文档库 最新最全的文档下载
当前位置:文档库 › 升压开关电源原理简介

升压开关电源原理简介

升压开关电源原理简介
升压开关电源原理简介

3基于Boost结构的升压电源开关的升压

原理

3.1Boost升压电路结构图及其主要波形

Boost升压电路(如图3.1)

图3.1Boost拓扑结构及L1和Q1的工作波形

由图3.1可知,Q1关断时,L1的极性反向;Q1导通时,L1储存的能量经D1以更高的电压输出。

图3.2所示为连续模式下Boost调整器Q1和D1的电流波形。电感L1和Q1再次导通前没将存储能量释放完。

3.2Boost升压电路升压原理

下面定性分析在图3.1中,输出电压V0比直流输入电压Vdc高的原因。当Q1在Ton时段导通时,D1反偏,L1的电流线性上升到Ip=VdcTdc/L1,电感储存了能量[8]。

由于Q1导通时段输出电流完全由C0提供,所以C0应选得比较大,以使在Ton时间段向负载供电时其电压降低能满足要求。

Q1关断时,由于电感电流不能突变,L1电压极性颠倒,L1异名端电压相对同名端为正[6]。L1同名端为Vdc且L1经D1向C0充电,使C0两端电压(泵升电压)高于C0。此时电感储能给负载提供电流并补充C0单独向负载供电时损失的电荷。Vdc在Q1关断时段也向负载提供能量。

输出电压的调整是通过负反馈环控制Q1导通时间实现的[7]。若直流负载电流上升,则导通时间会自动增加为负载提供更多能量。若Vdc下降而Ton不变,则峰值电流即L1的储能会下降,导致输出电压下降。但负反馈环会检测到电压的下降,并通过增大Ton来维持输出电压恒定。

4 采用UC3842作为控制芯片的升压电路分

4.1 UC3842芯片的特点及采用该芯片电路特点

UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MOSFET 的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。

由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是:

(1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率;

(2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率;

(3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作;

(4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

4.2升压电路结构及特性分析

4.2.1由UC3842作为控制的Boost电路结构特点

由UC3842控制的Boost拓扑结构及电路分别如图4.1和图4.2所示。

图 4.2中输入电压Vi=16~20V,既供给芯片,又供给升压变换。开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。当开关管导通时,电感以V1/L的速度充电,把能量储存在L中。当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(V o-Vi)/L的速度释放到输出电容器C2中。输出电压由传递的能量多少来控制,而传递能量的多少由通过电感电流的峰值来控制。

整个稳压过程由二个闭环来控制[9,10],即

闭环1输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V 基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。

闭环2 Rs为开关管源极到公共端之间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PWM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。误差信号实际控制着峰值电感电流。

由UC3842控制的Boost拓扑结构及电路分别如图4.1、4.2所示。

图4.1 UC3842控制的DC/DC升压电路结构

图4.2 UC3842控制的升压DC/DC电路

4.2.2 Boost升压结构特性分析

Boost升压电路,可以工作在电流断续工作模式(DCM)和电流连续工作模式(CCM)[11]。CCM工作模式适合大功率输出电路,考虑到负载达到1l0%以上时,电感电流需保持连续状态,因此,按CCM工作模式来进行特性分析。

Boost拓扑结构升压电路基本波形如图4.3所示。

T on 时,开关管S 为导通状态,二极管D 处于截止状态,流经电感L 和开关管的电流逐渐增大,电感L 两端的电压为Vi ,考虑到开关管S 漏极对公共端的导通压降Vs ,即为Vi-Vs 。Ton 时通过L 的电流增加部分△I Lon 满足式(4-1):

L

T o n

Vs Vi I on L )(-=

?

(4-1)

式中:Vs 为开关管导通时的压降和电流取样电阻Rs 上的压降之和,约0.6~0.9V [12]。

T off 时,开关管S 截止,二极管D 处于导通状态,储存在电感L 中的能量提供给输出,流经电感L 和二极管D 的电流处于减少状态,设二极管D 的正向电压为V f ,T off 时,电感L 两端的电压为V 0+V f -V i ,电流的减少部分△I Loff 满足式(4-2):

L

Toff Vi Vf Vo I Loff

)(-+=?

(4-2)

式中:V f 为整流二极管正向压降,快恢复二极管约0.8V ,肖特基二极管约0.5V 。

在电路稳定状态下,即从电流连续后到最大输出时,△I Lon =△I Loff ,由式(4-1)和(4-2)可得:

Vi

Vf Vo Vs

Vi Ton Toff -+-= (4-3)

因占空比D=Ton/T ,即最大占空比D max

Vo

Vi

Vo Vs Vf Vo Vi Vf Vo D -≈-+-+=

m ax

(4-4)

如果忽略电感损耗,电感输入功率等于输出功率,即

Io Vo I Vi ave L ?=?)( (4-5)

由式(4-4)和式(4-5)得电感器平均电流

D

I I o

a v e L -=

1)(

(4-6)

同时由式(4-1)得电感器电流纹波

Lf

D

Vs Vi I L )(-=

?

(4-7)

式中:f 为开关频率。

为保证电流连续,电感电流应满足

2/L L I I ?≥

(4-8)

考虑到式(4-6)、式(4-7)和式(4-8),可得到满足电流连续情况下的电感值为

f

I D D Vs Vi L O )

1()(2--≥

(4-9)

另外,由Boost 升压电路结构可知,开关管电流峰值I s(max)=二极管电流峰值I d(max)=电感器电流峰值I LP

)2/()(L a v e L LP I I L ?+=

(4-10)

开关管耐压

f o off dc V V V +=)(

(4-11) 二

a o r V V V -=

(4-12)

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

DC-DC升压开关电源设计

一、设计要求 本课程要求设计一个DC-DC升压开关电源。 二、设计方案 1、理论基础 The boost converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 三、总电路图

三、系统概述 DC/DC升压开关电源的原理如下所述: 首先由555定时器产生一个固定频率为1K~5KHz的方波信号,这个信号用来控制主电路三极管的导通与截止。当三极管导通时,输入的电流流入电感充电,而当三极管截止时,电感上产生巨大的瞬时电压并开始放电,这两股能量叠加后导致输出电压升高。由于输出的电压不仅仅是直流信号,所以通过一个二极管整去负信号,用LC滤波电路滤除交流信号。为了达到要求的输出电压,我们用一个滑动变阻器来调节,最后要稳定电压在一个恒定值,所以将滑动变阻器的输出接到电压比较器的输入,当输入电压低于门限电压时,电压比较器输出低电平,反馈端的三极管截止,输出电压持续增高;当输入电压高于门限电压时,电压比较器输出高电平,反馈端的三极管导通,输出电压降低,最终保持在一个稳定值 四、器件表

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

电脑开关电源电路大全及PC开关电源标准详解

PC开关电源标准详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; ATX12V_1.1:2000年8月颁布, 在前一版本的基础上,加强了+3.3V电流输出能力,以适应AGP显卡功率增长的需求 ATX12V_1.2:2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定; ATX12V_1.3:2003年4月颁布,在前版的基础上,提高了电源效率,增加了对SATA的支持,增加了+12V的输出能力。

开关电源Boost(升压型斩波器)仿真电路

升压型斩波电路(boost)仿真模型 电控学院 电气0903班 姓名:徐强 学号:0906060328

基于Matlab/Simulink的BOOST电路仿真1.Boost电路的介绍: Boost电路又称为升压型斩波器,是一种直流- 直流变换电路,用于将直流电源电压变换为高于其值的直流电压,实现能量从低压侧电源向高压侧负载的传递。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用simulink仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。其电路结构如图所示。 2.Simulink仿真分析: Simulink 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于Matlab/Simulink软件对BOO ST 电路仿真, 仿真图如图 3 所示, 其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真开关S的通断过程。

BOOST 电路的仿真模型 3.电路工作原理: 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。 升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是L 储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。在以上分析 中,认为开关处于通态期间因电容C的作用使得输出电压不变,但实际上 C值不可能为无穷大,在此阶段其向负载放电,必然会有所下降,故实际输出电压会略低于理论所得结果,不过,在电容C值足够大时,误差很小,基本可以忽略。 4.1在模型中设置仿真参数:

[工作]开关电源原理与维修开关电源原理图

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图 电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二(开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1( 主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2( 控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3( 检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4( 辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 开关电源原理图 三(开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

开关电源电路分析

开关电源电路分析 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,电路复杂不易维修等。 开关电源一般包括四要素:整流滤波、起动电路、正反馈电路和稳压电路。 开关式稳压电源具有转换效率高、耗电省、稳压范围宽、体积小和重量轻等特点。为此,在彩色电视机电路中得到广泛应用。电视机的开关电源有多种形式,但串联式脉冲宽度调制型开关稳压电源应用较为广泛。 下面以此种电路为例来分析。 一、工作原理及主要参数 1.电路组成及工作原理 串联型开关稳压电源的基本形式如图1所示。图中,V为开关管,VD为续流二极管,L为储能电感线圈,CL为滤波电容,RL为负载电阻。 图1 串联型开关电源原理图 其稳态工作过程可作如下分析:

设开关管V 在T1期间导通,T2期间截止,周期性地变化,则其工作周期为T=T1+T2,见图4―57(a)。由于负载RL 端电压为Uo,所以负载功率为Po=U2o/RL,负载电流为Io=Uo/RL 。 2. 主要参数及其计算 (1)占空比δ的确定。当开关电源达到稳态工作时,电路处于平衡状态。开关管V 导通期间的电流增量ΔiL1和截止期间的电流减小量ΔiL2应相等,即有: 1()()i o o o i i o U U T U T L L U U TU U T --= = = δδδ (2)平均电流IL 及L 的确定。由于负载与电感L 是串联的,因此电感中的平均电流即为负载电流Io,故有 o I I = 当Ui 和Uo 确定后,由式(4―28)和式(4―30)δ、Io 也随之确定。 L 的最小 值以Lmin 表示,则 (3)滤波电容CL 的确定。L 中的电流iL 是包含有三角波的脉动电流,因此应在负载RL 两端并联CL,以滤除纹波。 一般选取RLCL >> T 即可满足要求。因一般彩电开关电源中选取T=64μs,负载端滤波电容一般选200μF 左右即可。

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用 SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端 (Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用 Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz, Conduction 可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。 LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管): 将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。 C1(滤波电容): 由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。 D2(辅助电源二极管): 整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异: 耐压不同(在此处使用差异无所谓) VF不同(FR105=1.2V,BYT42M=1.4V) R10(辅助电源电阻): 主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。 C7(滤波电容): 辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。

MC3406芯片DC_DC转换升压电路

电子技术课程设计报告 设计课题:MC3406芯片DC/DC转换升压电路 专业班级: 学生姓名: 指导教师: 设计时间:2011.10.15-2011.12.15 目录 1 设计任务与要求 (3) 2 集成稳压电源和开关电源的区别 (3)

2.1 集成稳压器的组成 (3) 2.2 开关电源的组成 (4) 3 开关电源的分类 (5) 4 常见开关电源的介绍 (6) 4.1基本电路 (6) 4.2 单端反激式开关电源 (7) 4.3单端正激式开关电源 (7) 4.4自激式开关稳压电源 (8) 4.5 推挽式开关电源 (9) 4.6 降压式开关电源 (9) 4.7 升压式开关电源 (10) 4.8 反转式开关电源 (10) 5设计升压开关电源并计算参数 (11) 5.1 MC34063的介绍 (11) 5.2MC34063组成的升压电路原理 (12) 5.3电路的参数设计计算 (14) 6 性能测试结果分析 (17) 7.结论与心得 (18) 8.参考文献 (18) 9.附录 (19) 基于MC34063的稳压电源设计 一、设计任务与要求 1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。

2.掌握mc34063的非隔离开关电源的设计、组装与调试方法。 3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。具体要求如下: ①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。 ②掌握开关电源的工作原理。 ③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。主要技术指标 直流输入电压:5~12V; 输出电压:28V; 输出电流:0.3A; 效率:≥90%。 二、集成稳压电源和开关电源的区别: (1)、集成稳压器的组成 电路内部包括了串联型直流稳压电路的各个组成部分,另外加上保电路和启动电路。 1. 调整管 在W7800系列三端集成稳压电路中,调整管为由两个三极管组成的复合管。这种结构要求放大电路用较小的电流即可驱动调整管发射极回路中较大的输出电流,而且提高了调整管的输入电阻。 2.放大电路 在W7800系列三端集成稳压电路中,放大管也是复合管,电路组态为共射接法,并采用有源负载,可以获得较高的电压放大倍数。

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

学习开关电源你必须知道的电路详解

一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

常用开关电源芯片

--------------------------------------------------------------------------- 常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、 F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以52、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

Boost升压稳压电源

数控Boost开关电源 题目: 数控Boost开关电源 组员:索世昌李永杜政立 日期:2013年8月10日

数控Boost开关电源 摘要 开关电源较线性电源说具有体积小、重量轻、耗能低、使用方便等优点,在邮电通信、航空航天、仪器仪表、工业控制、医疗器械、家用电器等领域应用效果显著。基于这些特点本组设计了一套升压式开关电源。升压式开关电源主要应用在供电系统不稳定,并有下降的趋势的场合。通过升压式开关电源可以很稳定的输出所需电压值。该系统以Boost升压拓扑电路为主回路,采用TL494作为开关稳压电源的核心控制芯片,采用TPS2812驱动MOS管,实现了输出电压16V~36V任意可调,最大输出电流2A,以及输出过流保护功能。 关键词:Boost;TL494;数控;显示;过流保护

1引言 开关稳压电源简称开关电源(Switching Power Supply),通过控制开关管的导通比来维持输出电压的稳定,体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。功耗低、纹波小、噪音低、易扩容等特点,使得开关电源具有高的稳定性和性价比,在仪器、仪表、工业自动化等领域得到广泛应用。 2系统方案论证 2.1 DC-DC主电路的设计 方案一:采用UC3525A搭建电路,更适合于运用MOS管作为开关器件的DC-DC变换器,它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。 方案二:采用TL494构建Boost变换器,TL494是一种电压控制型脉宽调制控制集成电路,工作频率可高到300kHz,工作电压可达到40V,内有5V的电压基准,死区时间可调整,主要应用于各种开关电源。 上述两种DC-DC主电路的搭建方法,各有其优缺点,TL494是电压反馈型开关芯片,具有双差分放大器反馈控制端口,PWM的死区时间可直接通过分压调节控制,资料较多,易于掌握,故采用TL494作为系统的主控制部分,综合各种考虑我们采用了方案二。 2.2 控制方法选择与论证 开关电源的控制方式分为电流模式控制和电压模式控制。电流控制模式虽然具有良好的线性调整率和快速的输入输出动态响应,但是需要双环控制,增加了电路设计和分析的难度,且当占空比大于50%时若没有斜坡补偿,控制环变得不稳定,抗干扰性能差,在比赛过程中不利于发挥,故选则电压控制型。 2.3 辅助电源的选取 方案一:采用最常用的7812的芯片,产生12V电压,然后再接7805芯片产

开关电源基本电路及原理介绍

开关电源可分为直流开关电源和交流开关电源,是按输出来区分的,交流开关电源输出的是交流电,而直流开关电源输出的是直流电,这里介绍的是直流开关电源。随着相关元器件的发展,直流开关电源以其高效率在很多场合代替线性电源而获得广泛应用。 直流开关电源与线性电源相比一般成本较高,但在有些特别场合却更简单和便宜,甚至几乎只能用开关电源,如升压和极性反转等。直流开关电源还可分为隔离的和不隔离的两种,隔离的是采用变压器来实现输入与输出间的电气隔离,变压器还便于实现多路不同电压或多路相同电压的输出。直流开关电源结构复杂,设计和分析都有较特别的一套理论和方法,这里主要介绍6种基本的不隔离的直流开关电源结构形式和其特点,便于依据应用场合来选择使用。 理想假定:为便于分析,常假定存在如下理想状态 1. 电子器件理想:电子开关管Q和D的导通和关断时间为零,通态电压为零,断态漏电流为零 2. 电感和电容均为无损耗的理想储能元件,且开关频率高于LC的谐振频率 3. 在一个开关周期内,输入电压Vin保持不变 4. 在一个开关周期内,输出电压有很小的纹波,但可认为基本保持不变,其值为Vo 5. 不计线路阻抗 6. 变换器效率为100% 一、Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Buck变换器有两种基本工作方式: CCM(Continuous current mode):电感电流连续模式,输出滤波电感Lf的电流总是大于零DCM(Discontinuous current mode):电感电流断续模式,在开关管关断期间有一段时间Lf 的电流为零 CCM时的基本关系:

开关电源工作原理解析

开关电源工作原理解析 个人PC所采用的电源都是基于一种名为研关模式旧勺技术,所以我们经常会将个 人PC电源称之为------ 开关电源(Switching Mode Power Supplies,简称SMPS),它还有一 个绰号一一DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ?线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching )。线性 电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V ,而且 经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的一3)11 ;下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的一4)11 ; 此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低 压DC直流电输出了(配图1和2中的一5)11

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、 PlayStati on/Wii/Xbox 等游戏 主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和 AC 市电的频率成反比:也 即说如果输入市电的频率越低时, 线性电源就需要越大的电容和变压器, 反之亦然。由于当 前一直采用的是 60Hz (有些国家是50Hz )频率的AC 市电,这是一个相对较低的频率,所 以其变压器以及电容的个头往往都相对比较大。此外, AC 市电的浪涌越大,线性电源的变 压器的个头就越大。 由此可见,对于个人PC 领域而言,制造一台线性电源将会是一件疯狂的举动, 因 为它的体积将会非常大、重量也会非常的重。所以说个人 PC 用户并不适合用线性电源。 ?开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言, AC 输入电压可以在进入变压器之前升压(升压前一般是 50-60 KHz )。随着输入电源的升 高,变压器以及电容等元器件的个头就不用像线性电源那么的大。 这种高频开关电源正是我 们的个人PC 以及像VCR 录像机这样的设备所需要的。需要说明的是,我们经常所说的 子 关电源I 其实是—高频开关电源I 的缩写形式,和电源本身的关闭和开启式没有任何关系的。

相关文档
相关文档 最新文档