文档库 最新最全的文档下载
当前位置:文档库 › 开关电源各种拓扑集锦

开关电源各种拓扑集锦

开关电源各种拓扑集锦

开关电源各种拓扑集锦

给出六种基本DC/DC 变换器拓扑

依次为buck,boost,buck-boost,cuk,zeta,sepic 变换器

半桥变换器也是双端变换器,以上是两种拓扑。

半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。

半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑. 对于不对称半桥可以采用峰值电流控制。

正激变换器绕组复位正激变换器LCD 复位正激变换器RCD 复位正激变换器有源钳位正激变换器双管正激

损吸收双正激有源钳位双正激原边钳位双正激软开关双正激

推挽变换器无损吸收推挽变换器推挽正激

推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管. 但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免. 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同.

推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM 中有应用.

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

开关电源拓扑结构对比(全)

开关电源拓扑结构概述(降压,升压,反激、正激) 开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源 https://www.wendangku.net/doc/a14840220.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电

(整理)开关电源拓扑结构详解

开关电源拓扑结构详解 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开 入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck 拓扑型开关电源就是属于串联式的开关电源。 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL 转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton

把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff 把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。 在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。 对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。 串联式开关电源输出电压uo的平均值Ua为: 1.2. 并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

开关电源常用拓扑结构图文解释

开关电源常用拓扑结构 开关变换器的拓扑结构是指能用于转换、控制和调节输入电压的功率开关器件和储能器件的不同配置。开关变换器的拓扑结构可以分为两种基本类型:非隔离型和隔离型。变换器拓扑结构是根据系统造价、性能指标和输入/输出负载特性等因素选定。 1、非隔离型开关变换器 一,Buck变换器,也称降压变换器,其输入和输出电压极性相同,输出电压总小于输入电压,数量关系为:其中Uo为输出电压,Ui为输入电压,ton为开关管一周期内的 导通时间,T为开关管的导通周期。降压变换器的电路模式如图2所示。工作原理是:在开关管VT导通时,输入电源通过L平波和C滤波后向负载端提供电流;当VT关断后,L通过二极管续流,保持负载电流连 续。 二,Boost变换器,也称升压变换器,其输入和输出电压极性相同,输出电压总大于输入电压,数量 关系为:。升压变换器的电路模式如图3所示。工作原理是:在VT导通时,电流通过L平波,输入电源对L充电。当VT关断时,电感L及电源向负载放电,输出电压将是输入电压加上输入电源电压,因而有升压作用。

三,Buck-Boost变换器,也称升降压变换器,其输入输出电压极性相反,既可升压又可降压,数量 关系为:。升降压变换器的电路模式如图4所示。工作原理是:在开关管VT导通时,电流流过电感L,L储存能量。在VT关断时,电感向负载放电,同时向电容充电。 四,Cuk变换器,也称串联变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为: 。Cuk变换器的电路模式如图5所示。工作原理是:在开关管VT导通时, 二极管VD反偏截止,这时电感L1储能;C1的放电电流使L2储能,并向负载供电。在VT关断时,VD 正偏导通,这时输入电源和L1向C1充电;同时L2的释能电流将维持负载电流。 2、隔离型开关电源变换器 一,推挽型变换器,其变换电路模型如图6所示。工作过程为:VT1和VT2轮流导通,这样将在二次侧产生交变的脉动电流,经过VD1和VD2全波整流转换为直流信号,再经L、C滤波,送给负载。

开关电源各种拓扑集锦

话题:开关电源各种拓扑集锦 先给出六种基本DC/DC变换器拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 第2帖2004-04-28 18:55: 输入电压变化为9~30VDC,输出要得到15VDC该选择哪种拓扑结构? 第3帖2004-04-28 19:24: 如果不隔离,可以在基本拓扑的后四种中选择 第5帖2004-04-28 19:36: 后面三种L1与L2应该是紧密耦合,绕在同一个电感或变压器中吧? 第7帖2004-04-29 02:19: 不是,是独立电感

第82帖2006-02-12 13:41: 六独立电感,还用标相位? 第54帖2005-05-20 08:34: 樓主,我感覺你應該告訴hualong為甚麼要這樣選,具體根據是甚麼,這樣下一次他在遇見這個問題,他自己就能解決了啊,我們也跟著學一下啊,如果有說的不對的地方,請見諒.謝謝 第30帖2004-05-14 14:40: 如果不要隔离选buck-boost 正激变换器 绕组复位正激变换器 LCD复位正激变换器 RCD复位正激变换器

有源钳位正激变换器 双管正激 还有很多,待补充无损吸收双正激 有源钳位双正激

原边钳位双正激 软开关双正激 第56帖2005-05-20 12:31: 有没有带同步整流的的正激变换器? 最好是实用图啊! 我想用这个做一个电源! 第16帖2004-05-01 21:26: 评论:正激变换器是常用变换器之一,特别在中小功率场合。正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。但是开关管电压应力较大。双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。如果能不加入辅助管而实现软开关,一定超有前途。 正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。 第19帖2004-05-06 21:28: "但是在较高频率下其变压器磁通摆幅可以与双端变换器相当"? 不理解这句话,还请解释一下。 我的理解是若频率升高了,其磁通摆幅应该小呀。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

开关电源拓扑的选择

第二章 拓扑实际选择 2.1 引言 在设计你的变换器前,你必须首先选择电路拓扑。因为其它所有电路元件设计,像元件选择,磁芯设计,闭环补偿等等都取决于拓扑。所以在设计开始之前,你得首先仔细研究所要开发的电源的要求和技术规范:输入、输出电压,输出功率、输出纹波、电磁兼容要求等等,以保证选择适当的拓扑。 在电力电子技术教科书和开关电源书籍中只是概要地介绍几个基本的拓扑,分别说明这些拓扑工作的基本概念,输出与输入关系,和对元器件基本要求等等,而很少或没有指出该拓扑的长处和短处以及相应的应用场合。而在有关文献中讨论的拓扑就非常多,单就谐振变换器拓扑就有数百种。在如此众多的拓扑中,实际看到经常在产品中使用的拓扑只有大约14种。为何有如此巨大差距?一个很重要的因素是作为电源商品,成本(军品另当别论)和质量作为第一目标。因此,选择的电路拓扑应当考虑到电路复杂性和是否成熟,该拓扑可能使用的元器件定额和是否易购,制造是否需要高级技术人员、特殊的测试设备、元器件是否严格筛选等等,应当从整个电源产品效率、体积、成本以及技术条件和规范综合因素考虑。因此尽管众多研究者为了提高电源效率,减少体积研究如何减少开关损耗,提高开关频率,提出如此多的拓扑,发明者申请了大量专利。这些拓扑和专利在理论上是有价值的,并存在应用的可能性,软开关PWM 和有源箝位等技术都是从研究谐振,准谐振变换器发展而来的。这些新拓扑和专利在某一方面提出了新的途径和方法,但也会带来某些方面的不足,作者和申请者不可能面面俱到。理论上先进就能做出最好产品,这是天真的想法。理论研究始终是探索性的,始终走在生产的前面;而产品是该领域研究最充分,经过若干因素折衷的实践产物。这也是理论研究与生产实际的差别。同时也是专利与生产力的距离。专利往往只是一个好主意(good idea ),只是在某一方面有独创性,是否能转变为产品那就时另一回事。如果为了将效率提高1%,而使得成本提高10%,这是任何厂商不愿意做的。因此很少专利转变为生产力就不足为奇了。但是在体积、重量要求严格而批量小的军品则另当别论。 决定拓扑选择的一个重要因素是输入电压和输出/输入比。图 2.1示出了常用隔离的拓扑相对适用的电压范围。拓扑选择还与输出功率,输出电压路数,输出电压调节范围等有关。一般情况下,对于给定场合你可以应用多种拓扑,不可能说某种拓扑对某种应用是绝对地适用,因为产品设计还有设计者对某种拓扑的经验、元器件是否容易得到、成本要求、对技术人员要求、调试设备和人员素质、生产工艺设备、批量、军品还是民品等等因素有关。因此要选择最好的拓扑,必须熟悉每种拓扑的长处和短处以及拓扑的应用领域。如果随便选择一个拓扑,可能一开始就宣布新电源设计的失败。 2.2 输入和输出 如果输出与输入共地,则可以采用非隔离的 Buck ,Boost 共地变换器。这些电路结构简单,元器 件少。如果输入电压很高,从安全考虑,一般输出 需要与输入隔离。 在选择拓扑之前,你首先应当知道输入电压变 化范围内,输出电压是高于还是低于输入电压?例 如,Buck 变换器仅可用于输出电压低于输入电压的 场合,所以,输出电压应当在任何时候都应当低于 输入电压。如果你要求输入24V ,输出15V ,就可以采用Buck 拓扑;但是输入24V 是从8V ~80V(MIL -STD -704A ),你就不能使用Buck 变换器,因为Buck 变换器不能将8V 变换成15V 。如果输出电压始终高于输入电压,就得采用Boost 拓扑。 ) 图2.1 各种隔离拓扑应用电压范围 如果输出电压与输入电压比太大(或太小)是有限制的,例如输入400V ,要求输出48V 还是采用Buck 变换器,则电压比太大,虽然输出电压始终低于输入电压,但这样大的电压比,尽管没有超出控制芯片的最小占空比范围,但是,限制了开关频率。而且功率器件峰值电流大,功率器件选择困难。如果采用具有隔离的拓扑,可以通过匝比调节合适的占空比。达到较好的性能价格比。 2.3 开关频率和占空比的实际限制 2.3.1 开关频率

电源拓扑电路详解

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。即不考虑图形的大小形状,仅考虑点和线的个数。 实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。 电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。同一个拓扑结构可以画成几何形状不同的电路图 拓扑电路非常适用于DC-DC变换器。每种拓扑都有其自身的特点和适用场合。因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。 DC/DC电源变换器的拓扑类型主要有以下13种: (1)Buck Converter降压式变换器; (2)Boost Conyerter升压式变换器; (3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器; (4)Cuk Converter升压,升压串联式变换器; (5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器; (6)F1yback Converter反激式(亦称回扫式)变换器; (7)Eorward Converter正激式变换器: (8)Double Switches Forward Converter双开关正激式变换器; (9)Active Clamp Forward Converter有源箝位 (0)Half Bridge Converter半桥式变换器; (11)Full Bridge Converter全桥式变换器; (12)Push—pall Convener推挽式变换器: (13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源拓扑主回路的组成:主回路(开关电源中,功率电流流经的通路)一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 一、常见电源拓扑介绍。 1、Buck Converter降压式变换器。如图1 图1 BUCK 降压拓扑 特点:a、把输入降至一较低电压。 b、输出总是小于或等于输入。

详细解析开关电源拓扑结构优缺点

详细解析开关电源拓扑结构优缺点 为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。 因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为: Sv = Up/Ua——电压脉动系数(1-84) Si = Im/Ia——电流脉动系数(1-85) Kv =Ud/Ua——电压波形系数(1-86) Ki = Id/Ia——电流波形系数(1-87) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 反激式开关电源的优点和缺点 1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。 反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。 2 反激式开关电源的瞬态控制特性相对来说比较差。 由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。有时,当负载电流变化的频率和相

开关电源拓扑结构优缺点

为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。 因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为: Sv = Up/Ua ——电压脉动系数(1-84) Si = Im/Ia ——电流脉动系数(1-85) Kv =Ud/Ua ——电压波形系数(1-86) Ki = Id/Ia ——电流波形系数(1-87) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 反激式开关电源的优点和缺点 1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。 反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。 2 反激式开关电源的瞬态控制特性相对来说比较差。 由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。 3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。 反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。因此,反激式开关电源变压器初级和次级

开关电源各种拓扑集锦

开关电源拓扑六种基本DC/DC变换器拓扑: 1、Buck 2、Boost 3、Buck-Boost 4、CUK 5、Zeta 6、Sepic

基本拓扑是Buck,Boost,其他是演变。Buck为降压变换器,常用的拓扑基本上是Buck的:正激,半桥,全桥,推挽等等。Boost变换器为Buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上, 对于隔离的Boost变换器也有推挽,双电感,全桥等电路。Buck-Boost是反激变换器的原型,属于升降压变换器。 后面三种电路不是很常用,都是升降压变换器。 一、 反激 1、单端反激 2、双端反激 二、 正激 1、绕组复位正激 2、R CD复位正激 3、L CD复位正激

4、有源钳位正激 ● Flyback钳位 ● Boost钳位 5、双管正激 6、无损吸收双正激

7、有源钳位双正激 8、原边钳位双正激 9、软开关双正激

三、 推挽 1、推挽 2、无损吸收推挽 3、推挽正激

推挽变换器是双端变换器。其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。其管子电压应力下降为输入电压。其他等同。 推挽正激是通过一个电容来解决变换器漏感尖峰,偏磁等问题 四、 半桥 1、半桥 2、不对称半桥 3、谐振半桥 4、移相半桥

开关电源三大拓扑

开关电源三大基本拓扑 1、摘要 开关电源已经深入到国民经济的各个行业当中,设计师或是自行设计电源或是购买电源模块,但是这些电源都离不开电源的各种电路拓扑。本文先介绍了开关电源的三大基础拓扑:Buck、Boost、Buck-Boost,并就这三者拓扑之间进行了简单地组合,得到了非常巧妙的电路,例如:正负输出电源、双向电源等,能够满足诸如运放供电、电池充放电等某些特殊的需求。 2、开关电源基础拓扑 开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关电源都是采用这几种基础拓扑或者其对应的隔离方式,下面以电感连续模式进行简单介绍。 2.1Buck降压型 Buck降压型电路拓扑,有时又称为Step-down电路,其典型的电路结构如下图1所示: Buck电路的工作原理为: 当PWM驱动高电平使得NMOS管T导通的时候,忽略MOS管的导通压降,等效如图2,电感电流呈线性上升,MOS导通时电感正向伏秒为:

当PWM驱动低电平的时候,MOS管截止,电感电流不能突变,经过续流二极管形成回路(忽略二极管电压),给输出负载供电,此时电感电流下降,如下图3所示,MOS截止时电感反向伏秒为: D为占空比,0 2.2Boost升压型 Boost升压型电路拓扑,有时又称为step-up电路,其典型的电路结构如下图4所示: 同样地,根据Buck电路的分析方式,Boost电路的工作原理为:

2.3Buck-Boost极性反转升降压型 Buck-Boost电路拓扑,有时又称为Inverting,其典型的电路结构如下图5所示: 同样地,根据Buck电路的分析方式,Buck-Boost电路的工作原理为: 3、Buck与Buck-Boost组合 金升阳K78系列的产品采用了Buck降压型的电路结构进行设计,是LM78XX系列三端线性稳压器的理想替代品,效率最高可达96%,不需要额外增加散热片,同时还兼有短路保护和过热保护,值得说明的是它能够完美支持负输出。 上面提到金升阳K78系列产品可以支持负输出,这是怎么做到的呢? 从上面Buck电路以及Buck-Boost电路结构原理来看,主要的区别是两者二极管与功率电感的位置互换。因此,若将Buck电路的输出Vo引脚接成输入的GND,而之前的输入GND 就变成了负电压输出了,即变成了Buck-Boost的电路结构。对应到金升阳K78xx-500R2系列的产品就变成了如下图6所示的负输出。

电源拓扑结构.pdf

开关电源各种拓扑集锦 Jankywolf 2006-4-11 1、先给出六种基本DC/DC变换器拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。buck-boost是反激变换器的原型,属于升降压变换器。后面三种电路不是很常用,都是升降压变换器。从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。 2、正激变换器: A、绕组复位正激变换器

B、LCD复位正激变换器 C、RCD复位正激变换器 D、有源钳位正激变换器 E、双管正激

F、无损吸收双正激: G、有源钳位双正激 H、原边钳位双正激、 I、软开关双正激 评论:正激变换器是常用变换器之一,特别在中小功率场合。正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。但是开关管电压应力较大。双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。如果能不加入辅助管而实现软开关,一定超有前途。 正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。

开关电源几种拓扑结构的工作细节及波形

开关电源几种拓扑结构的工作细节 下面讲解几种拓扑结构的工作细节 ■降压调整器: 连续导电 临界导电 不连续导电 ■升压调整器 (连续导电) ■变压器工作 ■反激变压器 ■正激变压器 1、Buck-降压调整器-连续导电 ■电感电流连续。 ■Vout 是其输入电压 (V1)的均值。 ■输出电压为输入电压乘以开关的负荷比 (D)。 ■接通时,电感电流从电池流出。 ■开关断开时电流流过二极管。 ■忽略开关和电感中的损耗, D与负载电流无关。 ■降压调整器和其派生电路的特征是: 输入电流不连续 (斩波), 输出电流连续 (平滑)。

2、Buck-降压调整器-临界导电 ■电感电流仍然是连续的,只是当开关再次接通时“达到”零。这被称为“临界导电”。 输出电压仍等于输入电压乘以D。 3、Buck-降压调整器-不连续导电 ■在这种情况下,电感中的电流在每个周期的一段时间中为零。■输出电压仍然 (始终)是 v1的平均值。 ■输出电压不是输入电压乘以开关的负荷比 (D)。

■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。 4、Boost升压调整器 ■输出电压始终大于(或等于)输入电压。 ■输入电流连续,输出电流不连续(与降压调整器相反)。 ■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情 况下: 在本例中,Vin = 5, Vout = 15, and D = 2/3. Vout = 15,D = 2/3.

5、变压器工作(包括初级电感的作用) ■变压器看作理想变压器,它的初级(磁化)电感与初级并联。 19、反激变压器 ■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。 6、Forward 正激变换变压器 ■初级电感很高,因为无需存储能量。

大功率可调开关电源的电路图原理

大功率可调开关电源的电路图原理 本文给出了一种新型大功率可调开关电源的设计方案。采用Buck型开关电源拓扑,以带单路PWM输出和电流电压反馈检测MC33060为控制IC,配以双路输出IR2110驱动芯片,设计了一种可调高电压大功率的开关电源,有效解决了普通开关电源在非隔离拓扑结构下输出电压和功率不能达到很高的限制,并带有过流保护等电路。文中以MC33060的应用为基础介绍了可调开关电源设计的方法,然后详细讲解了本系统的组成以及各个部分的作用,文章最后总结了该系统的特点。 1.引言 开关电源作为线性稳压电源的一种替代物出现,其应用与实现日益成熟。而集成化技术使电子设备向小型化、智能化方向发展,新型电子设备要求开关电源有更小的体积和更低的噪声干扰,以便实现集成一体化。对中小功率开关电源来说是实现单片集成化,但在大功率应用领域,因其功率损耗过大,很难做成单片集成,不得不根据其拓扑结构在保证电源各项参数的同时尽量缩小系统体积。 2.典型开关电源设计 开关电源一般由脉冲宽度调制(PWM,Pulse Width Modulation)控制IC(Integrated Circuit)和功率器件(功率MOSFET或IGBT)构成,且符合三个条件:开关(器件工作在开关非线性状态)、高频(器件工作在高频非接近上频的低频)和直流(电源输出是直流而不是交流)。 2.1控制IC 以MC33060为例介绍控制IC。 MC33060是由安森美(ON Semi)半导体公司生产的一种性能优良的电压驱动型脉宽调制器件,采用固定频率的单端输出,能工作在-40℃至85℃。其内部结构如图1所示[1],主要特征如下:1)集成了全部的脉宽调制电路; 2)内置线性锯齿波振荡器,外置元件仅一个电阻一个电容; 3)内置误差放大器; 4)内置5V参考电压,1.5%的精度; 5)可调整死区控制; 6)内置晶体管提供200mA的驱动能力; 7)欠压锁定保护; 图1MC33060内部结构图 其工作原理简述:MC33060是一个固定频率的脉冲宽度调制电路,内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如(2-1)式:

12种开关电源拓扑及计算公式

输入输出电压关系 D T Ton Vin Vout ==开关管电流 Iout Iq =(max)1开关管电压 Vin Vds =二极管电流 ) 1(1D Iout Id ?×=二极管反向电压 Vin Vd =12、BOOST 电路 输入输出电压关系 D Ton T T Vin Vout ?= ?=11 开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vds =二极管电流 Iout Id =1二极管反向电压 Vout Vd =13、BUCK BOOST 电路 输入输出电压关系 D D Ton T Ton Vin Vout ?= ?=1开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vin Vds ?=二极管电流 Iout Id =1二极管反向电压 Vout Vin Vd ?= 1大比特压器论坛 p : //b b .b i g -b i t .c o m

输入输出电压关系 D D Vin Vout ?= 1开关管电流 )1( (max)1D D Iout Iq ?×=开关管电压 Vout Vin Vds +=二极管电流 Iout Id =1二极管反向电压 Vin Vout Vd +=15、FLYBACK 电路 输入输出电压关系 Lp Iout Vout T D Vin Vout ×××=2开关管电流 (max)1Lp Ton Vin Iq ×= 开关管电压 Ns Np Vout Vin Vds × +=二极管电流 Iout Id =1二极管反向电压 Np Ns Vin Vout Vd × +=16、FORW ARD 电路 输入输出电压关系 D Np Ns T Ton Np Ns Vin Vout ×=×=开关管电流 Iout Np Ns Iq ×= (max)1开关管电压 Vin Vds ×=2二极管电流 D Iout Id ×= 1大比特电子变压器论坛 h t t p : //b b s .b i g -b i t .c o m

开关电源各种拓扑结构集锦详解

开关电源各种拓扑集锦 1、先给出六种基本DC/DC变换器拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。buck-boost是反激变换器的原型,属于升降压变换器。后面三种电路不是很常用,都是升降压变换器。从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。 2、正激变换器: A、绕组复位正激变换器

B、LCD复位正激变换器 C、RCD复位正激变换器 D、有源钳位正激变换器 E、双管正激

F、无损吸收双正激: G、有源钳位双正激 H、原边钳位双正激、 I、软开关双正激 评论:正激变换器是常用变换器之一,特别在中小功率场合。正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。但是开关管电压应力较大。双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。如果能不加入辅助管而实现软开关,一定超有前途。 正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。

开关电源主回路拓扑结构概述_电源技术概要四8[1].21

开关电源主回路拓扑结构概述_电源技术概要㈣ 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离史与非隔离式两大类型。 一、非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1、串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。 2、并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。 由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。 3、极性反转型变换器结构 极性反转——输出电压与输入电压的极性相反。电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。 开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。 二、隔离式电路的类型:

电源拓扑电路详解

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的 平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。即不考虑图形的大小形状,仅考虑点和线的个数。 实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的 实质状况。同一个拓扑结构可以画成几何形状不同的电路图 拓扑电路非常适用于DC-DC变换器。每种拓扑都有其自身的特点和适用场合。因此, 要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。 DC/ DC电源变换器的拓扑类型主要有以下13种: (1)Buck Converter降压式变换器; (2)Boost Conyerter升压式变换器; ⑶Buck —Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器; (4)Cuk Converter升压,升压串联式变换器; (5)SEPIC(S in gle En dcd Pdimary In ductor Con verter)单端一次侧电感式变换器; (6)F1yback Converter反激式(亦称回扫式)变换器; (7)Eorward Converter 正激式变换器: (8)Double Switches Forward Converter 双开关正激式变换器; (9)Active Clamp Forward Co nverter 有源箝位 (O)Half Bridge Converter 半桥式变换器; (11)Full Bridge Converter 全桥式变换器; (12)Push—pall Convener 推挽式变换器: (13)Phase Shift Switchi ng ZVT(Phase Shift Switchi ng Zero Voltage Tran sitio n) 移相式零电压 开关变换器。 开关电源(直流变换器) 的类型很多,在研究开发或者维修电源系统时,全面了解开关 电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源拓扑主回路的组成:主回路(开关电源中,功率电流流经的通路)一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 一、常见电源拓扑介绍。 1、Buck Converter降压式变换器。如图 1 Buck 降压 Vout = D Vin 图1 BUCK降压拓扑特点:a把输入降至一较低电压。Load怕我(H)

相关文档
相关文档 最新文档