文档库 最新最全的文档下载
当前位置:文档库 › 尼龙66的合成实验报告.

尼龙66的合成实验报告.

尼龙66的合成实验报告.
尼龙66的合成实验报告.

尼龙66的合成实验报告

班级:应131-1

组别:第七组

组员:

尼龙66的合成

一、实验目的

1、学习由环己醇(醇氧化物)制备环己酮(酮氧化物)原理、方法、实验操作。

2、学习由环己酮制备己二酸的原理、方法、实验操作。

3、学习尼龙66的制造工艺,应用,发展前途。

4、熟练准确的掌握有机实验的基本操作。

二、实验原理

(一)尼龙66的性质

尼龙66名为聚己二酸己二胺,为半透明或不透明的乳白色的热塑性结晶形聚合物,相对密度1.14,熔融温度255℃ ,热分解温度大于370℃ ,连续使用温度大于105℃,因分子主键中含有强极性的酰胺基,而酰胺基间的氢键使分子间的结合力较强,易使结构发生结晶化,具有较高的刚性、韧性(良好的力学性能)和优良的耐磨性、自润滑性、染色性、耐油性及耐化学药品性和自熄性 ,其力学强度较高,耐热性优良,耐寒性好 ,使用温度范围宽[1]。因此,尼龙66为热塑性树脂中发展最早、产量最大的品种,其性能优良,也是化学纤维的优良聚合材料,应用范围最广,因此产量逐年增长 ,已位居五大工程塑料之首。

(二)主要有关物质介绍

1.环己酮

环己酮(cyclohexanone),有机化合物,是六个碳的环酮,室温下为无色油状液体,有类似薄荷油和丙酮的气味,久置颜色变黄。微溶于水,可与大多数有机溶剂混溶。不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。易燃,与高热、明火有引起燃烧的危险,与氧化剂接触猛烈反应,与空气混合爆炸极与开链饱和酮相同。环己酮在工业上被用作溶剂以及一些氧化反应的触发剂,也用于制取己二酸、环己酮树脂、己内酰胺以及尼龙。

2.己二酸

己二酸(Adipicacid)又称肥酸,是一种白色的结晶体,有骨头烧焦的气味。微溶于水,易溶于酒精、乙醚等大多数有机溶剂。当己二酸中的氧气含量高于14%时,易产生静电引起着火。己二酸是脂肪族二元酸中最有应用价值的二元酸,能发生成盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物,其对眼睛、皮肤、粘膜和上呼吸道有刺激作用。己二酸是工业上具有重要意义的二元羧酸,在化工生产、有机合成工业、医药、润滑剂制造等方面都有重要作用,也是医药、酵母提纯、杀虫剂、香料等的原料,产量居所有二元羧酸中的第二位。中国对己二酸的需求量极大,国内生产不能满足市场需求,因而每年都从国外大量进口。

(三)尼龙66合成的反应原理

尼龙 66的生产是通过羧基与氨基发生缩合反应生成酰胺基、同时生成小分子水的一个放热反应过程,工业上一般采取两步法:首先己二胺和己二酸反应生成尼龙66盐,然后尼龙66盐进行缩聚反应生成聚合物[2],主要反应方程式如下:

环己酮的合成:

己二酸的合成:

尼龙66的合成:

三、试剂及仪器

试剂:浓硫酸、环己醇、重铬酸钠(Na

2Cr

2

O

7

·2H

2

O)、草酸、食盐、无水硫酸

镁、沸石;高锰酸钾,氢氧化钠10% ,浓硫酸,亚硫酸钠(其中投料比为环己酮:高锰酸钾:氢氧化钠10%:浓硫酸=1g:3g:0.25ml:2.5ml)、活性炭;氧化亚砜、环己烷、10%NaOH、5%己二胺溶液。

仪器:天平、电热套、水蒸气蒸馏装置、抽滤装置、分液漏斗、玻璃棒、圆底烧瓶、烧杯、滤纸、酒精灯、表面皿、量筒、锥形瓶、铜丝钩、胶头滴管、pH试纸、蒸发皿、玻璃棒。

蒸馏实验装置图如下:

萃取步骤及装置图

四、实验步骤及实验现象

(一)环己酮的合成

1.在250ml圆底烧瓶内,放置56 ml水,慢慢加入9.3 ml浓硫酸,充分混合后,小心加入9.8ml环己醇(0.133 mol)。溶液冷至30℃以下。

过程现象:环己醇加入后,为乳白色浊液。

2.在烧杯中将11.5g重铬酸钠溶解于6 ml水中。将此溶液分数批加入圆底烧瓶中,并不断振荡使充分混合。氯化反应开始后,混合物迅速变热,并使橙红色的重铬酸盐变成墨绿色的低价铬盐。控制反应温度在60~65℃之间,(可用冷水浴或流水下适当冷却)。待前一批重铬酸盐的橙红色完全消失后,再加下一批。加完后继续振摇,直至温度有自动下降趋势再保温10min。10min后震荡烧瓶并观察其泡沫,若泡沫呈微黄色或不为墨绿色时,加入少量草酸(约1g)使反应液完全变成墨绿色,以破坏过量的重铬酸盐。

过程现象:溶液由橙色变为暗橙色,再变为墨绿色,当全部加入重铬酸盐且冷却后,溶液为墨绿色,震荡后溶液边缘泡沫不为纯墨绿色稍偏暖色调,加入草酸后,溶液变墨绿色,暗色调。

3.在反应瓶内加入60毫升水,再加几粒沸石,装成蒸馏装置,将环己酮与水一起蒸馏出来(环己酮与水能形成恒沸点为95℃的恒沸混合物)。直至流出液不再混浊后再多蒸10~15ml(总收集约50ml),馏出液中加入约10g食盐(盐析)饱和馏出液,转移至分液漏斗中在分液漏斗中静置后分出有机层,用无水硫酸镁干燥。干燥后过滤,进行蒸馏收集154~156℃的馏分(衡沸点1℃范围)。(环己酮产量5.6~6.3g(产率62%~67%)。纯粹环己酮沸点为155.65℃,折光率n201.4507)

过程现象:第一次蒸馏:加热8分钟后溶液微沸,温度开始升高。后液体沸腾,温度急剧上升。温度平衡在95度左右。然后有液滴流出,流出液滴呈油状。

第二次蒸馏:温度上升缓慢,温度平衡在145度左右开始蒸出馏分,未达到理

论沸点的原因是,蒸馏物质未到烧瓶的三分之一,不到其饱和蒸汽压。(水蒸气蒸馏原理:任何与水不互溶,不反应的有机物质(常压蒸馏分离有困难的)都有一定的饱和蒸汽压,所以总压力为所蒸馏物质的分压之和,因此通过蒸馏水带出所需的有机物)

(二)己二酸的合成

1.在250ml烧杯中,将计算量的高锰酸钾溶于8倍水中,加入自制环己酮,在温水浴上将反应混合物温度升至30℃后,加入计算量(0.75ml)10%氢氧化钠溶液,摇荡或搅拌反应混合物,控制温度在45℃(必要时水浴温热),并在此温度下用水浴维持反应1小时。

过程现象:溶液呈褐色。

2.擦干烧杯外的水,直接放到电热套里加热,沸腾后保持5min,使反应完全。

3.用玻璃棒蘸取一滴反应液于滤纸上,若在黑色二氧化锰周围仍出现紫色环,可加入少量亚硫酸钠以除去过量的高锰酸钾,

4.重复操作3,直到不显紫环为止。

5.吸滤反应混合物,用热水充分洗涤棕黑色沉淀。

6.在蒸发皿中浓缩至环己酮体积的约7-8倍。

7.趁热小心用滴管加入浓硫酸,使pH为1~2,若不足需补加。

8.冷却至室温使结晶完全,抽滤得己二酸白色晶体,熔点为152~153℃。

过程现象:第一次抽滤,母液为暖色,再次抽滤后溶液变澄清。

9.将产物防于蒸发皿上干燥至衡重。

(三)尼龙66的合成

1.向配有回流冷凝管及酸气吸收专职的50ml烧瓶中加入1.5g干燥的己二酸和3.6g氧化亚砜,将混合物在50~60℃水浴上加热3小时左右,待己二酸完全溶解,并不再有气体放出后,改回流装置为蒸馏装置,减压蒸出过量的氧化亚砜,剩余物为淡黄色的己二酰氯,加入36g环己烷,摇动溶解。

2.向150ml烧杯内加入40ml5%己二胺(1,6-己二胺)水溶液,加入2ml20%NaOH溶液,小心地将40ml5%己二酰氯的环己烷溶液沿着略微倾斜的烧杯壁倾入溶液中,将会形成两层,且在液-液界面处立即形成聚合物膜,用一只铜丝钩缓缓地清楚攀住烧杯四壁的聚合物丝,然后钩住这团物质的中心,慢慢地提升铜丝,使聚酰胺得以不断生成,并可拉出好几尺长的一股线,用水将这股线洗涤几次,放置纸上晾干。

3.用一段铜丝将两相系统的剩余部分剧烈搅拌,再形成一些聚合物,浸出液体,倒入废物桶。用水充分洗涤聚合物,并放置干燥,合并以上得到的尼龙线称重。

本实验只进行尼龙66前体的合成。

五、实验注意事项

(一)环己酮的合成

1. 环己酮的制备中,硫酸氧化环己醇是一个放热反应,必须严格控制反应温度。温度过高,反应过快、激烈,不易控制且生成物环己酮会部分断裂生成己二酸,温度过低,氧化反应速度慢,反应时间太长,而且可能积累更多未反应的铬酸,当铬酸达到一定浓度时,氧化反应会进行得非常剧烈,有失控的危险。

2.铬酸钠溶液需分批加入且应不断搅拌,反应物橙色消失后即氧化剂反应消耗后,再进行加入,控制氧化剂加入的速度为避免氧化剂蓄积以至蓄积到一定量时发生剧烈反应,温度升高过快;同时,勿使氧化反应进行得过于猛烈,否则产生环己酮将进一步遭受氧化而发生碳链断裂。

3. 加入草酸的原因时为了除去过量氧化剂,防止再蒸馏操作时,温度升高而发生氧化反应,造成碳链断裂而损失。

4.环己酮的合成时,水的馏出量不宜过多,否则即使使用盐析,仍不可避免有少量环己酮溶于水中而损失掉,若馏分太多,应重新蒸馏。(在进行蒸馏操作时,都不可蒸干,至少保证烧瓶为湿润的,否则残留固体会喷射、跳蹦,甚至会使烧瓶炸裂。)

5 .在蒸馏前应除掉硫酸镁,因为无水硫酸镁与水的结合为可逆反应,而下一步操作为水蒸气蒸馏。(补充:一般实验中无水硫酸镁用量为每10ml溶液用0.5~1g)

6.分离环己酮除了用水蒸气蒸馏法外,还可以利用萃取的方法进行分离,即加入一定量的水,使无机盐全溶于水后,再加入有机溶剂萃取,最后进行水洗、干燥、蒸馏即可。

7.第一次蒸馏,进行普通蒸馏操作即可,因为其产品沸点为95℃了,而后需用水蒸气蒸馏法,因为其收集的馏分为155℃左右,超过140℃的的产品进行分馏时一般均用水蒸气蒸馏法,为避免直型冷凝管水冷却导致玻璃温差大而炸裂。(使用前应干燥蒸馏设备)

8.最后一次蒸馏时的接收瓶不应用广口瓶,由于本次试验蒸馏后的物质后续还要用,为避免转移过程中造成的损失,因此可用小烧杯接收。

(二)己二酸的合成

1.根据环己酮产品的量,计算高锰酸钾、氢氧化钠、浓硫酸的量。

2.关于氧化剂的选择。本实验使用的是碱性高锰酸钾,原则上也可以使用浓硫酸、酸性或中性高锰酸钾,但浓硫酸的氧化性太强会使己二酸进一步氧化,使其质量下降,同时,锰盐难回收;关于高锰酸钾的选择,高锰酸钾可被还原成二氧化锰,且碱性条件下氧化有机物速度快,锰盐也易回收利用。

3.沸腾后保持5min是为了使二氧化锰凝聚成大分子,其后比较容易分离。

4.除去过量的高锰酸钾使用少量的亚硫酸钠。原则上也可使用浓硫酸,因为高锰酸钾及其还原产物二氧化锰都为强氧化剂,且都很难用水除掉,而不用浓硫酸的原因是,浓硫酸与二氧化锰反应需加热,而此条件下己二酸溶解度增大,不利于其

结晶析出及分离,因而二氧化锰会杂于己二酸中;而用亚硫酸钠则无需加热,且生成物为无色的硫酸锰溶液。

5.抽滤时需加少量热水,充分洗涤棕黑色沉淀,但不需加太多水,10ml左右即可,否则后进行蒸发浓缩会耗费太多时间。

6.最后抽滤时最好不用母液清洗,但需用清水洗涤充分洗涤以除去产品中在蒸发过程中也无法去除的物质(如残留的酸)以提高产品质量。(抽滤时,布氏漏斗坡面应朝向连接胶管的孔,防止液体流出过慢时沿壁被吸到孔里。)

7. 在电热套上干燥己二酸产品时,温度要从低到高依次增加,防止局部过热。

六、实验数据处理

(一)原始数据记录

2.己二酸的合成

1.环己酮的产率

已知:环己醇的相对分子质量为100.16g/mol、密度(20℃)为0.96g/cm3、环己酮相对分子质量为98.14g/mol;

①环己醇的物质的量为(根据反应方程式环己醇:环己酮=1:1):

n环己醇=n环己酮(理论)=(0.96g/ml*9.8ml)/100.16g/mol=0.094mol

②环己酮的理论质量为:

m环己酮(理论)=n环己酮(理论)*M环己酮=0.094mol*98.14g/mol=9.23g

③环己酮的产率为:

产率=4.35/9.23*100% =47.13%

2.己二酸的产率

已知:己二酸的相对分子质量为146.14g/mol,质量为2.40g

①己二酸理论的物质的量为:

n己二酸(理论)=n环己酮(实际)=m环己酮(实际)/M环己酮=4.35g/98.14g/mol=0.044mol

②己二酸理论质量为:

m己二酸(理论)=n己二酸(理论)*M己二酸=0.044mol*146.14g/mol=6.43g

③己二酸的产率为:

产率=2.40/6.43*100%=37.33%

3.总产率

由环己醇到己二酸的产率:

总产率=环己酮产率*己二酸产率*100%=47.13%*37.33%=17.59%

环己醇的质量:m环己醇=0.96g/ml*9.8ml=9.41g

浓硫酸的质量:m浓硫酸=(9.3+10.9)ml*1.84g/ml=37.17g

七、误差及实验结果分析

(一)实验误差分析

1.在分批加入铬酸钠溶液时没有充分搅拌,使氧化剂反应完全,导致氧化剂蓄积,最后一次加入完全时发生剧烈反应,温度升高过快,且没有很快的将温度维持在60~65℃之间,氧化反应进行得过于猛烈,部分环己酮将进一步遭受氧化而发生碳链断裂,导致产物有损失。

2.抽滤、萃取、蒸馏等操作会导致产品损失,加食盐进行盐析、用无水硫酸镁干燥产品时会对产品产生吸附,在转移的过程中,也有少量产品损失。;

3.在加入浓硫酸过程中液体溅出,造成产率偏低。

4.各物质在称量或量取过程中存在误差。

5.最后蒸干时,有少量的固体熔融,使得产品的量减少,且纯度降低。(二)实验结果分析

最后所得产品颜色比理论产品颜色稍暗,分析原因如下:

1.在第一次加入浓硫酸过程中有液体溅出,而后按照比例计算量继续加入剩余的浓硫酸,所以可能造成浓硫酸的过量,对产品造成了碳化,使产品颜色发暗。

2.在最后一次的抽滤中,没有用清水洗涤充分洗涤以除去产品中在蒸发过程中也无法去除的物质(如残留的酸)。

3.在产品干燥过程中,电热套加热速度过快,使底部的产品出现少许融化,也可能使产品出现碳化。

八、思考题

1.水蒸气蒸馏对分离的有机化合物有什么要求?

水蒸气蒸馏法适用于具有挥发性的,对水稳定,能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取(易于与水分离)。对热稳定,成分的沸点多在100℃以上,加热状态下为液态,有一定蒸汽压,可被水蒸气携带出。

2.氧化反应结束后,为什么要加入草酸或甲醇,如果不加有什么不好?

加入草酸或甲醇的原因时为了除去过量氧化剂,防止再蒸馏操作时,温度升高而发生氧化反应,造成碳链断裂而损失。

3.我们知道环己酮的沸点为155.65℃,在收集最终产品时,应选用水冷却型冷凝管还是空气冷凝管?

为避免水冷却导致玻璃温差大而炸裂,应选用空气冷凝管,而此实验中水冷却及空气冷却两种方式进行冷凝的温差不是很大,为了保证冷却效果,因而最终使用水冷却型冷凝管。

4.试写出利用高锰酸钾氧化环己酮成己二酸的氧化还原配平式,并指出其中的高锰酸钾与环己酮哪个试剂是过量的?

+2KMnO

4→COOH-CH2-KCH-CH2-COOH+2MnO2+H2O

其中,高锰酸钾是过量的。(高锰酸钾作为氧化剂,可判断反应是否进行完全)5.反应温度及氧化剂的用量对反应有什么影响?

本反应是一个放热反应,温度高反应过于激烈,不易控制,易冲出,温度过低反应不易进行,导致反应不完全;氧化剂用量太大,反应剧烈,不易控制反应的发生,且后面的操作中,不易除净氧化剂,最终产品中会杂有二氧化锰,导致最终产品不纯。而氧化剂用量小难以判断反应是否进行完全,且对产率造成影响。

浇铸成型

浇铸成型 ?浇铸成型通常是将液体的单体(或预聚物)、促进剂等一起倒入模具中,在加热的条件下使单体在模具中聚合成聚合物,最后冷却定型;或者是将液态或粉状树脂倒在模具中,不施加压力,只用加热和冷却使之定型而成为制品。 ?浇铸工艺浇铸成型一般不施加压力,对设备和模具的强度要求不高,对制品尺寸限制较小,制品中内应力也低。因此,生产投资较少,可制得性能优良的大型制件,但生产周期较长,成型后须进行机械加工。

成形分类 ?按成型过程中塑料受力的形式分,可以分为静态浇铸和离心浇铸;按成型制品的组成可分为普通浇铸和嵌铸;按所用原料可分单体浇铸和混合浆料浇铸。 ?在传统浇铸基础上,还派生出灌注、嵌铸、压力浇铸、旋转浇铸和离心浇铸等方法。

?。①灌注。此法与浇铸的区别在于:浇铸完毕制品即由模具中脱出;而灌注时模具却是制品本身的组成部分。②嵌铸。将各种非塑料零件置于模具型腔内,与注入的液态物料固化在一起,使之包封于其中。③压力浇铸。在浇铸时对物料施加一定压力,有利于把粘稠物料注入模具中,并缩短充模时间,主要用于环氧树脂浇铸。④旋转浇铸。把物料注入模内后,模具以较低速度绕单轴或多轴旋转,物料借重力分布于模腔内壁,通过加热、固化而定型。用以制造球形、管状等空心制品。⑤离心浇铸。将定量的液态物料注入绕单轴高速旋转、并可加热的模具中,利用离心力将物料分布到模腔内壁上,经物理或化学作用而固化为管状或空心筒状的制品。单体浇铸尼龙制件也可用离心浇铸法成型。

PMMA板材浇铸工艺为例 MMA 引发剂着色剂 预聚物 添加剂 混合过滤脱气浆液浇铸 二次聚合 一次聚合 组装 干燥 玻板洗净 冷却 脱模 切割 热处理 PMMA板 检验 成品PMMA是聚甲基丙烯酸甲酯,俗称有机玻璃,MMA是甲基丙烯酸甲酯

尼龙66的性质

尼龙66的基本性质 热性质 (1)熔点(Tm) 熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来: 尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。 如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。接近理论熔解温度259℃。 (2)玻璃化温度(Tg) 高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。 尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度[ ]。 结晶和结晶度 (1)结晶构造 Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形[ ]。 Bunn等确定了尼龙-66α型的结晶构造[ ],如图01-72所示,其晶胞的晶格常数列于表01-73。从图01-72可见,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。相邻的分子以氢键连成平面的片状,其模型如图01-68所示。 表01-68尼龙-66稳定晶形的晶格常数 晶体 a b c(纤维轴) αβγ α型结晶(三斜晶系) 4.9×10-4μm 5.4×10-4μm 17.2×10-4μm48?° 77°63?° 计算密度=1.24g/cm3 图01-44尼龙-66的α晶型结构[ ] 图01-45尼龙-66分子中晶片排列模型[ ] 线条:链状分子;○:氧原子 从图01-45可以看出,尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。 (2)球晶 熔融状态的尼龙-66缓慢冷却时,在235~245℃急剧生成球晶。球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%。 球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶[ ]。尼龙-66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶[ , ]。球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响。(3)结晶度 一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度。在很大程度上,结晶度可以左右尼龙-66的物理、化学和机械性质。结晶度可以用X-射线、红外吸收光谱、熔融热、密度和体积膨胀率等求得,其中以密度法最为简单方便。 分子量和分子量分布 综合考虑尼龙-66的可应用性和可加工性,通常将其分子量调整为15000~30000(聚合度约150~300),若分子量太大,成型加工性能变差。已经开发了一系列方法测定聚酰胺的分子量,如粘度法(溶液粘度法和熔融粘度法)、末端基定量法(中和滴定法、比色法、电位滴定法、电导滴定法)、光散射法、渗透压法、熔融电导法等,其中溶液粘度法在实验室条件较为容易进行。 热分解和水解反应 与其它聚酰胺相比,尼龙-66最容易热降解和三维结构化。当尼龙-66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物。其机理尚未完全阐明,但相信主要原因是尼龙-66本质造成的,与己二酸残基容易形成环戊酮衍生物密切相关。 在惰性气体氛围中,尼龙-66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的分解,产生氨和二氧化碳等。在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2)。

尼龙-66的发展

尼龙-66的发展 摘要:Nylon 66 is polyhexamethylene adipamide, translucent or opaque white crystalline polymer, is a thermoplastic resin in the development of the earliest and largest production varieties, excellent material and chemical fiber polymerization, the most widely used, so the yield increased year by year, has been ranked the first five engineering plastics. This experiment is a laboratory method and industrial method for studying nylon 66。 目录 第1章绪论 1.1 概况 1.2 发展 1.3 性能介绍 1.4 尼龙-66的实验合成方法 第二章 2.1 尼龙-66的工业合成方法 2.2 尼龙-66的应用范围 2.3 对尼龙-66的总结 参考文献 英文摘要 致谢 承德石油高等专科学校 一概况 聚己二酰己二胺俗称尼龙-66。一种热塑性树脂。白色固体。密度1.14。熔点253℃。不溶于一般溶剂,仅溶于间苯甲酚等。机械强度和硬度很高,刚性很大。可用作工程塑料。拉伸强度6174-8232牛/厘米2。弯曲强度8575-9604牛/厘米2,压缩强度4958.8-8957.2牛/厘米2。冲击强度20.58-42.14牛*厘米/厘米2。洛氏硬度108-118。热变形温度(1814.11帕,18.5公斤力/厘米2)66-86,用作机械附件,如齿轮、润滑轴承;代替有色金属材料做机器外壳,汽车发动机叶片等。也可用于制合成纤维。一般用己二酸和己二胺制成尼龙-66盐后缩聚而得。 分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑树脂。常制成圆柱状粒料,作塑料用中文名聚己二酰己二胺,熔点:253℃,耐磨,电绝缘性好,耐热(在455千帕下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。但树脂中的单体含量过高时,不宜长期与皮肤或食物接触,各国对此常有食品卫生方面的规定。 二发展 最早工业化生产的聚酰胺品种是聚酰胺66(即尼龙66),美国杜邦公司W.H.卡罗瑟斯于1937年公布了第一个专利,制得聚酰胺纤维(尼龙丝)样品,1938年建立了试验工厂,1939年工业化生产装置投入运转。当时聚酰胺主要用于生产纤维、绳索和包覆材料。第二次世界大战中这些材料在军事方面的应用得到了很大发展,战后生产了薄膜和塑料。1941年,聚酰胺6在德国投入生产,随后又开发了聚酰胺610。1950年法国开发了聚酰胺11。1958年中国试制成功聚酰胺1010,苏联试制成功共聚酰胺。1966年,在联邦德国赫斯化学公司大规模生产聚酰胺12。1972年,美国杜邦公司又实现了芳香族聚酰胺的工业生产。70年代以后,聚酰胺的改性引起人们的极大兴趣,特别是石油化工的发展,聚酰胺的原料路线转向石油,成本逐年下降,产量逐年增长,使聚酰胺发展成为一类品种多、能够适应于多种用

尼龙材料

尼龙棒材的主要特性: 机械强度、刚度、硬度、韧性高、耐老化性能好、机械减振能力好、良好的滑动性、优异的耐磨性、机械加工性能好、用于精密有效控制时、无蠕动现象、抗磨性能良好、尺寸稳定性好。 尼龙棒材的应用领域: 广泛用于化工机械,防腐设备的制齿轮及零件坏料。耐磨零件,传动结构件,家用电器零件,汽车制造零件,丝杆防止机械零件,化工机械零件,化工设备等。 尼龙系列是非常重要的工程塑料。该产品应用广泛,几乎覆盖每一个领域,是五大工程塑料中应用很广的品种。尼龙棒材按生产工艺不同分为挤出和浇铸两种。 概述:尼龙棒,PA6,PA66,MC尼龙,含油尼龙,防静电尼龙尼龙(Nylon),中文名聚酰胺,英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—NHCO—的热塑性树脂总称。其命名由合成单体具体的碳原子数而定。是美国著名的化学工业公司──杜邦公司著名化学家卡罗瑟斯和他的科研小组发明的。 目前市面上常用的挤出尼龙棒材 尼龙6(白色):该材料具有优越的综合性能,包括机械强度、刚度、韧度、机械减震性和耐磨性。这些特性,再加上良好的电绝缘能力和耐化学性,使尼龙6成为一种“通用级”材料,用于机械结构零件和可维护零件的制造。

尼龙66(奶油色):与尼龙6相比较,其机械强度、刚度、耐热和耐磨性,抗蠕变性能更好,但冲击强度和机械减震性能下降,非常适合于自动车床机械加工。 尼龙4.6(红棕色):与普通尼龙相比,尼龙4.6的特点是刚性保存力强,耐蠕变性好,在较宽的温度范围内,更耐热老化,因此,尼龙4.6用于尼龙6、尼龙66、POM和PET在刚度、抗蠕变、耐热老化、疲劳强度和耐磨性能方面所达不到要求的“较高的温度领域”(80 -150℃) 尼龙66+GF30(黑色):与纯尼龙66相比,这种尼龙填加30%玻璃纤维增强,其耐热性、强度、刚度。耐蠕变性和尺寸稳定性、耐磨等性能方面均有提高,它的最大允许使用温度较高。 尼龙66+MOS2(灰黑色):这种尼龙填加了二硫化钼,与尼龙66相比,其刚性,硬度和尺寸稳定性有所提高,但抗冲击强度有所下降,二硫化钼的晶粒形成效果提高了结晶结构,使材料承载和耐磨性能均有提高。 浇铸尼龙棒又称MC尼龙:英文名称Monomer casting nylon,中文称单体浇铸尼龙。“以塑代钢、性能卓越”,用途极其广泛。它具有重量轻、强度高、自润滑、耐磨、防腐,绝缘等多种独特性能。是应用广泛的工程塑料,几乎遍布所有的工业领域。

浇铸尼龙

浇铸尼龙 一、浇铸尼龙简介 尼龙材料以其强度高、硬度大、韧性好,低蠕变耐磨耗及化学稳定性好而著称,浇铸尼龙制品作为工程塑料之一,除具有普通尼龙材料的特点外,由于其分子量大、结晶度高,机械强度比一般尼龙高1.5倍,能直接铸造成型几十公斤乃至上百公斤大型机件,在冶金、化工.特别是当代机械装备制造产业,应用前景十分广阔。 浇铸尼龙在机械方面作为减振耐磨材料代替有色金属及合金钢,自润滑性使其不伤对磨件,减少磨耗,从而延长零件使用寿命,降低成本,并且降低了机械振动,磨擦噪音。在不宜加润滑油的传动磨耗领域(如医疗、卫生、食品行业等)更是表现出不可代替的价值。一个400公斤尼龙制品,它的实际体积相当于2.7吨钢或3吨青铜,采用MC尼龙零部件,不仅实现了设备轻量化,提高了机械效率,而且一般使用寿命可提高4-5倍。 我国自七十年代开发引进MC尼龙。但由于技术、成本、原料供应等原因,至今MC尼龙制品一直没有实现大规模自动化生产,且产品质量一直没有较大的突破。而国内MC尼龙生产中使用的催化剂体系一直没有大的改进,绝大多数厂家仍然是沿用NaOH+TDI体系。德国布吕格曼公司作为全球专业的尼龙添加剂生产商,推出新一代浇铸尼龙专用催化剂及增韧改性剂,将为您解决现在生产上的问题及大幅度提高产品性能提供了极为有力的支持。 浇铸尼龙与尼龙6的物性比较

二、传统浇铸尼龙的制备工艺以NaOH/TDI体系为例 1、配方

己内酰胺:NaOH:TDI =1:0.002:0.003 2、浇铸生产工艺(以真空脱水法为例) ①、将己内酰胺单体加热熔融,加入0.2%的催化剂NaOH,搅匀,升温抽真空,在110℃下保持15—20分钟,水分含量需降至300ppm以下。 ②、停止抽真空脱水后,加入0.3%的助催化剂TDI,搅匀后迅速浇铸到模具中。通过烘箱使模温保持在160℃-170℃,约15-20分钟,聚合反应完毕。 ③、脱模后的制品经水煮或油浴等热处理和切削、打磨等机械加工,最终成为可供使用的产品。 根据制品的设计要求,可适当调整催化剂和助催化剂的添加量。当生产改性浇铸尼龙需加入耐磨、增强、增韧组分时,需要加大催化剂和助催化剂的用量,以降低以上组分的阻聚影响。 三、新型浇铸尼龙制备工艺-BRUGGOLEN?C10/C20P 1、C10/C20P体系的配方 己内酰胺:C10:C20P =1:0.015~0.030:0.015~0.030 出于经济成本等因素的考虑,使用NaOH/C20P体系也可使聚合反应的分子量有较大幅度的提高,只是因为NaOH依旧会使制品颜色发黄。 2、因C10、C20P的常温外观都为白色小薄片,为了保证熔融混合均匀,C10、C20P应当分别熔于单独的储罐中。 3、C10/C20P体系浇铸生产工艺 ①、将己内酰胺分成两份各50%,分别放入A、B两个反应釜。接着按比例将C10、C20P 分别放入A、B两个反应釜,考虑增韧改性时,增韧剂C540应与C10同放于A反应釜。②、将A、B两个反应釜升温至110-140℃左右,真空脱水15-20分钟。

尼龙66的主要牌号与性能讲诉

尼龙66的主要牌号与性能 01.3.6.1国产尼龙66的主要性能指标 国内生产尼龙66的厂家有:黑龙江省尼龙厂、上海塑料制品十八厂、辽阳化纤工业总公司、太原合成纤维厂、神马集团、浙江衢州化工厂、宜兴太湖尼龙厂、江苏海安化工厂。其产品主要用制造各种机械、汽车、化工、电子电气装置的零部件,特别适合用于高强度或耐磨部件,如各种齿轮、滑轮、辊轴、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、衬套、各种壳体、工具手柄、支撑架、电缆包层、汽车灯罩等。在电子仪器设备、继电器等电气设备中制造零件、电梯导轨、建筑装饰扶手等。在医疗器械、体育用品和日用品上也有广泛应用,如棒球棒、滑雪板等。也可制成薄膜后与铝箔等形成复合膜用于食品包装,如软包装饮料、罐头等。表01-73列出了几家企业的尼龙66产品指标。 表01-73 国产尼龙66的性能指标 01.3.6.2阻燃增强尼龙66的主要性能指标

目前,国内尚有许多厂家从事改性尼龙66树脂的生产。生产阻燃尼龙66和阻燃增强尼龙66的主要厂家有:黑龙江省尼龙厂、黑龙江省化工研究所、上海赛璐珞厂、广州莲花山工程塑料厂、江阴市永建化工有限公司等。阻燃尼龙66主要用于低压电器、机床电器、广播电视工业中,制造各种阻燃零件如调压器开关、仪器仪表外壳和电子电气连接器等;生产玻纤增强尼龙66的主要厂家有:黑龙江省尼龙厂、上海德胜塑料厂、广州莲花山工程塑料厂、苏州塑料一厂等。产品主要应用于低压电器工业,如交流接触器底座、线圈骨架、行程开关等各种要求耐火性能的介电零件中。黑龙江省化学研究所还生产防老化尼龙。其主要指标列于表01-74中。 表01-74 国产改性尼龙66树脂的主要性能指标 01.3.6.3杜邦公司系列尼龙66产品的基本性能指标 杜邦公司是主要的尼龙66生产厂家之一,其产品型号齐全,覆盖面广,满足各行各业对尼龙66树脂的不同性能要求,见表01-75。 表01-75 杜邦公司Zytel?66树脂型号与用途

尼龙66的聚合过程与工艺

尼龙66聚合过程与工艺 尼龙, 己二胺, 反应速度, 分子量, 高分子 5 e$ G! e& K# s 己二酸和己二胺发生缩聚反应即可得到尼龙-66。工业上为了己二酸和己二胺以等摩尔比进行反应,一般先制成尼龙-66盐后再进行缩聚反应,反应式如下:+ c' j/ y: q8 `1 N'T3 ? 在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。所以体系内水的扩散速度决定了反应速度,因此在短时间内高效率地将水排出反应体系是尼龙-66制备工艺的关键所在。上述缩聚过程既可以连续进行也可以间歇进行。 在缩聚过程中,同时存在着大分子水解、胺解(胺过量时)、酸解(酸过量时)和高温裂解等使尼龙66的分子量降低的副反应。0 h( I& R3 P, V 尼龙-66盐的制备2 ?6 s: |8 x" K( Q9 J* w0 ~! \ 尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2,分子量262.35, 结构式:[+H3N(CH2)6NH3+ -OOC(CH2)4COO-]。5 y# s% \, B8 z 尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。室温下,干燥或溶液中的尼龙-66盐比较稳定,但温度高于200℃时,会发生聚合反应。其主要物理性质列于表01-63中。 表01-63尼龙-66盐的主要物理性质: j0 d1 l6 i- x 性质数据性质数据 熔点,℃ 193~197 生成热,J/kg?K 3.169×105 折射率,nD(30℃) 1.429~1.583(50%水溶液) 水中溶解率,g/ml,50℃ 54.00( M6 e: }+ Z; Q 升华温度,℃ 78 密度,g/cm3 1.2013 ~' E' ^; q, j; B 尼龙-66盐在水中的溶解度很大(见表01-69)。且随着温度上升而增大,其溶解度cs与温度的关系可描述为:cs =-376.3286+1.9224T-0.001149T2# N6 p# A! h0 L( d. W 表01-64 尼龙-66盐在水中的溶解度 温度,K 273.16 283.16 293.16 303.16 313.06 323.16 333.16 343.16 353.16 溶解度,g/ml 37.00 43.00 47.00 50.50 52.50 54.00 56.00 58.50 61.50 ( B3 u$ s" M$ a7 I (1)水溶液法3 i o* Q1 {! C0 g6 p 以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%的尼龙-66盐溶液。其工艺流程图如图01-40所示。 图01-40 水溶液法生产尼龙-66盐工艺流程1 _( D$ F: Y6 l+ ]# \: l 1—己二酸配制槽2—己二胺配制槽3—中和反应器4—脱色罐5—过滤器 6、9、11、12—贮槽7—泵8—成品反应器10—鼓风机13—蒸发反应器 ! u) z2 i2 u+ v6 ?. _$ y/ D 将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50℃、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH值在7.7~7.9。在反应结束后,用0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66盐水溶液。成盐反应为放热反应,为此必须将反应热以外循环水冷却除去,同时为防止尼龙-66盐与空气接触而被氧化,在生产系统中充以氮气保护。在真空状态下,将50%的尼龙-66盐水溶液经蒸发、脱水、浓缩、结晶、干燥,即可得到固体尼龙-66盐。一般每吨尼龙-66盐(100%)消耗己二胺(99.8%)522.64kg,己二酸(99.7%)561.9kg。

浇铸尼龙的实验报告

浇铸尼龙的实验报告 一、实验目的 1、理解尼龙6的聚合过程及聚合机理。 2、了解玻璃纤维加强下的尼龙的各项性能的提高。 3、增加自己动手的实验能力。 二、实验内容 1、在尼龙浇铸前模具的前处理; 2、尼龙的抽真空浇铸; 3、浇铸完成后处理。 三、实验原理 浇铸尼龙是阴离子本体聚合反应,通常阴离子是强碱夺取己内酰胺中氮上的氢而产生的活性离子,所谓的强碱可以用碱金属、碱土金属及其氧化物、氢化物和其它有机衍生物作催化剂,这些催化剂可以从己内酰胺单体上提取酰胺基上的氢,使之成为阴离子。在反应体系中加入酰化物质使其和己内酰胺发生反应,如加入异氰酸酯类化合物,将发生如下反应:(以NaOH为例):阴离子(I)与单体进行亲核加成,C-N键断裂,开环后形成活化中心-阴离子二聚体。

随后二聚体与单体发生活性中心转移,形成N-氨基己内酰基己内酰胺(H),单体失去一个氢生成(I)。 重复进行反应(B)(C)而形成大分子其结构式如下: 在反应(C)中,N-氨基己内酰基己内酰胺含有酰亚胺基团-CO-N-CO-,使得N-氨基己内酰基己内酰胺环上的N-C键要比己内键酰胺环上的N-C弱得多,开环所需的活化能要比己内酰胺开环所需活化能小得多。反应体系中含有酰亚胺基团的结构一旦形成,反应就能很快地进行。在形成聚合体的各步基元反应中,反应(B)是活化能最大的反应,是动力学上的决定步骤,完成该步反应所需克服的位能势垒最大,反应温度必须在200℃以上该步反应才能进行。高的反应温度使聚合反应发生的同时也产生裂解、支化等副反应。聚合反应和降解反应都能发生在酰亚胺基团上,在反应体系中加入异氰酸酯类化合物,将发生如下反应: 反应产物中含有-CO-N-CO-结构,该反应产物在反应(C)进一步和活化己内酰胺离子进行链增长反应生成大分子。 事实上,在连续的热聚合过程中,从凝胶阶段直到玻璃化阶段,聚合体基本处于橡胶态,这时候,动力学控制占主导地位;随着聚合体分子量的不断增大,玻璃化温度不断提高并达到临界值,这时聚合体便呈现玻璃态,扩散过程的速率

尼龙66国内外生产现状及发展建议精

专论综述 弹性体 , 2010 12 25, 20(6 :78~82 CH IN A EL A ST O M ERICS 收稿日期 :2010 10 22 作者简介 :华阳 (1976 , 女 , 吉林省吉林市人 , 经济师 , 主要从事化工营销工作。 尼龙 66国内外生产现状及发展建议 华阳 1, 刘振明 2, 刘权毅 3, 张立 4, 张炜 5 (1. 中国石油吉林石化公司销售管理部 , 吉林吉林 132021; 2. 中国石油 吉林石化公司研究院 , 吉林吉林 132021; 3. 中国石油吉林石化公司电子商务 部 , 吉林吉林 132021; 4. 吉林省电力有限公司四平供电公司 , 吉林四平 136000; 5. 吉林梦溪工程管理有限公司 , 吉林吉林 132021 摘要 :介绍了国内外尼龙 66的生产和市场现状 , 阐述了尼龙 66生产技术及其工艺 , 并结合我国实际情况 , 提出了尼龙 66的发展建议。 关键词 :尼龙 66; 生产 ; 市场 ; 生产技术 ; 发展建议 中图分类号 :T Q 342+. 1 文献标识码 :A 文章编号 :1005 3174(2010 06 0078 05 尼龙 (Nylon 又称聚酰胺 , 英文名称 Poly am ide(简称 PA , 是分子主链上含有重复酰胺基团 NH CO 的热塑性树脂总称 , 其包括脂肪族 PA 、脂肪芳香族 PA 和芳香族 PA 。其中 , 脂肪族 PA 品种多 , 产量大 , 应用广泛 , 其命名由合成单体 具体的碳原子数而定。 尼龙纤维和树脂是合成材料中的一大系列产品。尼龙纤维主要是由己内酰胺(CPL 开环聚合制得的尼龙 6和尼龙 66盐缩聚合而成的尼龙 66生产的 , 在我国又

尼龙前体的合成

尼龙66前体的合成 尼龙66前体的合成 实验报告 班级:应101-4 组号:11 组员:赵娜201055501445 吕建光201055501443 魏小童201055501444 时间:周六上午 一、实验目的: 1、学习由醇氧化制备酮和由酮氧化制备酸的基本原理和方法; 2、掌握由环己醇氧化制备环己酮和由环己酮氧化制备己二酸的实验操作; 3、进一步了解盐析效应在分离有机化合物中的应用; 4、综合训练并掌握控温、抽滤、蒸馏、萃取、重结晶等操作方法。 二、实验原理: 仲醇用铬酸氧化是制备酮的最常用的方法。酮对氧化剂比较稳定,不易进一步氧化。铬酸氧化醇是一个放热反应,必须严格控制反应温度以免反应过于剧烈。 羧酸常用烯烃、醇、醛、酮等经硝酸、重铬酸钾的硫酸溶液或高锰酸钾等氧化来制备。本实验以环己酮为原料,在碱性条件下以高锰酸钾为氧化剂来制备己二酸: C6H10O+MnO4-+2OH-→HOOC(CH2)4COOH+MnO2+H2O 三、实验试剂和仪器装置: 1、仪器: 圆底烧瓶(250ml、100ml),烧杯(250ml、100ml),直型冷凝管,尾接管,蒸馏头,量筒,温度计,电热炉,抽滤瓶,布氏漏斗,蒸发皿,表面皿,分液漏斗,玻璃棒,石棉网,铁架台,酒精灯 2、试剂: 浓H2SO4, Na2Cr2O7·2H2O,H2C2O4,食盐,无水MgSO4,KMnO4,NaOH,Na2S2O3,活性炭,浓HCl,环己醇 3、装置: 四、实验步骤: (一)环己酮的制备: 1、在250 ml圆底烧瓶中加入50.2ml H2O,慢慢加入9.4 ml 浓H2SO4。充分混合后,搅拌下慢慢加入9.8 ml环己醇。在混合液中放一温度计,并将烧瓶放在水浴中控制温度为30℃以下反应;

18单摆实验报告

实验:练习使用游标卡尺用单摆测定重力加速度 班级姓名座号. 一、实验目的: 1.练习使用游标卡尺,掌握读数方法。 2.用单摆测定当地的重力加速度。 二、实验原理: (一)游标卡尺 游标卡尺,是一种测量长度、内外径、深 度的量具。游标卡尺由主尺和附在主尺上 能滑动的游标两部分构成。主尺一般最小 分度值为豪米,而游标上则有10、20或50 个分格,根据分格的不同,游标卡尺可分为十分度游标卡尺、二十分度游标卡尺、五十分度格游标卡尺等,游标为10分度的有9mm,20分度的有19mm,50分度的有49mm。游标卡尺的主尺和游标上有两副活动量爪,分别是内测量爪和外测量爪,内测量爪通常用来测量内径,外测量爪通常用来测量长度和外径。 游标卡尺的读数可分为三步:第一步读出主尺的零刻度线到游标尺的零刻度线之间的整毫米数a(如右图,a=10mm);第二步根据游标尺上与主尺对齐的刻度线读出毫米以下的小数部分b(如右图,b=17×=,其中“17” 为游标尺与主尺对齐的游标尺的刻度,“”为游标卡尺的 精度);第三步把两者相加就得出待测物体的测量值c (c=a+b=).游标卡尺的读数结果一般先以毫米为单 位,然后再换算成所需要的单位。游标卡尺的读数一 般不用估读。 (二)测当地重力加速度 当单摆偏角很小时(θ<5°),单摆的运动为简谐运动,根据单摆周期T=2π l g得g =4π2l T2,因此,只需测出摆长l和周期T,便可测定g。 三、实验器材: 中心有小孔的金属小球、长约1米的细线、铁架台(带铁夹)、刻度尺、秒表、游标卡尺。 四、实验步骤: 1.制作单摆:让细线的一端穿过小球的小孔,并打一个比小孔大一些 的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放实验 桌边,使铁夹伸到桌面以外,让摆球自然下垂.且在单摆平衡位置处 作标记,如右图所示. 2.观察单摆运动的等时性. 3.测摆长:用米尺量出摆线长l′,精确到毫米,用游标卡尺测出小球

尼龙材料汇总要点

尼龙材料汇总 一、概述 1、产品定义以及中英文名称 聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA)[p?li'?maid],是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。 2、尼龙的种类 尼龙1938年在美国被成功的合成,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。尼龙的主要品种是尼龙6(聚己内酰胺)和尼龙66(聚己二酸己二胺),占绝对主导地位,其次是尼龙11、尼龙12、尼龙610、尼龙612、尼龙1010、尼龙46、尼龙7、尼龙9、尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。

尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。3、尼龙的改性 由于PA强极性的特点,吸湿性强,尺寸稳定性差,但可以通过改性来改善。 1)玻璃纤维增强PA在PA加入30%的玻璃纤维,PA 的力学性能、尺寸稳定性、耐热性、耐老化性能有明显提高,耐疲劳强度是未增强前的2.5倍。玻璃纤维增强PA的成型工艺与未增强时大致相同,但因流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40℃。由于玻纤在注塑过程中会沿流动方向取向,引起力学性能和收缩率在取向方向上增强,导致制品变形翘曲,因此,模具设计时,浇口的位置、形状要合理,工艺上可以提高模具的温度,制品取出后放入热水中让其缓慢冷却。另外,加入玻纤的比例越大,其对注塑机的塑化元件的磨损越大,最好是采用双金属螺杆和机筒。 2)阻燃PA由于在PA中加入了阻燃剂,大部分阻燃剂在高温下易分解,释放出酸性物质,对金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬铬处理。在工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。 3)透明PA具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315 ℃,成型加工时,需严格控制机筒温度,熔体

实验报告

23.实验名称:使物体发出声音 实验目的:实验探究怎样使物体发出声音,声音是怎样产生的。 实验器材:锣、鼓、钢尺、皮筋。 实验步骤: 1、用力按压锣、鼓,锣、鼓然后轻轻击打看能不能发出声音? 2、用力弯曲钢尺,钢尺然后轻轻拨动钢尺,钢尺就能发出声音吗? 3、用力拉伸橡皮筋然后轻轻拨动橡皮筋,橡皮筋能发出声音吗? 观察现象:用力按压锣、鼓,锣、鼓,物体不振动,发不出声音;轻轻击打锣、鼓,锣、鼓,物体振动了,发出了声音。 用力弯曲钢尺,钢尺并不发声;轻轻拨动钢尺,,钢尺就能发出声音。 用力拉伸橡皮筋,橡皮筋并不发声;轻轻拨动橡皮筋,橡皮筋就能发出声音。 实验结果:鼓面、钢尺和橡皮筋发声时都在振动。 24.实验名称:观察发声物体 实验目的:观察发声物体 实验器材:水槽一个、音叉一个、音叉锤一个、水。 实验步骤:1、在水槽里盛约2/3的清水,用击打过的音叉轻轻触及水面. 2.观察水面变化。 观察现象:用击打过的音叉轻轻触及水面,观察水面有波纹出现。 实验结果:水面的波纹是振动的音叉触及水面产生的。 25.实验名称:观察比较声音强弱的变化 实验目的:观察比较声音强弱的变化 实验器材:钢尺 实验步骤:1、把钢尺的一部分伸出桌面大约10厘米,用一只手压住尺子的一端,另外一只手拨动尺子的另一端。 2、先轻轻拨动钢尺,观察尺上下振动的幅度,发出的声音强弱 3、再用力拨动钢尺,与前面的实验进行比较 观察现象:轻轻拨动钢尺,尺上下振动的幅度小,发出的声音弱;用力拨动钢尺,尺上下振动的幅度大,发出的声音强。 实验结果:轻轻拨动钢尺,尺上下振动的幅度小,发出的声音弱;反之尺子上下振动的幅度大,发出的声音强。 26.实验名称:不同水量的杯子声音高低的变化 实验目的:了解不同水量的杯子声音高低的变化 实验器材:盛有不同水量的相同烧杯4个且标有编号、筷子。 实验步骤:1、用同样的力度敲击标有编号的盛有不同水量烧杯口,记录它们发出的声音。 2、重复实验3次。观察 观察现象:1号杯子发出的声音低,2号杯子发出的声音较低,3号杯子发出的声音较高,4号杯子发出的声音高。 实验结果:不同水量的杯子声音高低不同 27.实验名称:尺子的音高变化 实验目的:观察尺子的音高变化

PA66工程塑料应用

PA66工程塑料应用 一、尼龙66 - 简介 中文别名:锦纶66短纤维;聚己二酰己二胺;尼龙-66;尼龙66树脂;聚酰胺-66;聚已二酰己二胺;锦纶-66。 尼龙66的疲劳强度和钢性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。通常应用于中等载荷,使用温度<100-120度无润滑或少润滑条件下工作的耐磨受力传动零件。尼龙66为聚己二酰己二胺,工业简称PA66。常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。各种聚酰胺的共同特点是耐燃,抗张强度高(达104千帕),耐磨,电绝缘性好。 二、尼龙66 - 热性质 熔点(Tm): 熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。 玻璃化温度(Tg): 高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。一般认为尼龙-66玻璃化温度在-65℃。 物理性能: 比重:PA6 1.14克/立方厘米,PA66 1.15克/立方厘米,PA1010 1.05克/立方厘米 成型收缩率:PA6 0.8-2.5% ,PA66 1.5-2.2% 干燥条件:100-110℃/12小时 坚韧、耐磨、耐油、,耐水、抗酶菌、但吸水大 燃烧鉴别方法:火焰上端黄色,下端蓝色,燃烧后塑料熔滴落,起泡,离火后特殊的羊毛,指甲烧焦味和带芹菜味 三、尼龙66 - 特点 1.优良的力学性能。尼龙的机械强度高,韧性好。 2.自润性、耐摩擦性好。尼龙具有很好的自润性,摩擦系数小,从而,作为传动部件其使用寿命长。 3.弹性好,耐疲劳性好,可经得住数万次的双挠曲

尼龙66聚合过程与工艺

尼龙66 聚合过程与工艺 己二酸和己二胺发生缩聚反应即可得到尼龙-66 。工业上为了己二酸和己二胺以等摩尔比进行反应,一般先制成尼龙-66 盐后再进行缩聚反应。在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。所以体系内水的扩散速度决定了反应速度,因此在短时间内高效率地将水排出反应体系是尼龙-66 制备工艺的关键所在。上述缩聚过程既可以连续进行也可以间歇进行。 在缩聚过程中,同时存在着大分子水解、胺解(胺过量时) 、酸解(酸过量时)和高温裂解等使尼龙66 的分子量降低的副反应。 尼龙-66 盐的制备 尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2分子量262.35,结构式:[+H3N(CH2)6NH3+-OOC(CH2)4COO。-] 尼龙-66 盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。室温下,干燥或溶液中的尼龙-66 盐比较稳定,但温度高于200?时,会发生聚合反应。尼龙-66 盐在水中的溶解度很大,且随着温度上升而增大,其溶解度cs 与温度的关系可描述为:cs=-376.3286+1.9224 T-0.001149T2 尼龙-66 盐在水中的溶解度 温度,K 273.16 283.16 293.16 303.16 313.06 323.16 333.16 343.16 353.16 溶解度,g/ml 37.00 43.00 47.00 50.50 52.50 54.00 56.00 58.50 61.50 (1) 水溶液法 以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%

的尼龙-66 盐溶液。工艺流程: 1-己二酸配制槽2-己二胺配制槽3- 中和反应器4-脱色罐5-过滤器 6、9、11、12-贮槽7-泵8- 成品反应器10-鼓风机13- 蒸发反应器将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50?、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH 值在7.7~7.9 。在反应结束后,用0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66 盐水溶液。成盐反应为放热反应,为此必须将反应热以外循环水冷却除去,同时为防止尼龙-66 盐与空气接触而被氧化,在生产系统中充以氮气保护。在真空状态下,将50%的尼龙-66 盐水溶液经蒸发、脱水、浓缩、结晶、干燥,即可得到固体尼龙-66 盐。一般每吨尼龙- 66 盐(100%)消耗己二胺(99.8%)522.64 kg,己二酸(99.7%)561.9kg 。 本法的特点是不采用甲醇或乙醇等溶剂,方便易行,安全可靠,工艺流程短,成本低。但对原料中间体质量要求高,远途运输费用也较高。美国孟山都 普朗克公司采用本法生产。公司、杜邦公司和法国罗纳- (2)溶剂结晶法以甲醇或乙醇为溶剂,经中和、结晶、离心分离、洗涤,制得固体尼龙-66 盐。氨基和羧基经中和后形成菱形无色结晶盐,并有热量放出。工艺流程: 1-己二酸配制槽2-己二胺配制槽3- 中和反应器4-乙醇计量槽5-离心机 6- 乙醇贮槽7-蒸汽泵8、 1 1 -乙醇高位槽9-乙醇回收蒸馏塔 1 0-合格乙醇贮槽纯己二酸溶解于4倍质量的溶剂(乙醇)中,完全溶解后,移入带搅拌的中和反应器并升温到65?,慢慢加入配好的己二胺溶液,控制反应温度在75~80?。在反应终点有白色结晶析出,继续搅拌至反应完全。冷却并过滤,用乙醇洗涤数次除去杂质。最后经离心分离后尼龙-66 盐的总收率可达99.5%以上。一般每吨尼龙-66 盐耗己二胺0.46t ,己二酸0.58t ,乙醇0.3t 。

尼龙66的合成实验报告.docx

尼龙 66 的合成实验报告 班级:应 131-1 组别:第七组 组员:

尼龙 66的合成 一、实验目的 1、学习由环己醇 ( 醇氧化物 ) 制备环己酮 ( 酮氧化物 ) 原理、方法、实验操作。 2、学习由环己酮制备己二酸的原理、方法、实验操作。 3、学习尼龙 66的制造工艺,应用,发展前途。 4、熟练准确的掌握有机实验的基本操作。 二、实验原理 (一)尼龙 66的性质 尼龙 66名为聚己二酸己二胺, 为半透明或不透明的乳白色的热塑性结晶形聚合物, 相对密度 , 熔融温度 255℃ , 热分解温度大于 370℃ , 连续使用温度大于 105℃,因分子主键中含有强极性的酰胺基,而酰胺基间的氢键使分子间的结合力较强,易 使结构发生结晶化,具有较高的刚性、韧性(良好的力学性能)和优良的耐磨性、 自润滑性、染色性、耐油性及耐化学药品性和自熄性 , 其力学强度较高 , 耐热性优良 ,耐寒性好 , 使用温度范围宽[1]。因此,尼龙 66为热塑性树脂中发展最早、产量最大的品种 , 其性能优良,也是化学纤维的优良聚合材料,应用范围最广,因此产量逐年增长 , 已位居五大工程塑料之首。 (二)主要有关物质介绍 1.环己酮 环己酮( cyclohexanone ),有机化合物,是六个碳的环酮,室温下为无色油状 液体,有类似薄荷油和丙酮的气味,久置颜色变黄。微溶于水,可与大多数有机溶 剂混溶。不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具 有强烈的刺鼻臭味。易燃,与高热、明火有引起燃烧的危险,与氧化剂接触猛烈反 应,与空气混合爆炸极与开链饱和酮相同。环己酮在工业上被用作溶剂以及一些氧 化反应的触发剂,也用于制取己二酸、环己酮树脂、己内酰胺以及尼龙。 2.己二酸 己二酸( Adipicacid)又称肥酸,是一种白色的结晶体,有骨头烧焦的气味。微 溶于水,易溶于酒精、乙醚等大多数有机溶剂。当己二酸中的氧气含量高于 14%时,易产生静电引起着火。己二酸是脂肪族二元酸中最有应用价值的二元酸,能发生成 盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物, 其对眼睛、皮肤、粘膜和上呼吸道有刺激作用。己二酸是工业上具有重要意义的二 元羧酸,在化工生产、有机合成工业、医药、润滑剂制造等方面都有重要作用,也 是医药、酵母提纯、杀虫剂、香料等的原料,产量居所有二元羧酸中的第二位。中 国对己二酸的需求量极大,国内生产不能满足市场需求,因而每年都从国外大量进 口。

蛋白印迹实验报告

蛋白印迹实验报告 篇一:实验十二Western印迹鉴定目标蛋白 实验十二Western印迹鉴定目标蛋白 实验目的 1.了解Western blot的原理及其意义,掌握Western blot的操作方法; 2.应用Western blot 技术分析鉴定经SDS-PAGE分离后转移到尼龙膜上的重组蛋白。 实验原理 Western印迹法简称蛋白质印迹法。蛋白质样品经SDS-PAGE电泳后,凝胶所含的样品蛋白质区带通过电泳方法转移、固定到载体(如尼龙膜、硝酸纤维素膜)上,固相载体以非共价键的形式与蛋白质结合,从而固定住蛋白质;以膜上的蛋白或多肽为抗原,与相应的第一抗体起免疫反应,再和酶标记或同位

素标记的第二抗体反应,用适当的溶液漂洗去未结合抗体后,置含底物的溶液中温育,或通过放射自显影显出谱带,即可检测出样品中的特异蛋白组分。 试剂与器材 试剂 1.转移缓冲液:甘氨酸(39 mmol/L),Tris 碱(48mmol/L),SDS (%),200ml 甲醇(20%),定容至1,000mL; 2.封闭液:5% 脱脂奶粉,% 叠氮钠,溶于PBST溶液中; 3.丽春红S(Ponceaus)染液:丽春红S溶于1mL 冰乙酸中,加水至100mL; 洗膜液:PBS 缓冲液含% Tween 20; 5.DAB浓缩显色液(50X):DAB (二氨基联苯胺)是根过氧化物酶的底物之一,临用前稀释。 6.5 x PBS:在1600mL蒸馏水中溶解Na 2HPO4 , Na H2PO4, 40g Na Cl,

用/L NaOH调pH至,加水定容至2升。高压灭菌20 分钟,室温保存。用前稀释至1x 。 7.SDS-PAGE电泳用溶液和试剂。 器材 电泳装置一套; 2.电转移膜装置 3.抗体-酶反应摇床 操作方法 〈一〉电转移 1.将蛋白质样品进行SDS-PAGE,待溴酚蓝跑出胶后停止电泳(1)。 2.载手套切6-8张定性滤纸和一张尼龙膜,它们的大小应与凝胶的大小相同。在尼龙膜的一(左)角作一记号(或剪角),与滤纸和海棉(纤维)垫浸泡于转移缓冲液中。 3.剥胶,并将凝胶裁成合适大小,切角以做记号(2)。 4.按下图示制备“夹心饼”,打开电极板,在一边放上一块纤维垫,再依次往上叠加3-4张滤纸,将凝胶轻放于滤

相关文档