圆综合训练(含解析)

二次函数与圆综合提高(压轴题) 1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点, 且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图 形L. (1)求△ABC的面积; (2)设AD=x,图形L的面积为y,求y关于x的函数解析式; (3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.解 解:(1)如图3,作AH⊥BC于H, 答: ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,

∴x=1.5时,y 最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3﹣x, ∴DG=(3﹣x),MF=MN=2x﹣3, ∴MG=(3﹣x), ∴y=, =﹣; (3),如图4,∵y=﹣; ∴y=﹣(x2﹣4x)﹣, y=﹣(x﹣2)2+, ∵a=﹣<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°,

∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π. 2、(2013?压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4), 点B的坐标为(4, 0),点C的坐标为 (﹣4,0),点P在 射线AB上运动,连 结CP与y轴交于点 D,连结BD.过P, D,B三点作⊙Q与 y轴的另一个交点 为E,延长DQ交⊙Q于点F,连结EF,BF. (1)求直线AB的函数解析式; (2)当点P在线段AB(不包括A,B两点)上时. ①求证:∠BDE=∠ADP; ②设DE=x,DF=y.请求出y关于x的函数解析式; (3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由. 解:(1)设直线AB的函数解析式为y=kx+4, 代入(4,0)得:4k+4=0, 解得:k=﹣1, 则直线AB的函数解析式为y=﹣x+4; (2)①由已知得: OB=OC,∠BOD=∠COD=90°, 又∵OD=OD, ∴△BOD≌△COD,

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

(完整版)题型五二次函数与几何图形综合题

目录 题型五二次函数与几何图形综合题 (2) 类型一与特殊三角形形状有关 (2) 类型二与特殊四边形形状有关 (8) 类型三与三角形相似有关 (18) 类型四与图形面积函数关系式、最值有关 (23) 类型五与线段、周长最值有关 (29)

题型五二次函数与几何图形综合题 类型一与特殊三角形形状有关 针对演练 1. (’16原创)如图,已知抛物线y=-x2+bx+c的对称轴为x=1,与y轴的交点第1题图C为(0,3),与x轴交于点A、B,顶点为D. (1)求抛物线的解析式; (2)求A、B、D的坐标,并确定四边形ABDC的面积; (3)点P是x轴上的动点,连接CP,若△CBP是等腰三角形,求点P的坐标. 2. (’15长沙模拟)如图,抛物线y=ax2+bx+c的图象过点M(-2,3),顶点为N (-1, 43 3 ),与x轴交于点A、B(点A在点B的右侧),与y轴交于点C. (1)求抛物线解析式; (2)判断△ABC的形状,并说明理由; (3)若点Q是抛物线对称轴上一点,当△QBC是直角三角形时,求点Q的坐标.

3. (’16原创)如图,抛物线y = -1 2 x2+mx+n与x轴交于点A、B两点,与y轴 交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2). (1)求抛物线的解析式; (2)判断△ACD的形状,并说明理由; (3)在抛物线对称轴上是否存在一点P,使得△PBC是以P为直角顶点的直角三角形,若存在,求点P的坐标;若不存在,说明理由. 4. 如图,已知二次函数L1:y=x2-4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C. (1)写出A、B两点的坐标; (2)二次函数L2:y=kx2-4kx+3k(k≠0),顶点为P. ①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质; ②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由; ③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.

专题63 构造圆与隐形圆在二次函数中的综合问题(解析版)

专题63 构造圆与隐形圆在二次函数中的综合问题 1、如图,在直角坐标系中,直线y=﹣1 3x ﹣1与x 轴,y 轴的交点分别为A 、B ,以x=﹣1为对称轴的抛物线 y=x 2+bx+c 与x 轴分别交于点A 、C ,直线x=﹣1与x 轴交于点D . (1)求抛物线的解析式; (2)在线段AB 上是否存在一点P ,使以A ,D ,P 为顶点的三角形与△AOB 相似?若存在,求出点P 的坐标;如果不存在,请说明理由; (3)若点Q 在第三象限内,且tan△AQD=2,线段CQ 是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由. 【答案】(1)y=x 2+2x ﹣3;(2)存在;点P 坐标为(﹣1,?23 )或(-65 ,-3 5 ); (3)存在,CQ 最小值为 √37?√5 2 . 【解析】(1)△直线y=﹣1 3x ﹣1与x 轴交于A 点, △点A 坐标为(﹣3,0), 又△直线x=﹣1为对称轴, △点C 坐标为(1,0), △抛物线解析式为:y=(x+3)(x ﹣1)=x 2+2x ﹣3; (2)存在;

由已知,点D 坐标为(﹣1,0),点B 坐标为(0,﹣1), 设点P 的坐标为(a ,﹣13 a ﹣1), △当△AOB△△ADP 时, AD AO = DP OB ,即23 = 1 3 a+11 , 解得:a=﹣1; 点P 坐标为(﹣1,?2 3); △当△AOB△△APD 时, 过点P 作PE△x 轴于点E , 则△APE△△PED , △PE 2=AE?ED , △(﹣1 3a ﹣1)2=(a+3)(﹣a ﹣1), 解得a 1=﹣3(舍去),a 2=﹣6 5, △点P 坐标为(﹣6 5 ,﹣3 5 ); (3)存在,CQ 最小值为 √37?√5 2 ; 如图,取点F (﹣1,﹣1),过点ADF 作圆,则点E (﹣2,﹣1 2)为圆心,

二次函数之面积专题

二次函数之面积专题(讲义) 一、知识点睛 1. 坐标系中处理面积问题,要寻找并利用“__________”的线. 几何中处理面积问题的思路:_______、_______、_______. 2. 坐标系中面积问题处理方法举例: ①割补求面积(铅垂法): h a a h M M P B A P B A Δ12APB S ah = Δ1 2APB S ah = ②转化求面积: Q P B A A B P Q ABP ABQ S S ??= ABP ABQ S S ??= 若P 、Q 在AB 同侧 若P 、Q 在AB 异侧 则PQ ∥AB 则AB 平分PQ

二、精讲精练 1. 如图,抛物线经过A (-1,0)、B (3,0)、C (0,3)三点. (1)求抛物线的解析式. (2)点M 是直线BC 上方抛物线上的点(不与B 、C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长. (3)在(2)的条件下,连接MB 、MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及最大面积;若不存在,说明理由. B C A O M N x y B C A O M N x y

2. 如图,抛物线322++-=x x y 与直线1+=x y 交于A 、C 两点, 其中C 点坐标为(2,t ). (1)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 面积的最大值. (2)在直线AC 下方的抛物线上,是否存在点G ,使得 Δ6AGC S =?如果存在,求出点G 的坐标;如果不存在,请说 明理由. A B P O x y C C y x O P B A

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

相关文档
相关文档 最新文档