文档库 最新最全的文档下载
当前位置:文档库 › 机床回转精度指导书

机床回转精度指导书

机床回转精度指导书
机床回转精度指导书

机床主轴回转精度的测定实验指导书

上海大学机电学院机自系生产工程实验中心

2011年 10 月

一.实验概述

随着机械制造业的发展,对零件的加工精度要求越来越高,由此对机床精度要求也越来越高。作为机床核心——主轴部件的回转误差运动,直接影响机床的加工精度,它是反映机床动态性能的主要指标之一,在《金属切削机床样机试验规范》中已列为机床性能试验的一个项目。多年来,国内外一直在广泛开展对主轴回转误差运动测量方法的研究,并取得一定的成果。

研究主轴误差运动的目的,一是找出误差产生的原因,另一是找出误差对加工质量影响的大小。为此,不仅对主轴回转误差运动要能够进行定性分析,而且还要能够给出误差的具体数值。

二.实验目的

1.通过实验,熟悉机床主轴运动误差的表现特征、评定方法、及测定技术、产生原因及对

机床加工精度的影响。使同学加深理解工艺装备运动精度与加工误差的关系。

2.理解主轴回转误差的测量数据处理技术与基本原理。

三.实验内容

1.实验员演示主轴回转误差测量的全过程,讲解主轴回转精度的定义、主轴回转误差测量

原理和测量仪器的操作方法。

2.同学观察实验过程,记录实验数据,并依此完成实验数据处理,将实验数据处理过程的

计算和结果写入实验报告。

四.主轴径向误差运动的测试原理及方法

1.主轴回转误差运动

主轴回转时,在某一瞬时,旋转的线速度为零的端点联线为主轴在该瞬时的回转中心线。理想情况下,主铀回转中心线的空间位置,相对于某一固定参考系统应该是不随时间变化的。实际由于主轴轴颈的圆度误差、支承轴承的制造缺陷、主轴受力变形挠曲、主轴支承的两端对轴颈中心线不垂直以及振动等原因,使得主轴回转中心线在每一瞬时都是变动的。因而,在进行测试数据处理时,往往只能以回转主轴各瞬时回转中心线的空间平均位置作为回转主轴的“理想”中心线。

主轴瞬时回转中心线的空间位置相对理想中心线空间位置的偏差,也就是回转主轴的瞬时误差。瞬时误差的变化轨迹也就称为回转误差运动。

图 -1 主轴回转误差

如图所示,若……为主轴各瞬时的回转中心线,……为它们在空间的平均位置,即理想回转中心线,那么……便是主轴的瞬时回转误差,误差的范围也可大致看成是主轴的回转精度。依此可以推断,主轴瞬时回转中心线对其理想中心线的偏移有五种可能,即沿x、y、z 三个坐标方向的移动和绕x和y铀的转动。为了完全描述主轴回转中心线的误差,理论上要采用五个传感器同时在三个坐标方向上测量才行。但是,就这些误差的形式,基本上可分为三种:

(1)纯径向移动误差。纯径向移动误差指的是主轴各瞬时回转轴线平行于理想中心线并沿oz或oy方向移动,见图1。

(2)纯角度摆动误差。纯角度摆动误差指的是主轴回转轴线与理想轴线成倾斜角运动,即绕oz轴,oy轴作角度摆动。

(3)纯轴向窜动误差。指的是主轴各瞬时回转轴线平行于理想中心线并沿ox方向窜动。以上三种误差形式往往同时并存。当前两者同时存在时,称为径向误差运动;当后两者同时

存在时,称为端面误差运动。 主轴径向跳动分量主轴轴向窜动分量主轴摆动角分量

主轴主轴回转误差示意图后轴承前轴承传动齿轮

2.误差敏感方向

主轴回转误差对加工精度影响最大的方向,被称为敏感方向。敏感方向是通过加工或测试的瞬间接触点并平行与工件理想加工表面的法线方向,非敏感方向在垂直于敏感方向的直线上。对车床来说,敏感方向是固定的,对于镗床来说,敏感方向是随主轴旋转而旋转的。

对于工件旋转,刀具固定的机床(譬如车床),加工工件时,如果主轴径向误差运动在y 方向,则误差将以1:1的关系反映到工件表面上,如图3a 所示。该方向就是这种机床加工外圆时的误差敏感方向,且敏感方向不变。主轴误差运动在z 方向,误差对工件表面影响甚微,如图3b 所示。该方向为非敏感方向。

对于刀具旋转,工件固定的机床(譬如镗床),刀具在任何径向的误差运动,都将1:1反映到工件表面上。因此,刀尖至理想回转轴心的连线为敏感方向,且敏感方向随刀尖回转而回转。

3.主轴回转误差运动的测量法

主轴回转精度的测量方法分为工件回转型和刀具回转型两种,相应的机床有车床类和镗床类机床,对应有两种测量法,分别称为单向测量法、双向测量法。

(1)单向测量法。因为这种测量法,主轴的回转误差仅是由在一个方向上安装的传感器取得的,故称单向测量法。由于该方法只能测出在某一方向的主轴的回转误差信号,所以比较适于具有敏感方向的主轴的回转精度的测量,为此这种测量方法又称为敏感方向法。

(2)双向测量法。这种测量方法因主轴的回转误差信号是由两个相互垂直的坐标方向上安装的传感器同时取得的,故称为双坐标测量法。其测量径向误差的典型装置如图3. 6所示。在主轴上安装一标准球,在相互垂直的x和Y两个方向上各放置一位移传感器。它们输出的信号分别代表两个方向上回转误差的分量,对这两个信号进行分析就可得到主轴的回转误差。

4.测量系统的组成

单向测量法适用于测量刀具固定机床(如车床类)的主轴径向误差运动。测量时,测量仪器设备配置如图所示。图中待测机床主轴处于测量过程,旋转的主轴端部安装有测量附件。该附件的一端为夹持件,可以装夹在机床主轴的三爪卡盘内。另一端粘牢一个高精度的标准钢球。激光位移测量传感器安装在误差敏感方向。激光位移测量传感器输出信号为模拟量形式,其信号幅值与激光位移测量传感器测量端面与钢球的距离成正比。当主轴回转运动在理想状态下,距离值为一恒定不变量(设标准钢球的球圆度误差为零)。而实际上是一个变化的信号。通过对信号进行一定的处据处理,便可获得对机床主轴运动误差(径向误差运动分量)的评定值。在机床主轴后部同轴联接一个光电编码器,当它的转轴随主轴旋转时,它的输出端子上会输出4个相位相差90度的脉冲串信号,即为主轴回转运动角位移信号。该信号被送往数据采样仪,作为控制数据采样的触发信号。

图4 测量单元

整个测量系统由测量传感单元、数据采样单元、数据处理单元等组成,见图5。由数据采样单元获取的数据由数据处理计算机接收后形成数据文件(.txt文本格式)存储。

图5 主轴回转误差测量系统

四.实验过程及要求

1.实验员演示主轴回转误差测量的全过程,讲解主轴回转精度的定义、主轴回转误差测量

原理和测量仪器的操作方法。

2.同学观察实验过程,记录实验数据,使用MATLAB软件处理采样数据。完成主轴回转

误差值实验数据处理,求得主轴回转误差的评定。(实验数据处理方法可参照本实验指导书附件)

3.将实验数据处理过程的计算和结果写入实验报告。

五.实验报告内容及要求

1.简述实验系统的组成结构与原理(400字内);

2.实验数据处理方法;

3.主轴回转误差的评定。

六.实验思考题

1.什么是主轴回转误差运动?

2.什么是主轴回转精度?

3.什么是误差敏感方向?为什么在误差敏感方向测量主轴回转误差才有意义?

4.实验数据中除了主轴回转误差运动,还包含什么成份?

机床主轴回转精度实验报告

机床主轴回转精度实验报告 姓名: 学号: 实验时间: 课程名:制造技术基础 实验室:金切实验室 机械制造及其自动化 2012

一、实验概述 随着机械制造业的发展,对零件的加工精度要求越来越高,由此对机床精 度要求也越来越高。作为机床核心——主轴部件的回转误差运动,直接影响机床的加工精度,它是反映机床动态性能的主要指标之一,在《金属切削机床样机试验规范》中已列为机床性能试验的一个项目。多年来,国内外一直在广泛开展对主轴回转误差运动测量方法的研究,并取得一定的成果。 研究主轴误差运动的目的,一是找出误差产生的原因,另一是找出误差对 加工质量影响的大小。为此,不仅对主轴回转误差运动要能够进行定性分析,而且还要能够给出误差的具体数值。 二、实验目的 1.通过实验,熟悉机床主轴运动误差的表现特征、评定方法、及测定技术、产生原因及对机床加工精度的影响。使同学加深理解工艺装备运动精度与加工误差的关系; 2.理解主轴回转误差的测量数据处理技术与基本原理。 三、实验要求 1.实验员演示主轴回转误差测量的全过程,讲解主轴回转精度的定义、主轴回转误差测量原理和测量仪器的操作方法; 2.同学观察实验过程,记录实验数据,并学习使用MATLAB完成实验数据处理,将实验数据处理过程的计算和结果写入实验报告。 四、报告内容 1.简述实验系统的组成结构与原理;

2. 什么是主轴回转误差运动?造成机床主轴回转运动误差的因素可能有哪些? 3.实验数据记录与处理 数据采样时间固定为2ms; 测量距离单位为mm; 4.采用Matlab绘制极坐标误差带圆图并打印 1)从采样记录文件按单周采样点数(n)截取数据; 2)打开matlab,使用file->Import导入数据文件,数据将保存在data变量中; 3)使用命令x=(0 : 2*pi/n : 2*pi-2*pi/n )生成极坐标刻度,并进行转置x=x’; 4)使用polar(x,data)命令,绘制极坐标图。

普通车床几何精度检测

普通车床几何精度检验实验 一、实验目的 1、了解本实验中所检验的车床精度有关项目的内容及其和加工精度的关系。 2、了解车床精度的检验方法及有关仪器的使用。 3、掌握所测得的实验数据处理方法和检验结果的曲线绘制及分析。 二、主要仪器设备 1、实验机床:CA6140普通车床 2、测量仪器:合象水平仪、千分表、钢尺、磁力表座、圆柱长检验棒。 三、实验基本原理 根据普通车床精度检验标准,本实验进行其中的五项。 第一、二、三项是检验溜板移动时的轨迹,由于床身导轨的制造误差或因长期使用后的磨损及变形,使得溜板移动轨迹不是一条直线,而是一条空间曲线,这一条空间曲线可以用这三项精度来表示: 第一项:溜板移动在垂直平面内的不直度,检验方法,在溜板上靠近床身前导轨处放一个和床身导轨平行的水平仪,移动溜板,每隔200mm记录一次水平仪读数,在溜板上的全行程检验,见图一。 图一第一项精度检验示意图 根据所测得的各段水平仪读数,绘制溜板移动的运动曲线,以运动曲线二端

点的联线作为基准线,由曲线上各点作基准线的平行线,其中相距最近的二根平 行线之间的纵座标距离即为其不直度误差。 溜板移动的运动曲线作法如下: 以溜板行程为1500mm,溜板长度为500mm的车床为例,水平仪纵向安放在溜板平面上,当溜板处于近主轴端的极限位置时,记录一个水平仪读数,如+a (格)(“+”代表水平仪气泡移动方向与溜板移动方向相同,如相反,则为“-”)移动溜板,每隔500mm就记录一次读数,到移动行程为1500mm时得出三个读数,如为+b、-c、-d。以导轨长度(即溜板各段行程所在的导轨位置)为横座标,水平仪读数为纵座标,根据水平仪读数依次画出各折线段,并使每一折线段的起点与前一折线段的终点相重合,即得出运动曲线。(见图二)联接曲线二端点OD, 作为基准线,量出曲线上的B点到OD线的纵座标距离δ 全 为最远,即为溜板在全行程内的不直度误差,如果要求1000mm行程内的不直度误差,则把每个行程为1000mm之间的二端点相连,作为该1000mm行程中的基准线,找出这1000mm行程中的不直度误差,然后取各个1000mm行程的不直度误差中的最大值,即为 1000mm行程内的不直度误差,如图二中的δ m1>δ m2 ,则δ m1 即为1000mm行程内的 不直度误差。 δ δ δ 图二溜板移动的运动曲线

主轴动态回转精度测试介绍

主轴动态回转精度测试介绍 一、前言 数控机床主轴组件的精度包含以下两个方面:1.几何精度-主轴组件的几何精度,是指装配后,在无负载低速转动(用手转动或低速机械转速)的条件下,主轴轴线和主轴前端安装工件或刀具部位的径向和轴向跳动,以及主轴对某参考系统(如刀架或工作台的纵、横移动方向)的位置精度,如平行度和垂直度等;2.回转精度-指的是主轴在以正常工作转速做回转运动时,轴线位置的变化。 二、主轴回转精度的定义 主轴在作转动运动时,在同一瞬间,主轴上线速度为零的点的联机,称为主轴在该瞬间的回转中心线,在理想状况下,主轴在每一瞬间的回转中心线的空间位置,相对于某一固定的参考系统(例如:刀架、主轴箱体或数控机床的工作台面)来说,应该是固定不变的。但实际上,由于主轴的轴颈支承在轴承上,轴承又安装在主轴箱体孔内,主轴上还有齿轮或其它传动件,由于轴颈的不圆、轴承的缺陷、支承端面对轴颈中心线的不垂直,主轴的挠曲和数控机床结构的共振等原因,主轴回转中心线的空间位置,在每一瞬时都是变动的。把回转主轴的这些瞬间回转中心线的平均空间位置定义为主轴的理想回转中心线,而且与固定的参考坐标系统联系在一起。这样,主轴瞬间回转中心线的空间位置相对于理想中心线的空间位置的偏离就是回转主轴在该瞬间的误差运动。这些瞬间误差运动的轨迹,就是回转主轴误差运动的轨迹。主轴误差运动的范围,就是所谓的「主轴回转精度」。由此可见,主轴的回转精度,说明回转主轴中心线空间位置的稳定性特点。 三、主轴回转精度量测 3.1 主轴回转误差运动的测量与研究目的 对主轴回转误差运动的测量和研究有两方面的目的:

(1).从设计、制造的角度出发,希望通过测量研究找出设计、制造因素与主轴误差运动的关系,及如何根据误差运动的特点,评定主轴系统的设计和制造质量,同时找出产生误差运动的主要原因,以便做进一步改善。 (2).从使用的角度出发,希望找出主轴运动与加工精度和表面粗糙度的关系,及如何根据误差运动的特点,预测出数控机床在理想条件下所能加工出的工件几何与表面粗糙度,给选用数控机床及设计数控机床提出依据。 3.2 主轴回转精度之测试方法 主轴回转精度之测量方法,有直接测量法与间接测量法(试件法)两大类,其中直接测量法又有静态与动态测量两种方式。 (1).静态测试法- 在主轴锥孔中插入精密之测试棒,用量表接触试棒的表面和端面,轻轻旋转主轴量测在不同角度上的读值。优点:测量方法简单,容易操作,能检验出主轴锥孔中心线与回转中心线是否同心;缺点:不能反映主轴在实际工作转速下的误差运动,且不能反映该误差运动可能造成的加工形状误差及对表面粗糙度的影响。 (2).动态测试法- 以标准试棒偏心安装,在径向固定两互相垂直的位移传感器,再轴向另安装一垂直方向的位移传感器,其信号经放大器输入示波器,测量旋转敏感方向的主轴误差运动。 3.3 运动误差图名词解释 (1).总误差运动(Total Error Motion)-以足够多的圈数记录下的全部误差极坐标图,它代表主轴在一定转速下的误差运动情形。 (2).平均误差运动(Average Error Motion)-是总误差运动极坐标图的平均轮廓线,代表该机台在理想切削条件下所能加工出零件的最好圆度。

数控车床几何精度检测

数控车床几何精度检测 1.床身导轨的直线度和平行度 ☆纵向导轨调平后,床身导轨在垂直平面内的直线度 检验工具:精密水平仪 检验方法:如0001 所示,水平仪沿Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,并记入“报告要求”中的表 1 中,并用作图法计算出床身导轨在垂直平面内的直线度误差。 ☆横向导轨调平后,床身导轨的平行度 检验工具:精密水平仪 检验方法:如0002 所示,水平仪沿X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。

2.溜板在水平面内移动的直线度 检验工具:指示器和检验棒,百分表和平尺 检验方法:如0003 所示,将直验棒顶在主轴和尾座顶尖上;再将百分表固定在溜板上,百分表水平触及验棒母线;全程移动溜板,调整尾座,使百分表在行程两端读数相等,检测溜板移动在水平面内的直线度误差。 3.尾座移动对溜板移动的平行度 ☆垂直平面内尾座移动对溜板移动的平行度 ☆水平面内尾座移动对溜板移动的平行度 检验工具:百分表 检验方法:如0004 所示,将尾座套筒伸出后,按正常工作状态锁紧,同时使尾座尽可能的靠近溜板,把安装在溜板上的第二个百分表相对于尾座套筒的端面调整为零;溜板移动时也要手动移动尾座直至第二个百分表的读数为零,使尾座与溜板相对距离保持不变。按此法使溜板和尾座全行程移动,只要第二个百分表的读数始终为零,则第一个百分表相应指示出平行度误差。或沿行程在每隔300mm 处记录第一个百分表读数,百分表读数的最大差值即为平行度误差。第一个指示器分别在图中ab 位置测量,误差单独计算。

4.主轴跳动 ☆主轴的轴向窜动 ☆主轴的轴肩支承面的跳动 检验工具:百分表和专用装置 检验方法:如0005 所示,用专用装置在主轴线上加力 F ( F 的值为消除轴向间隙的最小值),把百分表安装在机床固定部件上,然后使百分表测头沿主轴轴线分别触及专用装置的钢球和主轴轴肩支承面;旋转主轴,百分表读数最大差值即为主轴的轴向窜动误差和主轴轴肩支承面的跳动误差 5.主轴定心轴颈的径向跳动 检验工具:百分表 检验方法:如0006 所示,把百分表安装在机床固定部件上,使百分表测头垂直于主轴定心轴颈并触及主轴定心轴颈;旋转主轴,百分表读数最大差值即为主轴定心轴颈的径向跳动误差

车床几何精度检测及调整

实验三车床几何精度检测及调整 实验项目性质:综合性 实验计划学时:2学时 一、实验目的 1、了解进行车床几何精度检测、加工精度检测常用的工具及其使用方法 2、了解ISO标准、GB中常见的机床几何精度及加工精度检测项目标准数据。 3、掌握机床几何精度概念。 二.实验原理 机床的加工精度是衡量机床性能的一项重要指标。影响机床加工精度的因素很多 , 有机床本身的精度影响 , 还有因机床及工艺系统变形、加工中产生振动、机床的磨损以及刀具磨损等因素的影响。在上述各因素中 ,机床本身的精度是一个重要的因素。 例如在车床上车削圆柱面 ,其圆柱度主要决定于工件旋转轴线的稳定性、车刀刀尖移动轨迹的直线度以及刀尖运动轨迹与工件旋转轴线之间的平行度 ,即主要决定于车床主轴与刀架的运动精度以及刀架运动轨迹相对于主轴的位置精度。 机床的精度包括几何精度、传动精度、定位精度以及工作精度等 , 不同类型的机床对这些方面的要求是不一样的。车床的几何精度,是指车床在不工作情况下,对车床工作精度有直接影响的零部件本身及其相互位置的几何精度。属于这类精度的有:车床溜板移动的直线性及其与它表面间相互的不平行度;车床主轴的径向跳动和轴向窜动,及其中心线与溜板移动方向的不平行度;主轴锥孔中心线对机床导轨的不等距离等等。 三、实验步骤 1.床身导轨的直线度和平行度 ☆纵向导轨调平后,床身导轨在垂直平面内的直线度 检验工具:精密水平仪 检验方法:如图所示,水平仪沿 Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,并记入“报告要求”中的表 1 中,并用作图法计算出床身导轨在垂直平面内的直线度误差。 ☆横向导轨调平后,床身导轨的平行度 检验工具:精密水平仪 检验方法:如图所示,水平仪沿 X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。

机床主轴回转误差运动测试(精)

综合实验一机床主轴的回转误差运动测试 1、实验目的 加工高精度的机械零件,对机床主轴的回转精度有非常高的要求。测量机床主轴的误差运动可以了解机床主轴的回转状态,分析误差产生的原因。通过机床主轴回转误差运动测试,要求学生: (1) 了解机床的主轴回转误差运动的测试方法。 (2) 熟悉传感器的基本工作原理。 (3) 掌握传感器的选用原则及测试系统的基本组成。 (4) 熟悉并掌握仪器的基本操作方法。 (5) 基本掌握数据处理与图像分析方法。 2、实验原理 本实验使用两种方法进行误差运动测试: (1) 带机械消偏的单向法直角座标显示的误差运动测试,见本实验的背景材料中的图 1-9。 (2) 电气消偏单向法圆图像显示的回转轴误差运动测试,见本实验的背景材料中的图 1-13。 3、实验对象 以C6140普通车床的回转主轴为研究对象,测试其在回转情况下的误差运动。 根据测试数据,用图像分析方法表示误差运动,分析误差运动产生的原因。 4、主要实验仪器和设备 (1) C6140普通车床 (2) 回转精度测试仪 (3) 涡流测振仪 (4) 信号发生器 (5) 双踪示波器 (6) 数字式万用表 (7) 可调偏心的测量装置 5、实验步骤 5.1 带机械消偏的单向法直角座标显示的回转轴误差运动测试 (1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作用及操 作方法; (2) 按照原理框图正确地将系统中各仪器的信号线连通;

(3) 调整标准盘1(作为补偿信号)和标准盘2(作为误差的测量信号)的偏心量,标准盘2 的偏心量e2应尽可能小,仅稍大于被测量轴回转误差值,以保证得到信号即可,偏心量一般调整到0.03mm~0.05mm;标准盘1的偏心量e1应尽可能调大,大到使被测量轴回转误差值相对于偏心量可以忽略不计,及得到一个接近于纯偏心信号的光滑曲线,但因受涡流传感器工作间隙的限制,偏心量无法无限制地加大,一般调到0.40mm~0.60mm即可,并使e1和e2相差180o; (4) 经指导老师检查系统连接正确后,接通电源预热仪器; (5) 按测振仪使用要求调整好涡流传感器的工作间隙; (6) 调整好机床转速,启动机床; (7) 调整测振仪灵敏度,使之满足下面的关系式:e1.k1传感.k1测振仪= e2.k2传感.k2测振仪 (8) 将满足以上关系式的两路输出信号经加法器(借用回转精度测试仪后面板上的加 法器,此时应将总接口插板抽出)相加,在示波器上得到误差曲线,曲线上最高点与最低点的高度差即为圆度误差的相对值,曲线最大的垂直度即为粗糙度的相对值; (9) 标定,方法为:用正弦信号发生器输出一标准正弦信号,使其幅值为测振仪当前 档位(如30um档)的满量程输出的电压值,将该正弦信号送入加法器输入端,在示波器上得到一幅值为A mm的正弦信号,则该测量系统的标定系数为30um/A mm; (10) 求出绝对误差=相对误差(mm)×30um/A mm; (11) 停机床、关仪器,并拆除仪器的所有连接线,整理现场。 5.2 电气消偏单向法圆图像显示的回转轴误差运动测试 (1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作用及操 作方法; (2) 按原理框图正确连接好系统,仅用误差测量信号(即标准盘2的信号),并将回转 精度测试仪的总接口板插入插座中; (3) 经指导老师检查连线无误后,接通电源预热仪器; (4) 调整好机床转速,启动机床; (5) 调整基圆: (6) 回转精度测试仪产生基圆的原理:将测振仪的输出信号接入回转精度测试仪的S 输入端,由带通III从该信号选出与主轴同频的一次谐波,为了消除机床振动所引起的一次谐波的幅值变化对基圆的影响,用限幅放大器对一次谐波进行限幅,再用带通I选出稳定的一次谐波,然后将一次谐波分为两路,一路经移相器B移相90o,另一路不移相,将两路信号送示波器垂直输入端(Y端)和水平输入端(X端)叠加而产生基圆。 (7) 基圆的调整:首先根据机床转速n确定带通III和带通I所要通过的一次谐波的频 率。 (8) 调节带通III的频率粗调开关,使一次谐波的频率包括在开关所指的频率范围内, 如机床n=900转/分,则频率f=900/60=15Hz,粗调开关置在30位置。调整频率微调电位器,直到示波器上出现的正弦信号的幅值为最大(将带通III的输出端与示波器的Y端相连)。带通I的调整与带通III相同。 (9) 将示波器的X、Y端分别接回转精度测试仪的X、Y输出端,调节移相器B的移 相旋钮,使输出输入端相差90o(在示波器上得到一正椭圆图形),再调整增益电位器改变其幅值,在示波器上得到一个真圆,这个圆就是基圆。 (注意:调整基圆时一定将移相器A的增益关断)

主轴回转精度的测定

实验主轴回转精度的测定 一、 概述 随着机械制造业的发展,对零件的加工精度要求越来越高,由此对机床精度要求也越来越高。作为机床核心——主轴部件的回转误差运动,直接影响机床的加工精度,它是反映机床动态性能的主要指标之一,在《金属切削机床样机试验规范》中已列为机床性能试验的一个项目。多年来,国内外一直在广泛开展对主轴回转误差运动测量方法的研究,并取得一定的成果。 研究主轴误差运动的目的,一是找出误差产生的原因,另一是找出误差对加工质量影响的大小。为此,不仅对主轴回转误差运动要能够进行定性分析,而且还要能够给出误差的具体数值。 过去流行的测试与数据处理方法,是传统的捷克VUOSO双向测量法和美国LRL单向测量法。前者适用于测试刀具回转型主轴径向误差运动,后者适用于测试工件回转型主轴径向误差运动。两种方法都是在机床空载或模拟加工的条件下,通过对基准球(环)的测量,在示波器屏幕上显示出主轴回转而产生的圆图象。将圆图象拍摄下来便可用圆度样板读取主轴径向误差运动数值。这种测试方法虽然能够在试验现场显示图形,直观性强,便于监视机床的安装调试,但也存在一些不足,如基准钢球的形状误差会复映进去,不能反映切削受载状态,存在一定的原理误差等。所以测量精度难以提高,实际应用受到一定限制。 经过多年的研究,目前主轴误差运动主轴误差运动的测试与数据处理方法有了很大的改进,引入频镨分析理论和FFT变换技术,通过用计算机来进行测量数据处理,使整个测量过程更方便、数据处理更科学、测量结果更正确。 二、 实验目的 1.了解机床主轴回转误差运动的表现形式、定义、评判原则、产生原因及对机床加工精度的影响。 2.懂得主轴回转误差的测量方法及实验原理。 三、 主轴径向误差运动的测试原理及方法 1.主轴回转误差运动 主轴回转时,在某一瞬时,旋转的线速度为零的端点联线为主轴在该瞬时的回转中心线。理想情况下,主铀回转中心线的空间位置,相对于某一固定参考系统应该是不随时间变化的。实际人由于主轴轴颈不圆、轴承存在缺陷、主轴挠曲、轴支承的两端对轴颈中心线不垂直以及振动等原因,使得主轴回转中心线在每一瞬 时都是变动的。因而,在进行测试数据处理时, 往往只能以回转主轴各瞬时回转中心线的空间 平均位置作为回转主轴的“理想”中心线。主 轴瞬时回转中心线的空间位置相对理想中心线 空间位置的偏差,也就是回转主轴的瞬时误差。 瞬时误差的变化轨迹也就称为回转误差运动。 如图2-l所元,若o1o1,……,o i o i为主轴各瞬 图2-1主轴瞬时回转误差 时的回转中心线,oo为它们在空间的平均位置, 即理想回转中心线,那么,δ0,……,δi便是主轴的瞬时回转误差,误差的范围也可大致看成是主铀的回转精度。 可以想象,主轴瞬时回转中心线对其理想中心线的偏移有五种可能,即沿x,y,z三个坐标方向的移动和绕x和y铀的转动。为了完全描述主轴回转中心线的误差,理论上要采

机床精度检测方法

大型数控机床验收的几个问题 对集机、电、液、气于一体的进口大型数控机床(含加工中心)的验收,无论是预验收、还是最终验收,都是十分重要的。它是对机床设计、制造、安装调试的质量,特别是对机床精度的总体检验。它直接关系到机床的功能、可靠性、加工精度和综合加工能力。 然而在实际验收中,常常会出现一些带有技术性或管理性的问题。如果不能得到及时的正确处理,将会影响到机床的验收质量。 1 定位精度的检测 检测机床的定位精度,常用标准有两种: ·德国VDI/DGQ3441标准(机床运行精度和定位精度的统计方法)。 ·美国AMT标准(美国机械制造技术协会制定)。 用两个标准,测量数据的整理均采用数理统计方法。即沿平行于坐标轴的某一测量轴线选取任意几个定位点(一般为5~15个),然后对每个定位点重复进行多次定位(一般为5~13次)。可单向趋近定位点,也可以从两个方向分别趋近,然后对测量数据进行统计处理,求出算术平均值。进而求出平均值偏差、标准差、分散度。分散度代表重复定位精度,它和平均值偏差一起构成定位精度,两者之和是在任意两点间定位时可能达到的最大定位偏差。 由于被测坐标轴长度不尽相同,因而其定位精度的线性允差的给定方式不应是单一的,而应有所区别。国标GB10931-89数字控制机床位置精度的评定方法中规定,轴线定位精度线性允差的给定方式主要有以下几种: ·在全行程上规定允差; ·根据被测对象长度分段规定允差; ·用局部公差方式规定允差; 既规定局部公差,同时也规定全行程允差。 东方汽轮机厂从德国科堡(COBURG)公司进口工作台5m×17m的数控龙门铣床(下称龙门铣),共有X、Y、Z、W四个坐标轴。只有Z轴长度小于2m、最长的X轴全行程为17.70m;从意大利贝拉尔蒂(BRERADI)公司进口的镗杆直径 250mm

机床主轴回转精度实验报告什么是主轴回转精度.docx

机床主轴回转精度实验报告|什么是主轴回转精度 机床主轴回转精度实验报告 姓名:学号:实验时间:课程名:制造技术基础 实验室:金切实验室 机械制造及其自动化 2012 一、实验概述 随着机械制造业的发展,对零件的加工精度要求越来越高,由此对机床精度要求也越来越高。作为机床核心——主轴部件的回转误差运动,直接影响机床的加工精度,它是反映机床动态性能的主要指标之一,在《金属切削机床样机试验规范》中已列为机床性能试验的一个项目。多年来,国内外一直在广泛开展对主轴回转误差运动测量方法的研究,并取得一定的成果。 研究主轴误差运动的目的,一是找出误差产生的原因,另一是找出误差对加工质量影响的大小。为此,不仅对主轴回转误差运动要能够进行定性分析,而且还要能够给出误差的具体数值。二、实验目的 1. 通过实验,熟悉机床主轴运动误差的表现特征、评定方法、及测定技术、产生原因及对机床加工精度的影响。使同学加深理解工艺装备运动精度与加工误差的关系; 2. 理解主轴回转误差的测量数据处理技术与基本原理。 三、实验要求 1. 实验员演示主轴回转误差测量的全过程,讲解主轴回转精度的定义、主轴回转误差测量原理和测量仪器的操作方法; 2. 同学观察实验过程,记录实验数据,并学习使用MATLAB 完成实验数据处理,将实验数据处理过程的计算和结果写入实验报告。 四、报告内容 1. 简述实验系统的组成结构与原理; 2. 什么是主轴回转误差运动?造成机床主轴回转运动误差的因素可能有哪些? 3. 实验数据记录与处理数据采样时间固定为 2ms ;测量距离单位为 mm ; 4. 采用Matlab 绘制极坐标误差带圆图并打印 1)从采样记录文件按单周采样点数(n)截取数据; 2)打开matlab ,使用file->Import导入数据文件,数据将保存在data 变量中;3)使用命令 x=(0 : 2*pi/n : 2*pi-2*pi/n )生成极坐标刻度,并进行转置x=x’; 4)使用polar (x ,data )命令,绘制极坐标图。

数控机床精度检验

数控机床精度检测 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1、检验所用的工具 1.1、水平仪 水平:0.04mm/1000mm 扭曲:0.02mm/1000mm 水平仪的使用和读数 水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。 使用方法: 测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算: 实际倾斜值=分度值×L×偏差格数

水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。 1.2、千分表

1.3、莫氏检验棒

2、检验内容 2.1、相关标准(例) 加工中心检验条件第2部分:立式加工中心几何精度检验JB/T8771.2-1998 加工中心检验条件第7部分:精加工试件精度检验JB/T8771.7-1998 加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998 机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000 加工中心技术条件JB/T8801-1998 2.2、检验内容 精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。 2.2.1、数控机床几何精度的检测 机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。所使用的检测工具精度必须比所检测的精度高一级。其检测项目主要有: 直线度 一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度。 部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度。 运动的直线度,如立式加工中心X轴轴线运动的直线度。 平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度。 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度。 等距度,如立式加工中心定位孔与工作台回转轴线的等距度。 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 旋转 径向跳动,如数控卧式车床或主轴定位孔的径向跳动。 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动。 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 2.2.2、机床的定位精度检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值判断机床是否合格。其内容有:

机床主轴的回转误差运动测试(精)

实训三机床主轴的回转误差运动测试 1.实验目的 加工高精度的机械零件,对机床主轴的回转精度有非常高的要求。测量机床主轴的误差运动可以了解机床主轴的回转状态,分析误差产生的原因。通过机床主轴回转误差运动测试,要求学生: (1) 了解机床的主轴回转误差运动的测试方法。 (2) 熟悉传感器的基本工作原理。 (3) 掌握传感器的选用原则及测试系统的基本组成。 (4) 熟悉并掌握仪器的基本操作方法。 (5) 基本掌握数据处理与图像分析方法。 2.实验原理 本实验使用两种方法进行误差运动测试: (1) 带机械消偏的单向法直角座标显示的误差运动测试,见本实验的背景材料 中的图1-9。 (2) 电气消偏单向法圆图像显示的回转轴误差运动测试,见本实验的背景材料 中的图1-13。 3.实验对象 以C6140普通车床的回转主轴为研究对象,测试其在回转情况下的误差运动。根据测试数据,用图像分析方法表示误差运动,分析误差运动产生的原因。 4.主要实验仪器和设备 (1) C6140普通车床 (2) 回转精度测试仪 (3) 涡流测振仪 (4) 信号发生器 (5) 双踪示波器 (6) 数字式万用表 (7) 可调偏心的测量装置

5.实验步骤 1.1.1 5.1 带机械消偏的单向法直角座标显示的回转轴误差运动测试 (1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作 用及操作方法; (2) 按照原理框图正确地将系统中各仪器的信号线连通; (3) 调整标准盘1(作为补偿信号)和标准盘2(作为误差的测量信号)的偏心量, 标准盘2的偏心量e2应尽可能小,仅稍大于被测量轴回转误差值,以保证得到信号即可,偏心量一般调整到0.03mm~0.05mm;标准盘1的偏心量e1应尽可能调大,大到使被测量轴回转误差值相对于偏心量可以忽略不计,及得到一个接近于纯偏心信号的光滑曲线,但因受涡流传感器工作间隙的限制,偏心量无法无限制地加大,一般调到0.40mm~0.60mm即可,并使e1和e2相差180o; (4) 经指导老师检查系统连接正确后,接通电源预热仪器; (5) 按测振仪使用要求调整好涡流传感器的工作间隙; (6) 调整好机床转速,启动机床; (7) 调整测振仪灵敏度,使之满足下面的关系式:e1.k1传感.k1测振仪= e2.k2传感.k2测振 仪 (8) 将满足以上关系式的两路输出信号经加法器(借用回转精度测试仪后面板 上的加法器,此时应将总接口插板抽出)相加,在示波器上得到误差曲线,曲线上最高点与最低点的高度差即为圆度误差的相对值,曲线最大的垂直度即为粗糙度的相对值; (9) 标定,方法为:用正弦信号发生器输出一标准正弦信号,使其幅值为测振 仪当前档位(如30um档)的满量程输出的电压值,将该正弦信号送入加法器输入端,在示波器上得到一幅值为A mm的正弦信号,则该测量系统的标定系数为30um/A mm; (10) 求出绝对误差=相对误差(mm)×30um/A mm; (11) 停机床、关仪器,并拆除仪器的所有连接线,整理现场。 1.1.2 5.2 电气消偏单向法圆图像显示的回转轴误差运动测试 (1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作 用及操作方法; (2) 按原理框图正确连接好系统,仅用误差测量信号(即标准盘2的信号), 并将回转精度测试仪的总接口板插入插座中; (3) 经指导老师检查连线无误后,接通电源预热仪器; (4) 调整好机床转速,启动机床;

数控机床精度的检测龚正伟

数控机床精度的检测 论文关键词: 数控机床;几何精度;定位精度;切削精度;检测与注意事项。 论文摘要: 现代数控机床集合了电子计算机、伺服系统、自动控制系统、精密测量系统及新型机构等先进技术,能够加工形状复杂、精密、批量零件,并且具有加工精度高、生产效率高、适应性强等特点。随着我国制造业的快速发展,数控机床在机械制造业已得到广泛应用,且对数控机床的精度要求也越来越高。如何检测数控机床的精度,正成为各行业用户在验收与维护数控机床时非常关注的问题。机床的精度主要包括机床的几何精度、机床的定位精度和机床的切削精度。根据我在日常工作中所积累的经验,就这些精度的检测项目、检测方法及注意事项进行综合的说明: 检验目的:了解进行数控机床几何精度检测、加工精度检测常用的工具及其使用方法 检验要求:了解ISO标准、GB中常见的数控机床几何精度及加工精度检测项目标准数据,掌握数控机床几何精度、加工精度检测方法。 检验内容:机床调平、常见几何精度检测、常见加工精度检测 数控车床精度检测 1.床身导轨的直线度和平行度 检验工具:精密水平仪 检验方法:(1)水平仪沿Z 轴向放在溜板上,沿导轨全长等距离在各位置上检验,记录水平仪的读数,并计算出床身导轨在垂直平面内的直线度误差。(2)水平仪沿X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。2.溜板在水平面内移动的直线度 检验工具:指示器和检验棒,百分表和平尺 检验方法:将直验棒顶在主轴和尾座顶尖上;再将百分表固定在溜板上,百分表水平触及验棒母线;全程移动溜板,调整尾座,使百分表在行程两端读数相等,检测溜板移动在水平面内的直线度误差。 3.主轴跳动 检验工具:百分表和专用装置 检验方法:用专用装置在主轴线上加力 F ( F 的值为消除轴向间隙的最小值),把百分表安装在机床固定部件上,然后使百分表测头沿主轴轴线分别触及专用装置的钢球和主轴轴肩支承面;旋转主轴,百分表读数最大差值即为主轴的轴向窜动误差和主轴轴肩支承面的跳动误差 4.主轴锥孔轴线的径向跳动 检验工具:百分表和验棒 检验方法:将检验棒插在主轴锥孔内,把百分表安装在机床固定部件上,使百分表测头垂直触及被测表面,旋转主轴,记录百分表的最大读数差值,在a、b 处分别测量。标记检棒与主轴的圆周方向的相对位置,取下检棒,同向分别旋转检棒90 度、180 度、270 度后重新插入主轴锥孔,在每个位置分别检测。取4次检测的平均值即为主轴锥孔轴线的径向跳动误差 5.主轴轴线(对溜板移动)的平行度 检验工具:百分表和验棒 检验方法:将检验棒插在主轴锥孔内,把百分表安装在溜板上,然后:(1)使百分表

回转精度分析与测试方法

回转精度分析与测试方法 回转精度的测试方法及原理 作回转运动的主轴,可将其看成为一个刚体,它与自由运动刚体的差别仅在于空间直角坐标系中,它只有一个旋转运动的自由度,其它五个自由度应完全被约束,满足这种条件时,回转主轴为理想主轴,事实上,任何精度轴系,其被约束的自由度都作微小量的运动,并对主轴的旋转运动产生影响,造成回转运动误差,当主轴作为一个部件存在于一台机器中时,主轴回转轴线在空间五个自由度上的误差分量,并不是等量影响轴系的精度,而是具有其敏感方向的,往往因机器用途不同,而其误差对整机的影响不同。转台主轴回转轴线轴向和径向的平动,不影响转台主轴的指向,其主轴回转运动误差的敏感方向,是两个自由度上的角度摆动。因此,转台轴的倾角回转误差指的 是回转轴相对于回转轴线平均线的倾角变化量。 造成回转误差的主要有:1、台体框架扭转变形造成的误差,这与框架的扭转刚度和轴承的摩擦系数以及驱动时的力矩不平衡等因素有关,由于该误差很小,可忽略不计;2、轴系和滚珠的磨损、间隙和跳动的误差,如果选择合适的轴系可使误差达到很小的程度;3、台体安装中由于检测端轴和测角端轴双轴的不同心度和不平行度引起 的误差,这是U 型框架所特有的结构造成的,而且实践也证明这是机械回转误差的主要来源。在测试方式上,通常可以使用水平仪、千分表或者平行光管来测量。这里介绍用平行光管测试回转精度的方

法。在这种方法中用到的仪器有平行光管、平面镜、数显电箱以及专门设计的夹具。下面介绍一下平行光管的工作原理。 自准直仪(又称自准直测微平行光管,简称平行光管)是一种应用光学自准直成像测微原理工作的高精度测试仪器。它把准直仪和望远镜合二为一,利用光学自准直法,把角度量变化为线性量,通过测微器测出其线性变化从而间接地把角度测量出来,并由此确定测量反射面微小角度变化。 如果反射镜面与光束不垂直,而是偏转一个小角度α,那么当平行光轴的光线射向反射镜时,光线按反射定律与原光线成2α返回,通过物镜后成像在焦平面分化板上的处,与原目标不重合而有'的位移量(即为x)。根据平行光管的测角原理,利用平行光管和反射镜,能够实现对转轴旋转精度的测试

机床几何精度检查方法

在机床完成空运行及相关功能检测后,数控机床的安装调试过程就进入了精度检验环节,这个环节也是用户和设备提供方最关心和最重要的环节,也是设备检测验收中最常见的环节。数控机床全部检测验收是一项复杂的工作,对检测手段及技术要求也很高。它需要使用各种高精度的仪器,对机床的机、电、液、气等各部分性能及整机综合性能进行检测,最后才能对该机床得出综合结论。这项工作目前在国内只有国家权威部门(如国家机床质量监督检验中心)才能进行。对一般的数控机床用户、购买一台价格昂贵的数控机床后,千万不要吝啬几千元的验收费用,至少应对数控机床的几何精度、位置精度、工作精度及功能等重要指标进行验收,确保达到合同所约定的验收标准的要求,并将这些数据保存好,以作为日后机床维修调整时的依据。同时要对采购合同中约定的重要条款进行详细的检验验收 (一)、直线度 1、一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度; 2、部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度; 3、运动的直线度,如立式加工中心X轴轴线运动的直线度。 长度测量方法有:平尺和指示器法,钢丝和显微镜法,准直望远镜法和激光干涉仪法。角度测量方法有:精密水平仪法,自准直仪法和激光干涉仪法。(二)、平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。(三)、平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度;运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度;等距度,如立式加工中心定位孔与工作台回转轴线的等距度;同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。测量方法有:平尺和指示器法,精密水平仪法,指示器和检验棒法。(四)、垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度;运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 测量方法有:平尺和指示器法,角尺和指示器法,光学法(如自准直仪、光学角尺、放射器) 五)、旋转

数控机床定位精度检测的方式

数控机床定位精度检测的方式 目前,由于数控系统功能越来越多,对每个坐喷射器标运动精度的系统误差如螺距积累误差、反向间隙误差等都可以进行系统补偿,只有随机误差没法补偿,而重复定位精度正是反映了进给驱动机构的综合随机误差,它无法用数控系统补偿来修正,当发现它超差时,只有对进给传动链进行精调修正。因此,如果允许对机床进行选择,则应选择重复定位精度高的机床为好。 1.直线运动定位精度检测 直线运动定位精度一般都在机床和工作台空载条件下进行。按国家标准和国际标准化组织的规定(ISO标准),对数控机床的检测,应以激光测量为准。在没有激光干涉仪的情况下,对于一般用户来说也可以用标准刻度尺,配以光学读数显微镜进行比较测量。但是,测量仪器精度必须比被测的精度高1~2个等级。 为了反映出多次定位中的全部误差,ISO标准规定每一个定位点按五次测量数据算平均值和散差-3散差带构成的定位点散差带。 2.直线运动重复定位精度检测 检测用的仪器与检测定位精度所用的相同。一般检测方法是在靠近各坐标行程中点及两端的任意三个位置进行测量,每个位置用快速移动定位,在凯威凯达相同条件下重复7次定位,测出停止位置数值并求出读数最大差值。以三个位置中最大一个差值的二分之一,附上正负符号,作为该坐标的重复定位精度,它是反映轴运动精度稳定性的最基本指标。 3.直线运动的原点返回精度检测 原点返回精度,实质上是该坐标轴上一个特殊点的重复定位精度,因此它的检测方法完全与重复定位精度相同。 4.直线运动的反向误差检测 直线运动的反向误差,也叫失动量,它包括该坐标轴进给传动链上驱动部位(如伺服电动机、伺趿液压马达和步进电动机等)的反向死区,各机械运动传动副的反向间隙和弹性变形等误差的综合反映。误差越大,则定位精度和重复定位精度也越低。 反向误差的检测方法是在所测坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为7次),求出各个位置上的平均值,以所得平均值中的最大值为反向误差值。

数控机床主轴旋转精度及测量方法

数控机床主轴旋转精度及测量方法 来源:对钩网 主轴是数控机床中的核心设备之一,担负着从机床电动机接受动力并将之传递给其他机床部件的重要责任。工作中,要求主轴必须在承担着一定的荷载量,以及保持适当的旋转速度的前提条件下,带动在其控制范围之内的工件或者刀具,绕主轴旋转中心线进行精确、可靠而又稳定的旋转。主轴的旋转精度直接决定了机床的加工精度。 主轴旋转精度的定义 机床主轴精度大小是以其瞬时旋转中心线与理想旋转中心线的相对位置来决定的。 在正常工作旋转时,由于主轴、轴承等的制造精度和装配、调整精度,主轴的转速、轴承的设计和性能以及主轴部件的动态特征等机械原因,造成了主轴的瞬时旋转中心线往往会与理想旋转中心线在位置上产生一定的偏离,由此产生的误差就是主轴在旋转时的瞬时误差,也称为旋转误差。而瞬时误差的范围大小,就代表主轴的旋转精度。加工过程中,主轴可能会延与轴垂直的方向发生径向跳动,延轴方向发生轴向窜动或以轴上某点为中心,发生角度摆动,这些运动都会降低主轴的旋转精度。 实际生产中,人们常常用安装于主轴前端的刀具或工件部位的定位面发生的三种运动的运动幅度来衡量和描述主轴精度,这三种运动分别是径向跳动、端面跳动和轴向窜动。主轴在工作转速时的旋转精度,也称为运动精度。 目前,我国已经制订并推行了国内统一的通用机床旋转精度检验标准,根据加工对象的精度要求确定不同的主轴精度标准。 主轴精度的测量和评定 静态测量和评定法:这是一种在低速旋转环境下测定主轴旋转精度的方法,又称为打表法。具体操作流程是,在无载荷条件下手动缓慢转动主轴,或控制主轴进行低速转动,利用千分表进行测量,测出最大度数和最小读数,计算出二者之差,即为主轴的旋转精度。由于静态测量是在低速旋转环境下,而不是在主轴实际工作速度下进行的测量,因此并不能够反映出真正的主轴旋转精度。 动态测量和评定法:这是一种在主轴实际的工作转速之下,采用非接触式测量装置,测出主轴旋转运动精度误差的方法,包括主轴振动及高速旋转时的运动精度误差。这种测量方法能够比较真实、全面地反映主轴的旋转精度情况。目前已普遍采用的测量方法是:将一个标准圆球安装在主轴上,再将两个位移传感器以互成直角的方式,安装在主轴运动的两个敏感方向上。主轴旋转时,两个位移

机床几何精度检测方法

几何精度检测方法 一百分表、千分表及杠杆千分表的特点及适用范围 百分表的分度值为0.01mm,其读数清晰,表针跳动较小,常用的一般分为0~5、0~10mm两种量程,测量时测杆的压缩量一般为0.15~0.2mm(如图1),适用于较低精度要求的测量。百分表经过震动后测杆可以很容易的回到原始位置,在震动的情况下检测不易磨损,损坏率低。 千分表(指常用的指针式或压杆式千分表)的分度值为0.001mm,因其比百分表的放大比更大,分度值更小,测量的精确度更高,适用于较高精度要求的测量。千分表受到震动后测量杆不容易恢复到原始位置,可能会影响到检测数据的真实性,因此在震动较小的情况下使用较好(如图2)。 杠杆千分表体积小巧,测杆可以按需转动,并能以正反两个方向测量工件,因此常用于间隙较小的槽、孔、浮动件(如测量丝杠远端跳动)等千分表难以测量的情况,其测杆压缩量一般为0.03~0.06mm(如图3),灵敏度高。同样杠杆千分表适合在震动小的情况下使用。另外杠杆千分表不适合长期在压缩量较大的情况下工作,因为压缩量过大会造成测量数据失真,误差变大,而且会加快杠杆千分表各部件的磨损,使其老化,失去作用,因此在测量空间允许的情况下,一般优先选用千分表或百分表。 图1 百分表 图2 千分表 图3 杠杆千分表

二测量前提说明 1. 本说明所有图示均以Carver600G为例; 2. 在检测前应保证测量所用仪器可以正常使用; 3. 在检测前应保证测量所用工具以及被测部分的清洁; 4. 在测量过程中移动各轴时,进给速度不能过大,一般为1.8m/min左右; 5. 本说明所指方向(即前、后、左、右)均为人站立在机床正面,面对机床时(如图4)。 图4 三、各精度指标的检测方法 1.检测、调整床身水平度 1.1 所需工具 水平仪(刻度值为0.02mm)、活动扳手 1.2准备工作 1)检查水平仪精度是否符合标准 将水平仪水平放置,读出气泡位置,然后将水平仪原地旋转180°,比较旋转前后水平仪气泡位置。如果旋转水平仪之后,气泡的偏移方向不同,或者偏移方向相同但是气泡偏移的位置之差超过0.5格,则说明水平仪精度不符合要求(前提是检验水平仪的基准面是水平的)。 2)检查放置机床的地面是否符合要求 由于机床的四个地脚处的减震垫铁的调节范围为12mm,所以放置机床的地面高度差不能超过10mm。

相关文档
相关文档 最新文档