文档库 最新最全的文档下载
当前位置:文档库 › 发电机自动准同期并列不成功原因的初步分析

发电机自动准同期并列不成功原因的初步分析

发电机自动准同期并列不成功原因的初步分析
发电机自动准同期并列不成功原因的初步分析

编号:SM-ZD-98256

发电机自动准同期并列不成功原因的初步分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.

编制:____________________

审核:____________________

批准:____________________

本文档下载后可任意修改

发电机自动准同期并列不成功原因

的初步分析

简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。

8月24日3:13运行人员准备发电机采用D-AVR自动升压,发电机自动准同期并列,当操作执行第26步在DCS 上将“ASS START/STOP”按钮选择在“ON”位置和第27步在DCS上将“CONFIRM”按钮选择“ON”位置,即将发电机自动准同期装置投入后,自动准同期装置开始自动检同期,经过一段时间后,自动准同期装置发出告警信号,装置闭锁,发电机自动准同期并网失败。

5:10发电机采用D-AVR自动升压,发电机手动准同期并列成功。

原因初步分析

发电机自动准同期装置发出的告警信号为“滑差太小”。根据发电机自动准同期装置内部特性,当发电机与系统之间滑差<0.02Hz、时间大于30秒后,装置将发出闭锁,本次

同期并网失败告警。

根据特性,当发电机的频率与系统的频率不一致时,装置将自动向DEH发出增速或减速信号,发出的信号脉冲宽度与发电机与系统频差大小相反,即发电机与系统频差越大,增、减速信号脉冲宽度越宽,相反,发电机与系统频差越小,增、减速信号脉冲宽度越小。而DEH接受的最小信号宽度为200ms,即当发电机与系统频差小于一定值以后,自动准同期装置向DEH发出的最小信号宽度将小于DEH接受的最小信号宽度,使汽轮机不能增、减转速,最终使发电机自动同期失败。

防范措施

发电机并列前,使发电机的频率/转速稍高于系统的频率/转速,使发电机与系统之间的滑差大于0.02Hz(1.2rpm),以保证自动同期装置对DEH的正常调节。

减小DEH的最小脉冲信号接受宽度,或增加自动同期装置向DEH发出的最小增速或减速信号脉冲宽度。(9月2日自动同期装置厂家已将DEH脉冲增加至220ms)(9月5日发电机自动同期并网良好)

以上分析仅是对本次发电机自动准同期并网失败情况的分析,由于发电机总启动期间未对发电机自动准同期、发电机程序并网回路进行假并列试验,建议接机之前找一合适机会对上述回路进行试验。

这里填写您的企业名字

Name of an enterprise

电力系统自动化-实验一自动准同期并网实验

1.本次实验的目的和要求 1 )加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小 的数值,更有利于平稳地进行并列。 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置; 将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。 微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm ;U g=400V。(操作步骤见第一章) 2 )查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则 进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。 实验自动准同期并网实验 图1自动准同期并列装置的原理框图

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QFO合闸时间整定继电器设置为t d- (40?60ms )。t d为微机准同期装置的导前时 间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明) 、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵ 操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V , n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转 灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应 点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注 意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生 解决实际问题的能力。 6.考核要求学生根据实验要求和步骤完成实验任务,按照实验报告的要求和格式按成实验报

经典之-发电机同期并列原理详解

第六章同期系统 将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。同步发电机的并列操作,必须按照准同期方法或自同期方法进行。否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。 准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。 (!)发电机电压相序与系统电压相序相同; (")发电机电压与并列点系统电压相等; (#)发电机的频率与系统的频率基本相等; ($)合闸瞬间发电机电压相位与系统电压相位相同。自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合 闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统 急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。 自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。在采用自同期法实施并列前,应经计算核对。 发电厂发电机的并列操作断路器,称为同期点。除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断

发电机自动准同期并列不成功原因的初步分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 发电机自动准同期并列不成功原因的初步分析(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7890-37 发电机自动准同期并列不成功原因 的初步分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 8月24日3:13运行人员准备发电机采用D-AVR 自动升压,发电机自动准同期并列,当操作执行第26步在DCS上将“ASS START/STOP”按钮选择在“ON”位置和第27步在DCS上将“CONFIRM”按钮选择“ON”位置,即将发电机自动准同期装置投入后,自动准同期装置开始自动检同期,经过一段时间后,自动准同期装置发出告警信号,装置闭锁,发电机自动准同期并网失败。 5:10发电机采用D-AVR自动升压,发电机手动准同期并列成功。 原因初步分析 发电机自动准同期装置发出的告警信号为“滑差太小”。根据发电机自动准同期装置内部特性,当发电

同步发电机自动准同期并列装置综述

同步发电机自动准同期并列综述 任治坪新疆大学电气工程学院,(新疆大学电气工程学院,新疆乌鲁木齐 830008) 830008) 本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。 关键字:同期并列整步电压恒定越前时间周期法解析法 DFT 类算法 0、引言 随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。本文即针对发电机同期并列的原理及过程进行了阐述。 1、准同期装置的发展 电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一, 1982年在安徽陈村水电站成功投入了第一台微机同期装置。八十年代中期又陆续推出了一些类似装置。目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。准同期装置的发展经历了如下三代产品:第一代,在二十世纪六十年代以前,我国大多采用“旋转灯光法”进行准同期并列操作14。这是最原始的准同期方法。后来改用指针式电磁绕组的整步表构成的手动准同期装置。这种方法仍然应用在常规的设计中。第二代准同期装置是以许继的zz03和ZZQS为代表的模拟式自动准同期装置。它用分立晶体管元件搭建硬件电路,对同期条件进行检测和处理。 ZZQ3和ZZQS自动准同期装置的出现,极大的提高了并网速度和可靠性,但由于模拟式同期装置用模拟电子元件拟合,必然带来诸如导前时间不稳定、

1某发电机采用自动准同期并列方式与系统进行并列,系统的参数为已

计算分析题 =================================================== 1、某发电机采用自动准同期并列方式与系统进行并列,系统的参数为已归算到以发电机额定容量为基准的标么值。一次系统的参数为:发电机交轴次暂态电抗''q X 为0.128;系统等值机组的交轴次暂态电抗与线路之和为0.22;断路器合闸时间为s t QF 4.0=,它的最大可能误差时间为QF t 的%20±;自动并列装置最大误差时间为s 05.0±;待并发电机允许的冲击电流值为GE h I i 2''max .=。求允许合闸相角差ey δ、允许滑差sy ω与相应的脉动电压周期。 2、同步发电机等值电路如下,试绘制其矢量图。 3、在某电力系统中,与频率无关的负荷占25%,与频率一次方成比例的负荷占40%,与频率二次方成比例的负荷占15%,与频率三次方成比例的负荷占20%。当系统频率由50Hz 下降到48Hz 时,系统KL*值为多少? 4、某电力系统用户总功率为Pfhe=2500MW ,系统最大功率缺额Pqe=800MW ,负荷调节效应系数KL*=1.8。自动减负荷装置接入后,期望恢复频率为ffh=48 Hz 。试计算: 5、AB 两电力系统由联络线相连。已知A 系统Hz MW K GA /800=,Hz MW K LA /50=, MW P LA 100=?;B 系统Hz MW K Hz MW K LB G B /40,/700==MW P LB 50=?。求在下列情 况下系统频率的变化量△f 和联络线功率的变化量△P ab 。 (1)两系统所有机组都参加一次调频; (2)A 系统机组参加一次调频,而B 系统机组不参加一次调频; (1) 残留的频率偏差标幺值Δf fh* (2) 接入减负荷装置的总功率P JH (3) 在图中标出P fhe 及P qe 位置和大小 I G X d

同步发电机准同期并列实验步骤

同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察相关参数。 二、实验项目和方法 (一)机组启动与建压 1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; 2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; 3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4.励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5.把实验台上“同期方式”开关置“断开”位置; 6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速; 8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 (二)手动准同期 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的增磁或减磁按钮进行调压,直至“压差闭锁”灯熄灭。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“频差闭锁”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0o位置前某一合适时刻时,即可合闸。观察并记录合闸时的冲击电流。 具体实验步骤如下: (1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; (2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; (3)按调速器上的“模拟方式”按钮按下,使“模拟方式”灯亮。合上原动机开关,按下“停机/开机”按钮,开机指示灯亮;

发电机准同期并列

准同期并列 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉人同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闲时间整定。准同期控制器根据给定的允许任差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。 自同期并列 自同期也是一种并列操作过程,但它不同于准同期其操作过程是这样的:先将水轮 发电机组转动起来,当转速上升至稍低于机组的额定转速时,就将断路器闭合,这时电力 系统给发电机定子绕组送进三相冲击电流形成旋转磁超然后励磁系统再给发电机转子 绕组送进直流电流产生磁超使电力系统将发电机拉入同步运行状态 在并列过程中,发电机因有冲击电流而受到一定的损伤是自同期的缺点优点是并 列过程比较迅速,特别是在电力系统中发生事故或系统电压、频率发生剧烈波动时,采用 准同期费时间多而且很困难,甚至不可能实现并列,但采用自同期方式就有可能较迅速地 实现并列

第二章--《同步发电机自动并列》练习参考答案

第二章《同步发电机的自动并列》练习参考答案 二、单项选择题 1.准同步并列的方法是,发电机并列合闸前( C),当( )时,将发电机断路器合闸,完成并列操作。 A.未加励磁,发电机电压与并列点系统侧电压的幅值、频率、相位接近相等;B.未加励磁,发电机转速接近同步转速; C.已加励磁,发电机电压与并列点系统侧电压的幅值、频率、相位接近相等;D.巳加励磁,发电机转速接近同步转速。 2.自同步并列操作的合闸条件是( B )。 A.发电机已加励磁、接近同步转速; B.发电机未加励磁、接近同步转速; C.发电机已加励磁、任意转速; D.发电机未加励磁、任意转速。 3.滑差是( B)之差。 A.发电机电压频率与系统电压频率; B.发电机电压角频率与系统电压角频率; C.发电机电压周期与系统电压周期; D.发电机转速与系统等值转速。 4.发电机并列合闸时,如果测到滑差周期是10s,说明此时( D)。 A.发电机与系统之间的滑差是10rad; B.发电机与系统之间的频差是10Hz; C.发电机与系统之间的滑差是0.1rad; D.发电机与系统之间的频差是0.1Hz。 5.发电机准同步并列后立即带上了无功负荷(向系统发出无功功率),说明合闸瞬间发电机与系统之间存在( A)。 A.电压幅值差,且发电机电压高于系统电压; B.电压幅值差,且发电机电压低于系统电压; C.电压相位差.且发电机电压超前系统电压; D.电压相位差,且发电机电压滞后系统电压。 6.发电机并列后立即从系统吸收有功功率,说明合闸瞬间发电机与系统之间存在( D)。 A.电压幅值差,且发电机电压高于系统电压; B.电压幅值差,且发电机电压低于系统电压; C.电压相位差,且发电机电压超前系统电压; D.电压相位差,且发电机电压滞后系统电压。 7.发电机准同步并列后,经过了一定时间的振荡后才进入同步状态运行,这是由于合闸瞬间( B)造成的。 A.发电机与系统之间存在电压幅值差; B.发电机与系统之间存在频率差; C.发电机与系统之间存在电压相位差; D.发电机的冲击电流超过了允许值。 8.正弦整步电压( D)。

自动准同期装置技术规范书

工程编号:40-F459S 山东济矿鲁能煤电有限公司阳城电厂 (2X150MW)工程 微机自动准同期装置 技术规范书 中南电力设计院 2008.4

目录 总则 技术要求 设备规范 供货范围 技术服务 买方工作 工作安排 备品备件及专用工具 质量保证 包装、运输和储存

1总则 本设备技术规范书适用于山东济矿鲁能煤电有限公司阳城电厂(2X150MW)工程发电机变压器组微机同期装置和网络同期装置,它提出了装置的功能设计、结构、性能、安装和试验等方面的技术要求。 本技术规范提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方应保证提供符合本技术规范书和有关最新工业标准的优质产品。 如果卖方没有以书面形式对本规范书的条文提出异议,则意味卖方完全响应本技术规范书的要求,卖方提供的设备(或系统)以及资料和服务等应完全满足本规范和有关工业标准的要求。 本设备技术规范书所使用的标准如遇与供货方所执行的标准不一致时,按较高标准执行。 合同谈判将以本技术规范书为蓝本,并列入买方所认可的技术偏差,经买、卖双方修改后最终确定的技术协议将作为合同的技术附件,并与合同文件有相同的法律效力。 本设备规范书未尽事宜,由买卖双方协商确定。 2技术要求 2.1应遵循的主要现行标准 下列标准所包含的条文,通过本标准中引用而构成本标准的条文,在标准出版时,所示版本均为有效。所有标准都会被修订,使用标准的各方应探讨使用下列标准最新版本的可能性。 GB2423.1 89 电工电子产品基本环境试验规程试验A 低温试验方法 GB2423.2 89 电工产品基本环境试验规程试验B 高温试验方法 GB/T2423.9 89 电工产品基本环境试验规程试验Cb 设备用恒定湿热试验方法GB/T13926 工业过程测量和控制装置的电磁兼容性 GB7261-87 继电器及继电保护装置基本试验方法 GB2887-89 计算机场地技术条件 GB9361-88 计算机场地安全要求 GB50171-92 电气装置安装工程盘、柜及二次回路结线施工及验收规范 GB/14537-93 量度继电器和保护装置的冲击和碰撞试验

第二章 《同步发电机的自动并列》练习参考答案

第二章 《同步发电机的自动并列》练习参考答案 一、名词解释 1.并列操作 答:将发电机并入电力系统参加并列运行的操作。 2.准同步并列 答:发电机在并列合闸前已加励磁,当发电机电压的幅值、频率、相位分别与并列点系统侧电压的幅值、频率、相位接近相等时,将发电机断路器合闸,完成并列操作。 3.自同步并列 答:将未加励磁、接近同步转速的发电机投入系统,随后给发电机加上励磁,在原动转矩、同步力矩作用下将发电机拉人同步,完成并列操作。 4.同步点 答:可以进行并列操作的断路器。 5.滑差、滑差频率、滑差周期 答:滑差:并列断路器两侧发电机电压电角速度与系统电压电角速度之差,用S ω表示,即X G s ωωω-=; 滑差频率:并列断路器两侧发电机电压频率与系统电压频率之差,用f s 表示,即X G s f f f -=; 滑差周期:并列断路器两侧发电机电压与系统电压之间相角差变化3600所用的时间。 6.越前时间、恒定越前时间、恒定越前时间自动准同步装置 答:越前时间:相对于?=0δ提前(越前)的时间; 恒定越前时间:相对于?=0δ提前(越前)的时间,且这一时间不随频差(或滑差)、压差变化;

恒定越前时间自动准同步装置:由恒定越前时间脉冲发出合闸脉冲命令的自动准同步装置。 7.越前相角、恒定越前相角、恒定越前相角式自动准同步装置 答:越前相角:相对于?=0δ提前(越前)的相角; 恒定越前相角:相对于?=0δ提前(越前)的相角,且这一相角不随频差(或滑差)、压差变化; 恒定越前相角自动准同步装置:由恒定越前相角脉冲发出合闸脉冲命令的自动准同步装置。 8.整步电压、正弦整步电压、线性整步电压 答:整步电压:包含同步条件信息的电压; 正弦整步电压:与时间具有正弦函数关系的整步电压,表达式 2t sin 2s m zb ωU u = 线性整步电压:与时间具有线性函数关系的整步电压,表达式 ??? ????<

同期装置(原理及应用)

同期装置 同期装置的说明: 电力系统运行过程中常需要把系统的联络线或联络变压器与电力系统进行并列,这种将小系统通过断路器等开关设备并入大系统的操作称为同期操作。 所谓同期即开关设备两侧电压大小相等、频率相等、相位相同,同期装置的作用是用来判断断路器两侧是否达到同期条件,从而决定能否执行合闸并网的专用装置。 同期装置的分类: 同期装置分为自同期装置和准同期装置。 自同期并列是指将发电机升至额定转速后,在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期并列有很多优点:(1)合闸迅速,自同期一般只需要几分钟就能完成,在系统急需增加功率的事故情况下,对系统稳定具有特别重要的意义;(2)操作简便,易于实现操作自动化;(3)因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题,自同期并列因为电机不加励磁,所以电机电枢出口没有电压,(严格说来,有残磁感应的残压,但数值很小,一般低压小型电机残压在(2~4)%U N之内)这就消除在未同期情况下错误合闸而产生损坏发电机的危险性;(4)便于小水电站的自动化:随着自动化技术的推广,小型电站的自动化要求也日趋迫切。小水电自动化的关键环节之一是并列自动化。当前,准同期自动并车装置虽然日见完善,但经济性和技术要求仍未能适应当前农村小水电的技术水平和经济条件的要求,而自同期并列却易于满足。这有利于小水电自动化程度的提高 准同期装置: 准同期并列是指待并发电机升至额定转速额定电压后并且满足:1发电机电压幅值与电网电压幅值相等,2发电机频率与电网频率相等,3断路器合闸瞬间发电机电压与电网电压相角差为0.时操作断路器合闸使发动机并入电网。 一、自动准同期装置 1、组成:(1)频差控制单元,它的任务是检测发电机电压与电网电压间的滑差角频率且调节发电机转速,使发动机电压频率接近系统频率。(2)电压控制单元,它用于检测发电机与电网之间的电压差,且调节发电机的电压,使它接近电网电压。(3)合闸信号控制单元,检查并列条件,当满足条件时,控制单元就选择合适的时间发出合闸信号。 2、合闸信号控制单元是准同期装置的核心部件,装置的控制原则是,当频率和电压都满足并列条件时,在发电机与电网电压重合之前发出合闸信号。若两电压之前的信号称为提前量信号,则准同期装置按提前量的不同分为恒定越前相角和恒定越前时间两种。 恒定越前相角准同期并列采用的提前量为某一恒定相角,即在相角差

发电机自动准同期并列不成功原因的初步分析详细版

文件编号:GD/FS-7614 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________ (解决方案范本系列) 发电机自动准同期并列不成功原因的初步分析详细 版

发电机自动准同期并列不成功原因 的初步分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 8月24日3:13运行人员准备发电机采用D-AVR自动升压,发电机自动准同期并列,当操作执行第26步在DCS上将“ASS START/STOP”按钮选择在“ON”位置和第27步在DCS上将“CONFIRM”按钮选择“ON”位置,即将发电机自动准同期装置投入后,自动准同期装置开始自动检同期,经过一段时间后,自动准同期装置发出告警信号,装置闭锁,发电机自动准同期并网失败。 5:10发电机采用D-AVR自动升压,发电机手动准同期并列成功。 原因初步分析

发电机自动准同期装置发出的告警信号为“滑差太小”。根据发电机自动准同期装置内部特性,当发电机与系统之间滑差<0.02Hz、时间大于30秒后,装置将发出闭锁,本次同期并网失败告警。 根据特性,当发电机的频率与系统的频率不一致时,装置将自动向DEH发出增速或减速信号,发出的信号脉冲宽度与发电机与系统频差大小相反,即发电机与系统频差越大,增、减速信号脉冲宽度越宽,相反,发电机与系统频差越小,增、减速信号脉冲宽度越小。而DEH接受的最小信号宽度为200ms,即当发电机与系统频差小于一定值以后,自动准同期装置向DEH发出的最小信号宽度将小于DEH接受的最小信号宽度,使汽轮机不能增、减转速,最终使发电机自动同期失败。 防范措施

同步发电机自动准同期并列综述(行业二类)

同步发电机自动准同期并列综述 任治坪 (新疆大学电气工程学院,新疆乌鲁木齐 830008) 摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。 关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法 Parallel synchronous generator automatic synchronizing Summary Ren Zhiping (Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008) Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on. Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm 0、引言 随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。本文即针对发电机同期并列的原理及过程进行了阐述。 1、准同期装置的发展 电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。八十年代中期又陆续推出了一些类似装置。目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。准同期装置的发展经历了如下三代

经典之-发电机同期并列原理详解

第六章同期系统 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 第六章同期系统 将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。同步发电机的并列操作,必须按照准同期方法或自同期方法进行。否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。 准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。 (!)发电机电压相序与系统电压相序相同; (")发电机电压与并列点系统电压相等; (#)发电机的频率与系统的频率基本相等; ($)合闸瞬间发电机电压相位与系统电压相位相同。自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合 闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统 急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。 自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。在采用自同期法实施并列前,应经计算核对。 发电厂发电机的并列操作断路器,称为同期点。除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断

双单片机实现的双原理自动准同期并列装置

万方数据

万方数据

万方数据

万方数据

双单片机实现的双原理自动准同期并列装置 作者:江亚群, 何怡刚, 黄纯, 潘华, JIANG Yaqun, HE Yigang, HUANG Chun, PAN Hua 作者单位:江亚群,何怡刚,黄纯,JIANG Yaqun,HE Yigang,HUANG Chun(湖南大学电气与信息工程学院,湖南长沙,410082), 潘华,PAN Hua(湖南省超高压输变电公司,湖南长沙,410015) 刊名: 电力自动化设备 英文刊名:ELECTRIC POWER AUTOMATION EQUIPMENT 年,卷(期):2009,29(4) 被引用次数:1次 参考文献(15条) 1.杨冠城电力系统自动装置原理 2005 2.彭晓涛.王少荣.程时杰高性能微机自动准同期装置[期刊论文]-电力系统自动化 2002(05) 3.郭建.周斌新型微机自动准同期装置设计[期刊论文]-电力自动化设备 2005(08) 4.粟梅.郭旭东.官诗军一种新型的微机自动准同期装置[期刊论文]-电力系统自动化 2000(02) 5.张晓英.党存禄.王树东基于单片机和CPLD的同步发电机自动准同期装置设计[期刊论文]-电力自动化设备 2007(08) 6.钱晟.汗福明.黄立军智能双微机自动准同期装置的设计[期刊论文]-电力系统自动化 1999(14) 7.李振然利用富里叶变换实现微机自动准同期 1994(04) 8.陈小桥.周水斌.王先培一种新的相位(差)算法及其在自动准同期中的应用[期刊论文]-武汉大学学报(工学版) 2003(06) 9.李振然基于递推最小二乘算法和自适应采样的微机自动准同期 1995(03) 10.周斌一种适用于自动准同期装置的改进傅立叶相位差算法[期刊论文]-继电器 2007(20) 11.黄纯.何怡刚.江亚群一种新的自动准同期并列算法的研究[期刊论文]-中国电机工程学报 2005(03) 12.HARRIS F J On the use of windows for harmonic analysis with the discrete Fourier transform 1978(01) 13.张伏生.耿中行.葛耀中电力系统谐波分析的高精度FFT算法[期刊论文]-中国电机工程学报 1999(03) 14.丁康.罗江凯.谢明离散频谱时移相位差校正法[期刊论文]-应用数学和力学 2002(07) 15.许昌继电器研究所JB/T 3950-1999.中华人民共和国机械行业标准--自动准同期装置 1999 相似文献(10条) 1.期刊论文郭雷.吴慧颖.焦立娜发电机自动准同期并网断路器拒合原因分析-科技信息2009(14) 在电力系统中有着数以千计的发电机组,并网操作是电厂最频繁的操作之一.虽然自动准同期装置得到广泛应用并能够实现快速、安全、稳定的并网,但是并网时并网断路器拒合的现象时有发生,严重的影响了电厂的正常运行和经济效益.为了能够快速查找和解决此类故障,本文作了详细的介绍. 2.期刊论文李业兴.邓志杰.李文慧基于DSP的自动准同期装置的设计与实现-电气应用2006,25(8) 在电力系统中,自动准同期装置在发电机并列操作中起着重要作用.为进一步提高电力系统并列操作的安全性和可靠性,研制了一种基于DSP技术的新型自动准同期装置,该装置硬件系统结构简单、性能可靠,能够快速、准确地实现发电机并网.详细叙述了装置的原理和软硬件设计,并且给出采用CAN总线技术与上位机通信的方案. 3.学位论文邹华PLC应用于发电机自动准同期控制的研究和探讨1999 该文着重研究了PLC(可编程控制器)用于发电机自动准同期的控制,探讨了以PLC作为自动准同期控制系统主控单元的可行性.该文还设计了一个以TSX 37-22 PLC为核心的自动准同期控制系统.PLC具有可靠性高、抗干扰能力强等优点,它的模块化的框架结构和可视化的故障诊断功能使得整个控制系统设计简单、可靠.该自动准同期控制系统以TSX 37-22为控制核心,采用乘积频率转换器AD7750构成压差检测前置回路,压频转换在数字域里实现,以确保转换精度.频差和相角差检测前置回路则由比较器LM393将正弦电压信号转变为方波信号.利用TSX 37-22的高速计数功能对压差、频差和相角差检测前置回路产生的频率信号进行计数处理并最终获得所需的压差、频差和相角差信息.该文给出了控制系统具体的软、硬件设计方法,并对其进行了调试和实验验证.实验结果初步表明PLC用于发电机自动准同期控制是可行的.该文对PLC用于发电机自动准同期控制进行了有意义的探讨,为促成将来控制系统朝着集成化、模块化方向发展迈出了一步. 4.期刊论文张建光CM-320双微机自动准同期控制器技术特点分析与实际应用-科技资讯2008(3) 电力系统发电机同期并网是电网系统和发电机可靠安全运行的重要环节,快速可靠同期并网既保证电网和发电机的安全运行,又能提高发电机组的运行经济效益.本文对CM-320双微机自动准同期控制器的控制原理、软件流程、硬件组成的功能分析和实际应用.

发电机的并列运行

发电机的并列运行 ??一、发电机并列运行的条件 ?1.待并发电机的电压有效值Uf与电网的电压有效值U相等或接近相等,允许相差±5%的额定电压值。 列。 ?2./秒以内。 ??? 时, ???3.待并发电机电压的相位与电网电压的相位相同,即相角相同。 ???在发电机并列时,如果两个电压的相位不一致,由此而产生的冲击电流可能达到额定电流的20~30倍,所以是非常危险的。冲击电流可分解为有功分量和无功分量,有功电流的冲击不仅要加重汽轮机的负担,还有可能使汽轮机受到很大的机械应力,这样非但不能把待并发电机拉入同步,而且可能使其它并列运行的发电机失去同步。

在采用准同期并列时,发电机的冲击电流很小。所以,一般应将相角差控制在10o 以内,此时的冲击电流约为发电机额定电流的0.5倍。 ???4.待并发电机电压的相序必须与电网电压的相序一致。 ???5.待并发电机电压的波形应与电网电压的波形一致。 ??? ???? ???1.发电机升压操作正常后,需要根据发电机及电力系统具体运行状况,将待并同期点的同期开关(控制屏5KP的“联络线同期开关”TK/或者是6KP的“发电机同期开关”TK)右转至“投”的位置,使同期母线带电。 ???2.将发电机同期闭锁开关STK置于“闭锁”位置,其1、3接点断开。与此同时,同步检查继电器TJJ进入闭锁状态。

???3.将6KP的“手动准同期开关”1STK左转至“粗调”位置,6KP的组合式三相同期表S就有了电压和周波的指示。此时,通过调整发电机的电压及频率,使之与电网的电压及频率相近或基本一致。 ???4.当发电机周波与电网周波相差在1.0周/秒以内时,将“手动准同期开关”1STK 右转至“细调”位置,则组合式三相同期表S的线圈得电,指针开始缓慢地顺时针 时101) ???5.

同期装置的使用方法

同期装置的使用方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

同期装置的使用方法一.同期装置的作用是什么 在电力系统运行过程中,枢纽变电站经常需要把系统的联络线或联络变压器与电力系统进行并列。这种将小系统通过断路器合并成大系统的操作称为同期操作。所谓同期即断路器两侧电压大小相等、频率相等、相位相同。同期装置的作用是用来判断断路器两侧是否达到同期条件,从而决定断路器能否合闸的专用装置。变电站对于需要经常并列或解列的断路器装设手动准同期装置,一般采用集中同期方式。该方式在同一时刻,只允许有一台断路器进行同期合闸。 二.同期装置的配置 我厂四个电站的同期装置屏是由深圳市国立智能电力科技有限公司据模糊控制理论研制开发的微机自动准同期。主要由SID序列的智能复用型同期装置、SID—2X序列型多同期点自动选线器、SID—2SL序列型同步表、合闸继电器和电源开关、同期方式选择开关等组成。该同期屏具备自动准同期、手动准同期等功能。 断路器同期以自动准同期为主,手动准同期为辅的工作方式。 SID—2FY同期的功能 1.可设置16个任意定义并网性质的并列点; 2.自动识别并网性质一差频或合环; 3.高品质自动均频、均压控制; 4.确保捕捉首次并网时机、高速无冲击并网; 5.双侧、单侧自动无压合闸功能。补偿两同期电压固有相位差; 6.自动转角功能; 7.中英文在线切换界面; 8.可根据用户需要配置打印机; 9.可通过配置我公司的SID-DVI同期扩展视频模块,具备同期过程的视频监视功能,传送距离大于200米;10.可根据用户需要配置完全独立的调试、检测、校验用测试模块,

经典之发电机同期并列原理详解

第六章同期系统将一台单独运行的发电机投入到运行中的电力系 统参加并列运行的操作,称为发电机的并列操作。同 步发电机的并列操作,必须按照准同期方法或自同期 方法进行。否则,盲目地将发电机并入系统,将会出现 冲击电流,引起系统振荡,甚至会发生事故、造成设备 损坏。 准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。 (!)发电机电压相序与系统电压相序相同; (")发电机电压与并列点系统电压相等; (#)发电机的频率与系统的频率基本相等; ($)合闸瞬间发电机电压相位与系统电压相位相 同。自同期并列操作,就是将发电机升速至额定 转速后,在未加励磁的情况下合

闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统 急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易 于实现操作自动化。因为在发电机未加励磁电流时合闸并网,不存在准同期条 件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。 自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。在采用自同期法实施并列前,应经计算核对。 发电厂发电机的并列操作断路器,称为同期点。除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间

同步发电机自动准同期并列综述

同步发电机自动准同期并列综述 摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。 关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法 Parallel synchronous generator automatic synchronizing Summary Ren Zhiping (Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008) Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on. Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm 0、引言 随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。本文即针对发电机同期并列的原理及过程进行了阐述。 1、准同期装置的发展 电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。八十年代中期又陆续推出了一些类似装置。目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。准同期装置的发展经历了如下三代产品:第一代,在二十世纪六十年代以前,我国大多采用“旋转灯光法”进行准同期并列操作14。这是最原始的准同期方法。后来改用指针式电磁绕组的整步表构成的手动准同期装置。这种方法仍然应用在常规的设计中。第二代准同期装置是以许继的zz03和ZZQS为代表的模

相关文档
相关文档 最新文档