文档库 最新最全的文档下载
当前位置:文档库 › 量子力学第一章总结

量子力学第一章总结

量子力学第一章总结
量子力学第一章总结

第一章

1.量子力学:量子力学 是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论

2.黑体辐射:如果一个物体能够吸收投射在它上面的全部辐射而无反射,这种物体就成为绝对黑体,简称黑体。一个空腔可以看做是黑体。由这样的空腔小孔发出的辐射就是黑体辐射

3.光电效应/光电子/临界

频率

(1)光电效应:当光照射到

金属上时,有电子从金属中溢出.这种电子称为光电子 (2)实验证明,当光的频率大于一定值时,才有光电子发射出来;如果光的频率低于这个值,则不论光强多大,照射时间多长,都没有光电子产生。这个频率称为

临界频率

4.脱出功:电子克服原子核

的束缚,从材料表面逸出所需的最小能量,称为脱出功 5.光量子:电磁辐射不仅在被发射和吸收时以能量h ν形式出现,而且以这种形式以光速C 在空间中运动,这种粒子叫做光量子 或光子 6.光子动量:光子不仅具有确定的能量E = hv ,而且具有动量。光子的能量动量关系式:

7.氢原子谱线线系/里德伯

常数:

氢原子光谱有许多分立谱线组成,这是很早就发现了的。巴尔末发现紫外光附近

的一个线系,并得出氢原子谱线 的经验公式是:

其中R H =1.09677576×107m -1

是氢的Rydberg 常数 8.波尔的量子论: (1)波尔假定

(2)氢原子线光谱的解释 (3)量子化条件的推广 (4)波尔量子论的局限性

9.波尔假定:

电子在原子中不能沿着经典理论所允许的每一个轨道运动,而只能沿着其中一组特殊的轨道运动,波尔假设沿这一组特殊的轨道运动的电子处于稳定状态(简称定态),当电子保持在这种状态时,它们不吸收也不发出辐射,只有当电子

由一个定态跃迁到另一个

定态时,才会产生辐射的吸收和发射现象。电子由能量为Em 的定态跃迁到能量为En 的定态时所吸收或发射的辐射频率v 满足下面关系: V nm =[E n -E m ]/h 为了确定电子运动的可能轨道,波尔提出量子化条件:在量子理论中,角动量必须是h 的整数倍 10.波尔半径:氢原子核外电子基态轨道的半径就是波尔半径 即为波尔轨道半径

11.角动量:物体绕轴的线速度与其距轴线的垂直距离的乘积,即 L=r ×p 12,索末菲量子化条件: 索末菲将Bohr 量子化条件推广为推广后的量子化条件可用于多自由度情况, ∮p i dq i =n i h 其中p i 是广义动量,q i 是

相应的一个广义坐标, 这样索末菲量子化条件不仅能解释氢原子光谱,而且对于只有一个电子(Li ,Na ,K 等)的一些原子光谱也能很好的解释。

13.束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态。(一般地说束缚态所属的能级是分立的)

14.康普顿散射:X 射线被轻元素如白蜡、石墨中的电子散射后,除了出现与入射波同样波长的散射外,还出现波长向长波方向移动的散射现象。

15.电子的康普顿波长

Δλ=2λ0sin 2

(θ/2) 其中

λ0=2πh/(m 0C)=2.4×10-10

cm 称为电子的康普顿波长 16.普朗克假定/普朗克辐射定律/普朗克常数 普朗克假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E = hv 为能量单位不连续的发射和吸收辐射能量,而不是像经典理论所要求的那样可以连续的发射和吸收辐射能量。 普朗克辐射定律: 普朗克常数为:

h=6.62606896(33)×10-34

J ·s 通常使用h=6.63×10-34J ·s 17.德布罗意关系 假定与一定能量E 和动量P 的实物粒子相联系的波(物质波)的频率波长为: E=hv v=E/h P=h/λ λ=h/p 该关系称为德布罗意关系

18.电子衍射实验

把电子束正入射到镍单晶上,观察散射电子束的强度和散射角之间的关系。

电子束有电子枪发出,被晶体散射;散射粒子束由法拉第圆筒收集。散射粒子束的强度随散射角而改变,当角度取某些值时,强度有最大值。这现象于X射线衍射现象相同,充分说明电子具有波动性。

电子束在穿过细晶体粉末或薄金属片后,也像X射线一样产生衍射现象,证明了德布罗意关系的正确性。

19.德布罗意波

因为自由粒子的能量E和动量P都是常量,所以德布罗意波关系可知,与自由粒子联系的波得频率v和波矢k 都不变,是一个平面单色波。由力学可知频率v,波长λ,沿单位矢量n方向传播的平面波为:

Ψ=Acos[k·r-wt]

其中w=2πv k=2πn/λ

写成复数形式

Ψ=A exp[i(k·r-wt)]

=A exp[i(p·r-Et)/h] 这种复数形式的波称为德布罗意波

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

量子力学第二章总结

第二章 1.波函数/平面波: (1)频率和波长都不随时间变化的波叫平面波。 (2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数 2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子. 3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。 由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。 (2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。 4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|2 5.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2 d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2 d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。 7.归一化: C ∫∞|Φ(x,y,z,t)|2 d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2 d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ?Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2 故把(1)式改写成 ∫∞|Ψ(r , t)|2 d τ=1 把Φ换成Ψ的步骤称为归一化。 8.δ—函数 δ(x-x 0)= 0 x ≠x 0 ∞ x=x0 ∫+∞ -∞δ(x-x 0)dx=1 9.波函数的标准化条件: (1)单值、有限、连续 (2)正交 归一 完备 10.态叠加原理: 态叠加原理一般表述:若Ψ1 ,Ψ2 ……Ψn …… 是体系的一系列可能的状态,则这些态的线性叠加 Ψ= C 1Ψ1+ C 2Ψ2+……+C n Ψn 也是体系的一个可能状态。 11.能量算符/哈密顿算符 定态波函数满足下面两个方程: 两个方程的特点:都是以一 个算符作用于Ψ(r, t)等于E Ψ(r, t)。 →哈密顿算符 这两个算符都是能量算符 12.薛定谔方程: 13.几率流密度 单位时间内通过τ的封闭 表面S 流入(面积分前面的负号)τ内的几率,因而可以自然的把J 解释为概率密度矢量。 14.质量守恒定律: 15.电荷守恒定律:

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

量子力学第一章习题答案

第一章 1.1 由黑体辐射公式导出维恩位移定律: 能量密度极大值所对应的波长λm 与温度T 成反 比,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。 解:黑体辐射的普朗克公式为:) 1(833 -=kT h e c h ν νν πρ ∵ v=c/λ ∴ dv/dλ= -c/λ2 又 ∵ ρv dv= -ρλdλ ∴ ρλ=-ρv dv/dλ=8πhc/[λ5(e hc/λkT -1)] 令x=hc/λkT ,则 ρλ=8πhc(kT/hc)5x 5/(e x -1) 求ρλ极大值,即令dρλ(x)/dx=0,得: 5(e x -1)=xe x 可得: x≈4.965 ∴ b=λm T=hc/kx ≈6.626 *10-34*3*108/(4.965*1.381*10-23) ≈2.9*10-3(m K ) 1.2√. 在0 K 附近,钠的价电子能量约为3电子伏,求其德布罗意波长。 解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J 故其德布罗意波长为: 07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ? 1.3 √.氦原子的动能是E= 32 KT (K B 为波尔兹曼常数),求T=1 K 时,氦原子的德布罗意波长。 解:h = 6.626×10-34 J ·s , 氦原子的质量约为=-26-2711.993104=6.641012 kg ???? , 波尔兹曼常数K B =1.381×10-23 J/K 故其德布罗意波长为: λ = 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2 ≈0 1.2706A 或λ= 而KT E 23 =601.270610A λ-==? 1.4利用玻尔-索末菲量子化条件,求: a ) 一维谐振子的能量: b ) 在均匀磁场作圆周运动的电子轨道的可能半径。 解: a )解法一:设一维谐振子的质量为m ,广义坐标为 q=Acos(ωt+φ) 根据玻尔—索末菲量子化条件 ∮pdq = nh 得:∮m(dq/dt)dq = m ωA 2∮sin 2θd θ=m ωA 2π=nh ∴ A 2 =nh/(πm ω)=2nh/m ω (其中h=h/2π) 又 ∵ 一维谐振子的周期 T =2π(m/k)0.5

量子力学第一章课外练习题

第一章绪论 一、填空题 1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为 (保留三位有效数字)。 2、自由粒子的质量为m,能量为E,其德布罗意波长为_________________(不考虑相对论效应)。 3、写出一个证明光的粒子性的实验__________________________。 4、爱因斯坦在解释光电效应时,提出概念。 5、德布罗意关系为(没有写为矢量也算正确)。 7、微观粒子具有二象性。 8、德布罗意关系是粒子能量E、动量P与频率、波长之间的关系,其表达式为。 9、德布罗意波长为λ,质量为m的电子,其动能为____ _ 。 10、量子力学是的理论。 11、历史上量子论的提出是为了解释的能量分布问题。用来解释光电效应的爱因斯坦公式为。 12、设电子能量为4电子伏,其德布罗意波长为 nm。 13、索末菲的量子化条件为,应用这个量子化条件可以 E。 求得一维谐振子的能级= n 14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的子衍射实验所证实,德布罗意关系(公式)为和。 15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。根据其理论,质量为μ,动量为p的粒子所对应的物质波的频率为 ,波长为。若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为(保留三位有效数字)。 16、1923年, 提出物质波概念,认为任何实物粒子,如

电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为(保留三位有效数字)。 二、选择题 1、利用提出的光量子概念可以成功地解释光电效应。 A.普朗克 B. 爱因斯坦 C. 玻尔 D. 波恩 2、1927年和等人所做的电子衍射试验验证了德布洛意的物质波假设。 A. 夫兰克赫兹 B. 特恩革拉赫 C. 戴维逊盖末 D. 康普顿吴有训 3、能量为0.1eV的自由中子的德布罗意波长为 A. 0.92? B.1.23? C. 12.6 ? D.0.17 ? 4、一自由电子具有能量150电子伏,则其德布罗意波长为 A.1 A B.15 A C.10 AD.150 A 5、普朗克在解决黑体辐射时提出了。 A、能量子假设B、光量子假设 C、定态假设 D、自旋假设 6、证实电子具有波动性的实验是。 A、戴维孙——革末实验B、黑体辐射 C、光电效应 D、斯特恩—盖拉赫实验 7、1900年12月发表了他关于黑体辐射能量密度的研究结果,提出原子振动能量假设,第一个揭示了微观粒子运动的特殊规律:能量不连续。 A. 普朗克B.爱因斯坦 C. 波尔D. 康普顿8、普朗克量子假说是为解释 (A) 光电效应实验规律而提出来的 (B) X射线散射的实验规律而提出来的 (C) 黑体辐射的实验规律而提出来的 (D) 原子光谱的规律性而提出来的 9、康普顿效应的主要特点是

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 如果令x=kT hc λ ,则上述方程为 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 把x 以及三个物理常量代入到上式便知 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:根据德布罗意波粒二象性的关系,可知 λ h P =。 所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0?=<<),满足 e k m p E 22 =, 因此利用非相对论性的电子的能量—动量关系式,有 在这里,利用了 m eV hc ??=-61024.1, eV c m e 621051.0?=。 最后,对 E m h e 2= λ 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。 自然单位制: 在粒子物理学中,利用三个普适常数(光速c ,约化普朗克常数,玻耳兹曼常数 k )来减少独立的基本物理量的个数,从而把独立的量纲减少到只有一种(能量量纲,常用单位eV )。例:1nm=5.07/keV ,1fm=5.07/GeV , 电子质量m=0.51MeV . 核子(氢原子)质量M=938MeV ,温度5 18.610K eV -=?.

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

量子力学 第二章 算符理论

第二章(一维)算符理论 本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。最后,作为对上述内容的综合应用,讨论了不确定性原理。 1.算符:每一个可观测量,在态空间中被抽象成算符。在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上 ①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =?=αβ 。总之,方阵与线性变换一一对应。由于方阵性质比矩阵更丰富,我们将只研究方阵。 ②微分算子:在微积分中2222,,,i i x f x f dx f d dx df ???? 也可简写成f f f D Df 22,,,??。前两种在解 欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算 ③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f D mix μ=中,把μ称为问题本征值,f 称为本征函数 ⑤线性算符:现在把上述概念统一为线性算符理论。 考虑一个可测量Q ,定义它的对应算符为Q ?,它的本征方程是ψ=ψλQ ?或λψψ=Q ?,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」 (或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ, 如后面将遇到的坐标算符本征态x 、动量算符本征态p ) ⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ?作用于系统粒子的态矢量ψ,测量值只能为算符Q ?的本征值i λ。在这次测量后,假设得到

福师《结构化学》第一章 量子力学基础和原子结构 课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

量子力学(周世勋)课后答案解析-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是

要求的,具体如下: 011511 86=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学第一章总结

第一章 1.量子力学:量子力学 是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论 2.黑体辐射:如果一个物体能够吸收投射在它上面的全部辐射而无反射,这种物体就成为绝对黑体,简称黑体。一个空腔可以看做是黑体。由这样的空腔小孔发出的辐射就是黑体辐射 3.光电效应/光电子/临界 频率 (1)光电效应:当光照射到 金属上时,有电子从金属中溢出.这种电子称为光电子 (2)实验证明,当光的频率大于一定值时,才有光电子发射出来;如果光的频率低于这个值,则不论光强多大,照射时间多长,都没有光电子产生。这个频率称为 临界频率 4.脱出功:电子克服原子核 的束缚,从材料表面逸出所需的最小能量,称为脱出功 5.光量子:电磁辐射不仅在被发射和吸收时以能量h ν形式出现,而且以这种形式以光速C 在空间中运动,这种粒子叫做光量子 或光子 6.光子动量:光子不仅具有确定的能量E = hv ,而且具有动量。光子的能量动量关系式: 7.氢原子谱线线系/里德伯 常数: 氢原子光谱有许多分立谱线组成,这是很早就发现了的。巴尔末发现紫外光附近 的一个线系,并得出氢原子谱线 的经验公式是: 其中R H =1.09677576×107m -1 是氢的Rydberg 常数 8.波尔的量子论: (1)波尔假定 (2)氢原子线光谱的解释 (3)量子化条件的推广 (4)波尔量子论的局限性 9.波尔假定: 电子在原子中不能沿着经典理论所允许的每一个轨道运动,而只能沿着其中一组特殊的轨道运动,波尔假设沿这一组特殊的轨道运动的电子处于稳定状态(简称定态),当电子保持在这种状态时,它们不吸收也不发出辐射,只有当电子 由一个定态跃迁到另一个 定态时,才会产生辐射的吸收和发射现象。电子由能量为Em 的定态跃迁到能量为En 的定态时所吸收或发射的辐射频率v 满足下面关系: V nm =[E n -E m ]/h 为了确定电子运动的可能轨道,波尔提出量子化条件:在量子理论中,角动量必须是h 的整数倍 10.波尔半径:氢原子核外电子基态轨道的半径就是波尔半径 即为波尔轨道半径 11.角动量:物体绕轴的线速度与其距轴线的垂直距离的乘积,即 L=r ×p 12,索末菲量子化条件: 索末菲将Bohr 量子化条件推广为推广后的量子化条件可用于多自由度情况, ∮p i dq i =n i h 其中p i 是广义动量,q i 是 相应的一个广义坐标, 这样索末菲量子化条件不仅能解释氢原子光谱,而且对于只有一个电子(Li ,Na ,K 等)的一些原子光谱也能很好的解释。 13.束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态。(一般地说束缚态所属的能级是分立的) 14.康普顿散射:X 射线被轻元素如白蜡、石墨中的电子散射后,除了出现与入射波同样波长的散射外,还出现波长向长波方向移动的散射现象。 15.电子的康普顿波长 Δλ=2λ0sin 2 (θ/2) 其中 λ0=2πh/(m 0C)=2.4×10-10 cm 称为电子的康普顿波长 16.普朗克假定/普朗克辐射定律/普朗克常数 普朗克假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E = hv 为能量单位不连续的发射和吸收辐射能量,而不是像经典理论所要求的那样可以连续的发射和吸收辐射能量。 普朗克辐射定律: 普朗克常数为: h=6.62606896(33)×10-34 J ·s 通常使用h=6.63×10-34J ·s 17.德布罗意关系 假定与一定能量E 和动量P 的实物粒子相联系的波(物质波)的频率波长为: E=hv v=E/h P=h/λ λ=h/p 该关系称为德布罗意关系

量子力学第二章习题解答

第二章习题解答 p.52 2.1.证明在定态中,几率流与时间无关。 证:对于定态,可令 )] r ()r ()r ()r ([m 2i ] e )r (e )r (e )r (e )r ([m 2i ) (m 2i J e )r ( ) t (f )r ()t r (**Et i Et i **Et i Et i **Et i ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(, 可见t J 与 无关。 2.2 由下列定态波函数计算几率流密度: i k r i k r e r e r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。 解:分量只有和r J J 21 在球坐标中 ? θθ?θ?? +??+??=?s i n r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr 3 020 220 1* 1*111 )]11(1)11(1[2 )]1(1)1(1[2 ) (2 )1(==+----=??-??=?-?=--ψψψψ r J 1 与同向。表示向外传播的球面波。

r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i ) (m 2i J )2(3020 220 ik r ik r ik r ik r * 2*222 -=-=---+-=??-??=?-?=--ψψψψ 可见,r J 与2反向。表示向内(即向原点) 传播的球面波。 补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化? ∞==? ? ∞ ∞ dx dx ψψ* ∴波函数不能按1) (2 =? dx x ψ方式归一化。 其相对位置几率分布函数为 12 ==ψω表示粒子在空间各处出现的几率相同。 2.3 一粒子在一维势场 ??? ??>∞≤≤<∞=a x a x x x U ,, ,0 00)( 中运动,求粒子的能级和对应的波函数。 解:t x U 与)(无关,是定态问题。其定态S —方程 )()()()(22 2 2x E x x U x dx d m ψψψ=+- 在各区域的具体形式为 Ⅰ: )()()()(2 011122 2x E x x U x dx d m x ψψψ=+- < ① Ⅱ: )()(2 0 222 2 2x E x dx d m a x ψψ=-≤≤ ② Ⅲ: )()()()(2 3332 2 2x E x x U x dx d m a x ψψψ=+- > ③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须 0)(1=x ψ

第一章 量子力学基础知识 (1)

第一章量子力学基础知识 1.填空题 (1) Ψ是描述的波函数(北京大学1993年考研试题) (2) 实物粒子波动性假设由首先提出来的,实物粒子的波是波。 (3) 德布罗意假设首先由戴维逊和革末用实验证实的。 (4) 在一维无限深势阱中,粒子的活动范围宽度增大,能引起体系的能量。 (5)Planck提出,标志着量子理论的诞生。(中山大学1998年考研试题) (6) 一维无限深势阱中的粒子,已知处于基态,在处概率密度最大。 (7) 边长为l的立方势箱中粒子的零点能为。(北京大学1993年考研试题) (8) 边长为l的一维势箱中粒子的零点能为。 (9) 有一质量为m的粒子在一维势箱中运动,其Schr?dinger方程为。(中山大学1998年考研试题) (10) 一维势箱的长度增加,其粒子量子效应(填增强、不变或减弱)。 2. 选择题 (1)粒子处于定态意味着:( ) A、粒子处于静止状态 B、粒子处于势能为0的状态 C、粒子处于概率最大的状态 D、粒子的力学量平均值及概率密度分布都与时间无关的状态 (2)波恩对波函数提出统计解释:在某一时刻t在空间某处发现粒子的概率与下面哪种形式的波函数成正比。( ) A、|Ψ| B、|Ψ |2 C、|Ψ |1..5 D、xy| Ψ| (3)指出下列条件,哪一个不是态函数的标准化条件?( ) A、单值 B、正交归一 C、有限 D、连续 (4)微观粒子的不确定关系式,如下哪种表述正确?( ) A、坐标和能量无确定值 B、坐标和能量不可能同时有确定值 C、若坐标准确量很小,则动量有确定值 D、动量值越不正确,坐标值也越不正确 (5)波长为662.6 pm 的光子和自由电子,光子的能量与自由电子的动能比为何值?( )

量子力学-卷一(第三版)答案-井孝功

第一章 量子力学的诞生 1.1设质量为m 的粒子在谐振子势2221)(x m x V ω= 中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1,x V E m p n nh x d p -===??Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω= ==。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπωωω 得ω ωπm n m nh a η22== (3) 代入(2),解出 Λη,3,2,1,==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-?arcsin 222222 2 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1,x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n

第一章 量子力学基础课后习题

第一章量子力学基础 第八组: 070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云 070601350陈辉辉 070601351唐枋北 【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论? [解]:困难:(1)黑体辐射问题。黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。这一结果用经典理论无法解释。(2)光电效应。光照射到金属上时,有电子从金属中逸出。实验得出的光电效应的有关规律同样用经典理论无法解释。(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。经典物理学不能解释原子的稳定性问题。原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。 定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。这种在量子力学建立以前形成的量子理论称为旧量子论。 评价:旧量子论冲破了经典物理学能量连续变化的框框。对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典

量子力学第一章课外试题

量子力学第一章课外试题

————————————————————————————————作者:————————————————————————————————日期:

第一章绪论 一、填空题 1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为0.123A(保留三位有效数字)。 2、自由粒子的质量为m,能量为E,其德布罗意波长为h/p=h/√2mE(不考虑相对论效应)。 3、写出一个证明光的粒子性的:康普顿效应的发现,从实验上证实了光具有粒子性。 4、爱因斯坦在解释光电效应时,提出光的频率决定光子的能量,光的强度只决定光子的数目概念。 5、德布罗意关系为p=h/λ n(没有写为矢量也算正确)。 7、微观粒子具有波粒二象性。 8、德布罗意关系是粒子能量E、动量P与频率ν、波长λ之间的关系,其表达式为E=hv 9、德布罗意波长为λ,质量为m的电子,其动能为已知。 10、量子力学是反映微观粒子运动规律的理论。 11、历史上量子论的提出是为了解释的能量分布问题。用来解释光电效应的爱因斯坦公式为已知。 12、设电子能量为4电子伏,其德布罗意波长为待定nm。 13、索末菲的量子化条件为在量子理论中,角动量必须是h的整数倍, E待定。 应用这个量子化条件可以求得一维谐振子的能级= n 14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的电子衍射

实验所证实,德布罗意关系(公式)为见P11。 15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。根据其理论,质量为μ,动量为p的粒子所对应的物质波的频率为,波长为若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为待定(保留三位有效数字)。 16、1923年,德布罗意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为0.123A(保留三位有效数字)。 二、选择题 1、利用爱因斯坦提出的光量子概念可以成功地解释光电效应。 A. 普朗克 B. 爱因斯坦 C. 玻尔 D. 波恩 2、1927年C和等人所做的电子衍射试验验证了德布洛意的物质波假设。 A. 夫兰克赫兹 B. 特恩革拉赫 C. 戴维逊盖末 D. 康普顿吴有训 3、能量为0.1eV的自由中子的德布罗意波长为B A. 0.92? B.1.23? C. 12.6? D.0.17 ? 4、一自由电子具有能量150电子伏,则其德布罗意波长为可算 A.1ο A B.15 ο A C.10 ο A D.150 ο A 5、普朗克在解决黑体辐射时提出了 A。 A、能量子假设 B、光量子假设 C、定态假设 D、自旋假设 6、证实电子具有波动性的实验是 D 。 A、戴维孙——革末实验 B、黑体辐射

相关文档
相关文档 最新文档