文档库 最新最全的文档下载
当前位置:文档库 › 典型混沌系统和混沌同步的简介

典型混沌系统和混沌同步的简介

典型混沌系统和混沌同步的简介
典型混沌系统和混沌同步的简介

2典型混沌系统和混沌同步的简介

2.1典型混沌系统的介绍

混沌从表述形式上大体包括两大类:以微分方程表述的时间连续函数和以状态方程表述的时间离散函数。时间离散系统多用于扩频通信,而时间连续函数多见于保密通信之中。介于本文主要考虑连续系统在保密通信之中的应用,这里就重点介绍连续时间混沌系统中的典型模型:Lorenz 系统、蔡氏电路、统一混沌系统。

2.1.1 Lorenz 系统

混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz 方程组:

()

???

????----cz xy y xz bx y x y a x =z==。。

(2-1)

这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统 (2-1)的主要控制参数。k

v a =是普朗特数(v 和k 分别为分子粘性系数和热传导系数),c 代表与对流纵横比有关的外形比,且a 和c 为无量纲常数。在参数范围为)1/()3(--++?>c a c a a b 时,Lorenz 系统均处于混沌态。

在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所示,二维吸引子如图2.3所示,图2.2所示分别为分量x 、y 随时间t 的变化情况。

图2.1 Lorenz 系统的吸引子

图2.2 分量x随时间t的变化情况

图2.3 Lorenz系统的x-y相图

总体上,Lorenz吸引子由左右两个环套而成,每个环绕着一个不动点,它实际上是一条双螺旋的曲线,就像以十分灵巧的方式交织起来的一对蝴蝶的翅膀。这个吸引子中的环和螺线有无穷的深度,它们之间可以无限靠近,但永远不会相交,仅占据有限的空间,具有无穷嵌套的复杂结构。例如,随着时间的演化,每一个环都靠得很近的无穷多层,每层上都密密麻麻的排列着无穷多个螺线,它代表系统的相点在右侧转几圈后又跳到左侧转几圈,运动轨道无法预测什么时候从这一侧过渡到另一侧,并且它所绕各自中心的方式和圈数也是个明显的随机数。这就是混沌状态。

2.1.2蔡氏电路[23]

在诸多用于混沌研究的非线性电路系统中,有一类是分段线性的非线性系统,它们共同的特点是易于进行数学分析和物理实现。其中蔡氏电路最为著名。在许多文献中都以蔡氏电路为基础研究了混沌现象。它的优点在于极为简单的系统就产生了极为复杂的动力学行为,人们从不同角度研究蔡氏电路以及它的变形电路,发现了几乎所有目前已知的动力学现象,如倍周期分叉、周期运动、阵发性混沌、奇异非混沌、混沌等。蔡氏电路及其变形电路己经成为研究动力学行为的一个重要模型,而且蔡氏电路的应用研究已经遍及诸多领域,如保密

通信、手写特征识别、音乐的产生,以及利用蔡氏电路组成的时空系统进行轨迹识别等。

蔡氏电路是一个三维自治振荡系统,如图2.4(a)所示,由四个线性元件电感L,电阻R ,电容C 1,C 2和非线性电阻N 组成。蔡氏电路可由以下状态方程描述:

()[]()[]?????????-=+-=--=221221121111)(1C L L C C C c C C c v L dt

di i v v G C dt dv v g v v G C dt dv (2-2) 其中G=1/R ,)(1C v g 是蔡氏二极管的分段线性i v -特性,如图2.7 (b),表示

))((2

1)(1101101P C P C C C B v B v m m v m v g --+-+= (2-3) 现简化电路,令

()012

212212,,,,,,,m R b m R a L

R C C C G B i z B v y B v x C G t P L P C P C ?=?======?=βατ,我们可得到该电路的无量纲方程:

()

???

????-=+-=--=y z z

y x y x f x y x βα..

)( (2-4) 其中

()11)(2

1)(--+-+=x x b a bx x f (2-5) NR

2C v 1C v L i

(a )蔡氏电路

(b) R N 伏安特性

图2.4蔡氏电路及其非线性电阻特性

分析该混沌电路模型有如下特点:

(1)方程(2-4)关于状态空间原点是对称的,即式(2-4)中的((x, y, z)用(-x,-y,-z)代替时,方程保持不变。且在状态空间的三个子空间

(){}()(){}(){}1,,,1,1,,,1,,0-≤=-∈=≥=-+x z y x D x z y x D x z y x D

中各有一个平衡点,分别记为:()()()k k p p k k p ,0,,0,0,0,,0,0---+,其中1

+-=b a b k 。 (2)在上述的子空间中,方程均属线性,取:()()?????

????

?--+-=0011101,,b

a c a c

b a A

令()(),,0,,,,k k K z y x x -==∧则系统的状态方程可写成:

()()()?????????∈??? ??-∈∈??? ??-=-∧∧∧∧+∧∧∧D x K x a A D x x

b A D x K x a A x ,,,,,,0βαβαβα (2-6)

蔡氏二极管的伏安特性与参数P B m m ,,10的选取有关,其中10,m m 的大小直接关系到蔡氏电路的解行为和吸引子的结构。为简便起见,将蔡氏电路中的吸引子分成两类:当10m m >,称为第一种蔡氏吸引子;当10m m <称为第二种蔡氏吸引子。这里只仿真第一类混沌吸引子。取68.0,27.1,87.14,10-=-===b a βα时,初始值为385.0,067.0,513.0000=-==z y x ,其吸引子如图2.5,2.6所示。

图2.5蔡氏电路第一类混沌吸引子

图2.6蔡氏电路的),(y x 相图

2.1.3统一混沌系统

1963年,美国气象学家E.N. Lorenz 在对流实验中发现了第一个混沌吸引子,Lorenz 吸引子为混沌研究提供了一个重要模型。七十年代以来掀起了一股揭示混沌现象,研究混沌理论的热潮。1999年,陈关荣教授在研究混沌反控制过程中发现了一个与Lorenz 类似的混沌吸引子--Chen 吸引子[24]。2002年,吕金虎、陈关荣等又提出了一个新的混沌系统--统一混沌系统[25-27],这一系统连接了Lorenz 吸引子和Chen 吸引子。

统一混沌系统的数学模型为:

()()

()()()???

????+-=--+-=-+=3/81293528102532133121212x x x x x x x x x x x x αααα。。

1 (2-7)

式(2-7)中α为系统参数,当]1,0[∈α时系统均为混沌态。当)8.0,0[∈α时,统一系统属于广义Lorenz 系统;当]1,8.0(∈α时,统一系统属于广义Chen 系统;8.0=α属于广义

.

.u L 系统。

现以46.0=α为例,给出统一混沌系统吸引子的数值仿真结果,如图2.7,2.8所示。

图2.7 统一混沌系统的吸引子

图2.8统一混沌系统的),(y x 相图

理论分析和数值实验表明,Chen 吸引子相比Lorenz 吸引子具有类似但不同、而且是更加复杂的拓扑结构和动力学性质。统一混沌系统本质上是Lorenz 系统和Chen 系统的凸组合,代表了由中间无穷多个混沌系统组成的整个族,具有连接Lorenz 系统和Chen 系统的重要作用。

当参数α由0增加到1时,系统(2-7)由Lorenz 吸引子穿过临界吸引子然后连续演变到Chen 吸引子。当α=0.8时,统一混沌系统的最大Lyapunov 指数达到Lyapunov 指数谱的最高峰,39607.2m ax =λ。

另阅读

http://202.193.70.164/tpi/sysasp/CNKI/adetail.asp?dbid=3&sysid=1568&sql=select * from 桂林电子工学院论文库where (桂林电子工学院论文库.SYS_FLD_MARK_STATE=* and 桂林电子工学院论文库.SYS_FLD_CLASS_STATE=* and 桂林电子工学院论文库.SYS_FLD_CHECK_STA TE=* and (桂林电子工学院论文库.SYS_FLD_USER_LEVEL<=0 or 桂林电子工学院论文库.SYS_FLD_USER_LEVEL=Null)) and ( (作者姓名= '严舒') ) order by relevant¤tnum=1

(完整word版)混沌理论要点

混沌理论要点: 1. 非线性系统的非因果性 当原因与结果间的关系并不确定时,便产生非线性现象。比如说利率提高1%(原因),市场反应(结果)就是不确定的——结果取决于人群对该消息的解释。 再如美国家森林公园,每年都由雷电引起数百起火灾(起因相同),仿佛老天爷每年都要向大地投放火星大小相同的成百上千个未熄的烟头,于是几百次火灾被引发,并蔓延、终止,有时烧毁数亩、有时蔓延数百亩,有时……1988年那次,使黄石公园全部150万亩森林片草无存(该公园去年已被世界自然遗产目录剔除)。以致其它森林公园为防止枯草积得太厚,还不得不让消防人员,每年人为制造些火灾。 量子世界、人类历史、地震、天气运行……莫不如此。远至恐龙时代的大小生态灭绝事件,近至非典、上月的北美大停电、各国证券市场,每年无数个烟头被仍向场内,引发或大或小的震动,并蔓延、终止……但到底哪个烟头,才是那颗重要的烟头? 相同的初始力,令人瞠目的结果,是所有混沌系统的基本特征。大家都不难理解,曾救了萨达姆命的藏身之所,这次偏就成了送命之处,但很多人却很难理解同样一个历史点位,并不代表同样的未来。许多历史学家在逐次的趋势和循环中,搜寻说得过去的理由与解释,显然是用错了工具。这些传统观念产生于匀衡物理和天文学中,而合适的工具,却在非线性的非匀衡物理中。新物理学家们则开始用模拟游戏代替方程式,去发现事态运行的规律。 2.对初始条件的极端敏感依赖性 伦敦气象局计算机系统每日处理覆盖全欧洲的数千个气象站的上亿条数据,一次洛伦兹将5.06127输入为5.06,万分之一的省略,提供了两份截然不同的天气预报。于是洛伦兹在美国科学促进会提出:“一只蝴蝶在巴西煽动翅膀可能会在美国德克萨斯引起一场龙卷风”,从此,令人着迷、发人深省的“蝴蝶效应”,就以其大胆的想象力与迷人美学色彩,更加之深刻科学内涵与内在哲学魅力,倾倒了不断在复杂系统中苦苦求索的芸芸众生。“蝴蝶效应”反映了混沌运动的一个基本特征:对初始条件的极端敏感依赖性。 经典动力学认为,初始条件的微小变化,对未来状态所造成的差别也微小。但混沌理论认为,初始条件的十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。 大家不妨想像一下台球桌面:撞击母球不到1度的微小偏差,会使台面出现纵线与横折两种极端迥异的走势。一个储蓄组合的未来资产变化模拟图,也仅因规则改为不计零数,模型便立即报废。导致蝗灾的因素有不下两百种,漏算或误算其中2%,不久20%的因素都会相应改换,一切也就大相径庭。西方流传的一首民谣更是对此作了形象的说明:“醉了一个农夫,丢了一颗铁钉;丢了一颗铁钉,少安一付马掌;少了一付马掌,跛了一匹战马;跛了一匹战马,摔坏一位将军;死了一个将军,输了一场战争;输了一场战争,亡了一个国家!” 系统对无数变化,何时极度敏感,何时能消化掉而不予理会,对此人类不是无能为力,而是丝毫都无能为力——地球上每天亿万只蝴蝶上下翻飞、百万只苍鹰鼓翼、千百只大鹏展翅……初始力或相同、或不同,初始因素本身虽不大,但经时间积累后的结果,已远非人们当初之想当然。 从前我们经常听到“明年将现暖冬”“下月平均气温将低于去年同期”等说法,但拥有超乎想像的完备数据的美国家气象局去年已宣布:“从此再不对超过10天的气象做任何预测。”这是人类科学认识的又一步飞跃。 3. 能量法则 完全不同于线性代数的产物——概率论。该法则是不同国度的学者们,耗时巨大的独立研究后,最终共同发现的一项新的重要自然法则,已被证实是一个适用于上千种的模板的、普遍

混沌理论及其应用

混沌理论及其应用 摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。 关键词:混沌理论;混沌应用;电力系统 Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized. Keywords:Chaos theory;Application of ChaosElectric ;power systems 1 前言 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是对确定性非线性动力系统中的不稳定非周期性行为的定性研究(Kellert,1993)。混沌是非线性系统所独有且广泛存在的一种非周期运动形式,其覆盖面涉及到自然科学和社会科学的几乎每一个分支。近二三十年来,近似方法、非线性微分方程的数值积分法,特别是计算机技术的飞速发展, 为人们对混沌的深入研究提供了可能,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。 2 混沌理论概念 混沌一词原指宇宙未形成之前的混乱状态,中国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 2.1 混沌理论的发展 混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟。在用计算机求解的过程中, Lorenz发现当方程中的参数取适当值时解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。随后, Henon和Rossler等也得到类似结论Ruelle,May, Feigenbaum 等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向。 混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。在没

混沌与分数阶混沌系统同步控制研究及其电路仿真

混沌与分数阶混沌系统同步控制研究及其电路仿真 文章来源:伟智论文服务中心 [打印] 【摘要】混沌作为一种复杂的非线性运动行为,在物理学、化学、信息技术以及工程学等领域得到了广泛的研究。由于混沌对初值的极端敏感性、内在的随机性、连续宽谱等特点,使其特别适用于保密通信、信号处理、图象加密等领域,因此,混沌同步成为混沌应用的关键技术。在参阅大量文献的基础上,本文利用理论证明,数值模拟以及电路仿真相结合的方法,对混沌系统同步、分数阶超混沌系统同步、以及非自治超混沌系统进行了研究。本文的主要研究内容如下:1.基于Lyapunov稳定性理论,利用自适应控制方法,以不确定单模激光Lorenz系统作为驱动系统,将不确定单涡旋混沌系统作为响应系统,设计了非线性反馈控制器及参数识别器,使响应系统的所有状态变量严格地按函数比例跟踪驱动系统的混沌轨迹,并辨识出包括非线性项在内的驱动系统和响应系统的不确定参数,利用四阶龙格库塔仿真模拟,结果表明了该方法的有效性。2.应用驱动-响应方法、反馈线性化方法以及基于Lyapunov方程的Backstepping 控制方法,研究了分数阶超混沌L(u|¨)系统同步问题。其次,针对上述分数阶混沌系统同步方法中存在的不足,基于分数阶系统的稳定性理论,提出了分数 阶超混沌系...更多统的自适应同步方法,用两个控制器与两个驱动变量实现 了不确定分数阶超混沌L(u|¨)系统的自适应同步,给出了自适应同步控制器和参数自适应率,辨识出系统的不确定参数。最后,结合Active控制技术,实现了异结构分数阶超混沌系统的同步。理论证明、数值模拟以及电路仿真证实了上述同步方法的有效性和可行性。3.采用调节连续信号频率的方法,将外界控制信号引入到超混沌系统中,设计了一个新四维非自治超混沌系统。通过精确地调节模拟输入信号的频率,观察和验证新系统的非线性动力学特性,具体为 周期轨、二维环面、混沌和超混沌现象。通过Lyapunov指数图,分岔图来解释系统的动力学特性,并且给出了设计的实验电路及其观测的结果,进一步从物 理实现上验证仿真结果的准确性。最后利用单变量耦合反馈控制方法,通过电路实验实现了非自治超混沌系统的同步。还原 【Abstract】 Chaotic systems are well known for their complex nonlinear systems, and have been intensively studied in various fields such as physics, chemistry, information technology and engineering. In virtue of its characteristics of chaos such as hyper sensitivity to initial conditions, high randomicity and board spectra for its Fourier transform, chaos can be especially applied to secure communications, signal processing and image encryption and so on. Thus chaos synchronization has become the key process in the application of chaos. The research has studied the relative problems of chaos synchronization, synchronization of fractional-order hyper-chaotic systems and analysis of a new four-dimensional non-autonomous hyper-chaotic system, using

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

实验报告:混沌同步控制与图像加密

混沌同步控制与图像加密 ――― 《混沌实验教学平台的设计与实现》中期期报告 (华南师范大学物理与电信工程学院指导老师:李军学生:王龙杰、张丹伟、杨土炎)摘要:基于混沌系统的某些独特性质,如初值敏感性,本文讨论了混沌理论的两个重要运用,即基于Lorenz 混沌系统的同步控制和基于Logistic 混沌映射的图像加密。在讨论与分析的基础上,利用MA TLAB 软件进行数值计算与模拟,得到较好的效果。 关键词:Lorenz 混沌系统;同步控制;Logistic 混沌映射;图像加密;MATLAB 基于Lorenz 混沌系统的同步控制 一.引言 混沌是自然界及人类社会中的一种普遍现象,至今为止,在学术界对“混沌”还没有统一的被普遍接受的定义。混沌运动是确定性和随机性的对立统一, 即它具有确定性和随机性, 所谓确定性是指混沌运动是在确定性系统中发生的,可以用动力学方程形式表述, 这与完全随机运动有着本质的区别; 所谓运动具有随机性, 是指不能像经典力学中的机械运动那样由某时刻状态可以预言以后任何时刻的运动状态, 混沌运动倒是像其他随机运动或噪声那样, 其运动状态是不可预言的, 换言之, 混沌运动在相空间中没有确定的轨道。混沌运动对初始状态(条件)具有敏感的依赖性, 只要对系统施加非常微小的扰动,就可能把系统从一个不稳定的周期运动转变到另一个不稳定的周期运动上去,也可能转变到另一稳定的运动状态上, 通 过这个特性, 我们可以利用混沌有意义的一面, 而避其有害的一面。Lorenz 系统作为第一个混沌模型,是混沌发展史上的一个里程碑, 具有举足轻重的地位。对Lorenz 系统的深入研究无疑已经极大地推动了混沌学的发展。 人们发现混沌控制在众多领域中有着广阔的应用前景, 尤其在电子学、电力系统、保密 通信和振荡发生器设计等领域有着巨大的应用前景, 因此引起了广泛的重视。由于混沌行为对初始状态的敏感依赖性, 受到噪声、干扰以及系统不稳定的影响, 特别是在混沌同步中, 实 际系统中很难观测到混沌同步。自从1990 年, Pecora 和Carroll 提出了混沌同步的概念和 方法以后,随着混沌同步研究的不断深入, 混沌控制与同步的研究工作得到了长足的发展, 并 逐渐成为混沌与控制领域研究的热点。对于相近的混沌轨道, 通过相同的非线性系统控制, 最终可能导致完全不相关的状态。但在实际应用中, 往往要求控制得到相关的状态或所需要的同步结果, 本文采用了加入反馈控制量的方法使其耦合, 最终达到所要求的同步。在计算机上的仿真结果显示, 能在短时间内实现耦合同步控制。

非线性系统中混沌的控制及同步及其应用前景_一_

第1 6 卷第1 期物理学进展o l.16, N o. 1 V 1996 年 3 月PRO GR E S S I N PH Y S I C S M ac r ch , 1996 非线性系统中混沌的控制与同步 Ξ 及其应用前景(一) 方锦清 ( 中国原子能科学研究院, 北京102413) 提要 全文系统地综述了非线性科学中一个富有挑战性及具有巨大应用前景的重大课题——非线性系统中混沌的控制与同步及其应用的主要进展, 包括了作者关于超混沌同步及其控制等方面的研究成果。我们对现有的各种混沌的控制方法和混沌的同步原理提出了分类和评述。概述了实验与应用的现状, 指出了发展前景, 全文分为( 一) ( 二) 两篇, 第( 一) 篇以混沌控制的机理和方法为主要论题展开广泛的讨论; 第(二) 篇以混沌的同步、超混沌的同步及其控制为论题, 同时包括众多的实验应用的研究, 进行较详尽的综述和分析评论, 比较完整地概括了迄今国内外该课题的发展现状和主要趋势。 总论 混沌, 当今举世瞩目的前沿课题及学术热点, 它揭示了自然界及人类社会中普遍存在的复杂性, 有序与无序的统一, 确定性与随机性的统一, 大大拓广了人们的视野, 加深了对客观世界的认识。它在自然科学及社会科学等领域中, 覆盖面之大、跨学科之广、综合性之强, 发展前景及影响之深远都是空前的。国际上誉称混沌的发现, 乃是继本世纪相对论与量子力学问世以来的第三次物理学大革命, 这场革命正在冲击和改变着几乎所有科学和技术领域, 向我们提出了巨大的挑战ΞΞ。 混沌的发现已过而立之年。首要的问题是, 混沌究竟有什么应用和发展前景? 这是摆在人们面前的一个重大课题及普遍关注的问题。特别是, 在我国改革开放和振兴经济的大潮面前, 这类提问和呼声更为强烈, 这确实也是深入开展混沌研究的巨大推动力。由于混沌的奇异特性, 特别是对初始条件极其微小变化的高度敏感性及不稳定性, 所 谓“差之毫厘失之千里”的缘故, 长期以来有些人总觉得混沌是不可控的、不可靠的, 因而 Ξ 本课题是国家留学回国人员重大科技资助项目、国家核科学工业基金资助项目及I A EA 科研合同课题。 ΞΞ 混沌发现的重要性论述请参阅: 詹姆斯·格莱克著,“混沌开创新科学”( 张淑誉译, 郝柏林校) , 1990, 上海译文出版社。

典型混沌系统和混沌同步的简介

2典型混沌系统和混沌同步的简介 2.1典型混沌系统的介绍 混沌从表述形式上大体包括两大类:以微分方程表述的时间连续函数和以状态方程表述的时间离散函数。时间离散系统多用于扩频通信,而时间连续函数多见于保密通信之中。介于本文主要考虑连续系统在保密通信之中的应用,这里就重点介绍连续时间混沌系统中的典型模型:Lorenz 系统、蔡氏电路、统一混沌系统。 2.1.1 Lorenz 系统 混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz 方程组: () ??? ????----cz xy y xz bx y x y a x =z==。。 。 (2-1) 这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统 (2-1)的主要控制参数。k v a =是普朗特数(v 和k 分别为分子粘性系数和热传导系数),c 代表与对流纵横比有关的外形比,且a 和c 为无量纲常数。在参数范围为)1/()3(--++?>c a c a a b 时,Lorenz 系统均处于混沌态。 在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所示,二维吸引子如图2.3所示,图2.2所示分别为分量x 、y 随时间t 的变化情况。 图2.1 Lorenz 系统的吸引子

混沌理论

混沌理论 混沌理论是当今世界最伟大的理论之一。 它是社会科学与自然科学最完美结合的理论.它研究如何把复杂的非稳定事件控制到稳定状态的方法,它研究世界如何在不稳定的环境中稳定发展的问题。.混沌方法对于处理复杂多变、动荡不定的重大事件有特殊功效混沌世界是纷繁复杂多变的世界。 “相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程 的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。” 一点就是未来无法确定。如果你某一天确定了,那是你撞上了。 第二事物的发展是通过自我相似的秩序来实现的。看见云彩,知道他是云彩,看见 一座山,就知道是一座山,凭什么?就是自我相似。这是混沌理论两个基本的概念。 混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最 小的方向运动。第二个原则当事物改变方向的时候,他存在一些结构。 一混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨 动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数 据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。 二混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。 三近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。 四混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。

No张丽分数阶统一混沌系统

漳州师范学院 毕业论文 分数阶统一混沌系统地同步The Synchroni zati on of Fracti on alorder Un ifiedSystem 姓名:张丽 学号:070401326 系别:数学与信息科学系 专业:数学与应用数学 年级:07级 指导教师:蔡建平教授 2018年05月22日

本文运用耦合同步控制法,研究分数阶统一混沌系统地同步问题?首先,分别在分数阶统一系统地每个方程上加耦合控制变量使得驱动系统和响应系统达到同步;然后,在每个方程同时加耦合控制变量使得驱动系统响应系统达到同步?并运用 Laplace变换理论证明,最后用Matlab软件进行数值仿真进一步验证本文所用地方法地有效性.b5E2RGbCAP 关键词:分数阶;统一混沌系统;同步控制;耦合控制 Abstract This paper applies coupled synchronization control method to research the synchronization of fractional order unified chaotic system. First of all, the coupled control variables are added to each equation of fractional unified system makes the drive system and response system to achieve synchronization. Then, the control variablesare added to each equation at the same time makes the drive system and response system to achieve synchronization.Furthermore, detailed proofsare given by using the Laplace transformation theory. Finally, numericalsimulations based on Matlab verify the effectiveness of the present methods EanqFDPw Key words: fractional order。unified system synchronization control coupling COntro DXDiTa9E3d

分数阶混沌系统的仿真程序

分数阶混沌仿真程序,以chen系统为例,其他系统只需修改相应的外部函数。 ------------------------------------------------------------------------------------ function fra_chaos_pro(x,t,q)%x为初值,t为运行时间,q为分数阶数 h=0.01;%步长 N=t/h;%运行步数 l=length(x);%变量维数 y=zeros(l,N+1); y1=zeros(l,N+1); M1=zeros(l,1); N1=zeros(l,1); %预估校正法,fra_chaos_fun外部函数 y1(:,1)=x'+h.^q'.*fra_chaos_fun(t,x)'./(gamma([q']).*q'); y(:,1)=x'+h.^q'.*(fra_chaos_fun(t,y1(:,1))+q'.*fra_chaos_fun(t,x)')./gamma(q'+2); for n=1:N; M1=(n.^(q'+1)-(n-q').*(n+1).^q').*fra_chaos_fun(t,x)'; N1=((n+1).^q'-n.^q').*fra_chaos_fun(t,x)'; for j=1:n; M1=M1+ ((n-j+2).^(q'+1)+(n-j).^(q'+1)-2*(n- j+1).^(q'+1)).*fra_chaos_fun(t,y(:,j));N1=N1+((n-j+1).^q'-(n- j).^q').*fra_chaos_fun(t,y(:,j)); end

混沌理论概述

第一章混沌理论概述 引言 混沌是指确定动力系统长期行为的初始状态,或系统参数异常敏感, 却又不发散, 而且无法精确重复的现象, 它是非线性系统普遍具有的一种复杂的动力学行为。混沌变量看似杂乱的变化过程, 其实却含有内在的规律性。利用混沌变量的随机性、遍历性和规律性可以进行优化搜索, 其基本思想是把混沌变量线性映射到优化变量的取值区间, 然后利用混沌变量进行搜索。但是, 该算法在大空间、多变量的优化搜索上, 却存在着计算时间长、不能搜索到最优解的问题。因此, 可利用一类在有限区域内折叠次数无限的混沌自映射来产生混沌变量,并选取优化变量的搜索空间, 不断提高搜索精度等方法来解决此类难题。混沌是非线性科学的一个重要分支, 它是非线性动力系统的一种奇异稳态演化行为, 它表征了自然界和人类社会中普遍存在的一种复杂现象的本质特征。因此, 混沌科学倡导者Shlesinger和著名物理学家Ford 等一大批混沌学者认为混沌是20 世纪物理学第三次最大的革命, 前两次是量子力学和相对论, 混沌优化是混沌学科面对工程应用领域的一个重要的研究方向。它的应用特点在于利用混沌运动的特性, 克服传统优化方法的缺陷, 从而使优化结果达到更优。 1.混沌的特征从现象上看,混沌运动貌似随机过程,而实际上混沌运动与随机过程有着本质的区别。混沌运动是由确定性的物理规律这个内在特性引起的,是源于内在特性的外在表现,因此又称确定性混沌,而随机过程则是由外部特性的噪声引起的。混沌有着如下的特性: (1)内在随机性 混沌的定常状态不是通常概念下确定运动的三种状态:静止、周期运动和准周期运动,而是一种始终局限于有限区域且轨道永不重复的,形势复杂的运动。第一,混沌是固有的,系统所表现出来的复杂性是系统自身的,内在因素决定的,并不是在外界干扰下产生的,是系统的内在随机性的表现。第二,混沌的随机性是具有确定性的。混沌的确定性分为两个方面,首先,混沌系统是确定的系统;其次,混沌的表现是貌似随机,而并不是真正的随机,系统的每一时刻状态都受到前一状态的影响是确定出现的,而不是像随机系统那样随意出现,混沌系统的 状态是可以完全重现的,这和随机系统不同。第三,混沌系统的表现具有复杂性。混沌系统的表现是貌似随机的,它不是周期运动,也不是准周期运动,而是具有良好的自相关性和低频宽带的特点。 (2)长期不可预测性 由于初始条件仅限于某个有限精度,而初始条件的微小差异可能对以后的时间演化产生巨大的影响,因此不可长期预测将来某一时刻之外的动力学特性。即混沌系统的长期演化行为是不可预测的。在此以经典的logistic映射为例: x(n+1)=μx(n)(1-x(n)) n=0,1,2,3… 0<x0<1 0<μ≤4 (1-1)

分数阶统一混沌系统matlab程序

function dy=united-fra-chaos q1=0.9;q2=0.9;q3=0.8; h=0.01;N=2000; a=1; x0=2;y0=1;z0=3; %x0=-3.5;y0=4.2;z0=2.5; M1=0;M2=0;M3=0; x(N+1)=[0];y(N+1)=[0];z(N+1)=[0]; x1(N+1)=[0];y1(N+1)=[0];z1(N+1)=[0]; x1(1)=x0+h^q1*(25*a+10)*(y0-x0)/(gamma(q1)*q1); y1(1)=y0+h^q2*((28-35*a)*x0-x0*z0+(29*a-1)*y0)/(gamma(q2)*q2); z1(1)=z0+h^q3*(x0*y0-(8+a)*z0/3)/(gamma(q3)*q3); x(1)=x0+h^q1*((25*a+10)*(y1(1)-x1(1))+q1*(25*a+10) *(y0-x0))/gamma(q1+2); y(1)=y0+h^q2*((28-35*a)*x1(1)-x1(1)*z1(1)+(29*a-1)*y1(1)+q2*((28-35*a)*x0-x0*z0+(29*a-1 )*y0))/gamma(q2+2); z(1)=z0+h^q3*(x1(1)*y1(1)-(8+a)*z1(1)/3+q3*(x0*y0-(8+a)*z0/3))/gamma(q3+2); for n=1:N M1=(n^(q1+1)-(n-q1)*(n+1)^q1)*(25*a+10)*(y0-x0); M2=(n^(q2+1)-(n-q2)*(n+1)^q2)*((28-35*a)*x0-x0*z0+(29*a-1)*y0); M3=(n^(q3+1)-(n-q3)*(n+1)^q3)*(x0*y0-(8+a)*z0/3); N1=((n+1)^q1-n^q1)*(25*a+10)*(y0-x0); N2=((n+1)^q2-n^q2)*((28-35*a)*x0-x0*z0+(29*a-1)*y0); N3=((n+1)^q3-n^q3)*(x0*y0-(8+a)*z0/3); for j=1:n M1=M1+((n-j+2)^(q1+1)+(n-j)^(q1+1)-2*(n-j+1)^(q1+1))*(25*a+10)*(y(j)-x(j)); M2=M2+((n-j+2)^(q2+1)+(n-j)^(q2+1)-2*(n-j+1)^(q2+1))*((28-35*a)*x(j)-x(j)*z(j)+(29*a-1)*y(j )); M3=M3+((n-j+2)^(q3+1)+(n-j)^(q3+1)-2*(n-j+1)^(q3+1))*(x(j)*y(j)-(8+a)*z(j)/3); N1=N1+((n-j+1)^q1-(n-j)^q1)*(25*a+10)*(y(j)-x(j)); N2=N2+((n-j+1)^q2-(n-j)^q2)*((28-35*a)*x(j)-x(j)*z(j)+(29*a-1)*y(j)); N3=N3+((n-j+1)^q3-(n-j)^q3)*(x(j)*y(j)-(8+a)*z(j)/3); end x1(n+1)=x0+h^q1*N1/(gamma(q1)*q1); y1(n+1)=y0+h^q2*N2/(gamma(q2)*q2); z1(n+1)=z0+h^q3*N3/(gamma(q3)*q3); x(n+1)=x0+h^q1*((25*a+10)*(y1(n+1)-x1(n+1))+M1)/gamma(q1+2); y(n+1)=y0+h^q2*((28-35*a)*x1(n+1)-x1(n+1)*z1(n+1)+(29*a-1)*y1(n+1)+M2)/gamma(q2+2);

混沌原理与应用

课程论文课程系统科学概论 学生姓名 学号 院系 专业 二O一五年月日

混沌理论与应用 摘要:本文首先介绍了混沌理论的产生与背景。接着由混沌理论的产生引出了理解混沌系统需要注意的几个基本概念,并就两个容易混淆的概念进行了区分。然后本文对混沌系统的几个基本特征进行了阐述,而且详细解释了每个具体特征含义。在结尾部分本文简要叙述了混沌理论的应用前景。 关键词:混沌理论;混沌系统;基本特征;应用 1混沌理论的产生与背景 混沌一词很早就出现在人类的历史中,在世界的几个较为发达的古代文明中基本上都用自己的方式对混沌进行过描述,混沌基本就等同于未知。同时这些文明有一个对混沌有一个共同的观点,那就是:宇宙起源于混沌[1],这种观点可以说在某些方面与现代的理论不谋而合。虽然古人的这些观点大部分是基于自己的想象而且其含义也局限于哲学方面,但是可以说这是人类早期对混沌状态的一种探索。 在此后的上千年中,一代又一代的研究者们探索了无数未知的领域。以至于在混沌理论之前,没有人怀疑过精确预测的能力是可以实现的,一般认为只要收集够足够的信息就可以实现。十八世纪法国数学家拉普拉斯甚至宣称,如果已知宇宙中每一个粒子的位置与速度,他就能预测宇宙在整个未来的状态。然而混沌现象的发现彻底打破了这一假设。混沌系统对初始条件的敏感性使得系统在其运动轨迹上几乎处处不稳定,初始条件的极小误差都会随着系统的演化而呈现指数形式的增长,迅速达到系统所在空间的大小,使得预测能力完全消失[2]。例如,著名的蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风[3],可以说对天气的精准预测一直是人类未曾解决的问题。面对这样的问题,科学家们又用到了混沌这个词,看似又回到了起点,实际上今天的混沌理论与过去的说法已经有了天壤之别。 1903年,美国数学家J.H.Poincare在《科学与方法》一书中提到Poincare猜想,他把动力系统和拓扑学两大领域结合起来指出了混沌存在的可能性[4]。1963年美国气象学家爱德华·诺顿·洛伦茨提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了决定系统可能产生随机结果[5]。混沌也被认为是继量子力学和相对论之后,20世纪物理学界第三次重大革命,混沌也一样冲破了牛顿力学的教规。从此,混沌系统理论开始飞速发展,气象学、生理学、经济学中都发现了一种关于混沌的有序性。混沌理论正式诞生。

驱动和响应系统实现chen氏混沌同步

1、主函数 文件名:chen_main.m function chen_main % 耦合系数对同步的影响 global m n; format long; tspan=0:0.001:5; Y0=[3 4 20 4 5 21]; hold on m=0.5;n=0.5; [t,y]=ode45(@chen,tspan,Y0); plot(t,y(:,1)-y(:,4),'r') legend('m=n=0.5') 2、微分函数 函数名: 代码: chen.m function dy=chen(t,y) format long a=35;b=3;c=28; % dy=zeros(3,1); % dy(1)=a*(y(2)-y(1)); % dy(2)=(c-a)*y(1)-y(1)*y(3)+c*y(2); % dy(3)=y(1)*y(2)-b*y(3); % 同步 global m n; u=5; dy=zeros(6,1); D1=funD(y(1),y(2),y(3)); D2=funD(y(4),y(5),y(6)); % 驱动系统 dy(1)=a*(y(2)-y(1))+m*0; dy(2)=(c-a)*y(1)-y(1)*y(3)+c*y(2)+m*(D1(2,:)-D2(2,:)); dy(3)=y(1)*y(2)-b*y(3)+m*(D1(3,:)-D2(3,:)); % 响应系统 dy(4)=a*(y(5)-y(4))+n*0; dy(5)=(c-a)*y(4)-y(4)*y(6)+c*y(5)+n*(D2(2,:)-D1(2,:)); dy(6)=y(4)*y(5)-b*y(6)+n*(D2(3,:)-D1(3,:));

MIS的混沌治理研究

MIS的混沌治理研究 关于《MIS的混沌治理研究》,是我们特意为大家整理的,希望对大家有所帮助。 [摘要]MIS系统的混沌治理研究大体上指两个方面:一是将MIS看成是一个混沌系统分析其所应具有的若干混沌特性,二是把混沌理论和方法应用于MIS的治理实践。本文首先先容了混沌现象的特征及混沌理论的研究内容,并运用混沌理论探讨了MIS 系统中的若干混沌特性,这些特性包括:分形性、耗散性、内在随机性以及初值敏感性等,然后分析了混沌理论在MIS中的应用,最后指出了混沌理论在MIS系统中的一些研究方向。[关键词]混沌;MIS;混沌吸引子;分形;蝴蝶效应;混沌治理 1 引言

MIS(Management Information Systems)发展过程中的不确定性和现代企业经营环境的不稳定性,使得越来越多 的治理理论家们倾向于将MIS理解成为非线性系统、复杂系统,并且用非线性系统理论、复杂系统理论研究MIS发展的过程,解决和解释MIS发展过程中出现的题目和现象。目前将非线性系统理论尤其是混沌理论与MIS治理相联系的研究成果还未几见,而应用混沌理论分析MIS的特性,研究MIS演化的模式及其过程的治理,对发展MIS治理理论具有重要的学术及实际指导意义。 2 混沌理论简介 混沌学研究起源于1960s Edward Lorenz的天气猜测模型“蝴蝶效应”,正是这一“蝴蝶效应”模型,揭示了自然界表面看起来杂乱无序的事物中惊人的某种秩序。20世纪70年代科学家们开始普遍熟悉到混沌的存在与其重要意义,并对各领域的混沌现象进行大量研究;20世纪80年代混沌研究在全球迅速推广,物理、生物、化学、经济、治理等领域对混沌的研究都取得了可喜成果。自然总是如此神秘,杂乱无章、不可猜测的运动背后隐躲着其内在规律性,而且这种规律并不随外界扰动而改变,这就是混沌。 2. 1混沌的概念 “混沌”,本意是“混乱无序”的意思,但是其描述的对象却具

相关文档