文档库 最新最全的文档下载
当前位置:文档库 › 2020高考数学复习 排列组合、二项式定理

2020高考数学复习 排列组合、二项式定理

2020高考数学复习 排列组合、二项式定理
2020高考数学复习 排列组合、二项式定理

2020高考数学复习

大纲要求

1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单

的问题.

2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.

3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题. 二、知识结构

???

??????

?

???????二项式定理组合数应用组合数

组合排列数应用排列数

排列加法原理、乘法原理 排列组合综合应用???

三、知识点、能力点提示

(一)加法原理、乘法原理

说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.

例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的 报名方法共有多少种?

解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有

3×3×3×3×3=35(种)

(二)排列、排列数公式

说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.

例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )

A.60个

B.48个

C.36个

D.24个

解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个) 由此可知此题应选C.

例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?

解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为

3P13=9(种).

(三)组合、组合数公式、组合数的两个性质

说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.

例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )

A.140种

B.84种

C.70种

D.35种

解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种

根据加法原理可得总的取法有

C24·C25+C24·C15=40+30=70(种 )

可知此题应选C.

例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?

解:甲公司从8项工程中选出3项工程的方式 C38种;

乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;

丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;

丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.

根据乘法原理可得承包方式的种数有

3

8

C ×C 15×C 24×

C 22=123

451

23678???

?????×1=1680(种). (四)二项式定理、二项展开式的性质

说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.

例6 在(x-3)10的展开式中,x 6的系数是( )

A.-27C 610

B.27C 410

C.-9C 610

D.9C 410 解 设(x-3)10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(-3)γ,10-γ=6,γ=4

于是展开式中第5项含x 6,第5项系数是C 410(-3)4=9C 410 故此题应选D.

例7 (x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中的x 2的系数等于

解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为

x x x x x x 6

5)1()1()1(1])1(1)[1(-+-=

-+-++

在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数

是-2 0.

(五)综合例题赏析

例8 若(2x+3)4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( )

A.1

B.-1

C.0

D.2

解:A.

例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )

A.6种

B.12种

C.18种

D.24种

解 分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同的分配方法。 应选B.

例10 从4台甲型和5台乙型电视机中任意取出3台,其 中至少要有甲型与乙型电视机各1台,则不同取法共有( ).

A.140种

B.84种

C.70种

D.35种

解:取出的3台电视机中,甲型电视机分为恰有一台和恰有二台两种情形.

∵C 24·C 15+C 25·C 14=5×6+10×4=70. ∴应选C.

例11 某小组共有10名学生,其中女生3名,现选举2 名代表,至少有1名女生当选的不同选法有( )

A.27种

B.48种

C.21种

D.24种 解:分恰有1名女生和恰有2名女生代表两类: ∵C 13·C 17+C 23=3×7+3=24, ∴应选D.

例12 由数学0,1,2,3,4,5组成没有重复数字的 六位数,其中个位数字小于十位数字的共有( ). A.210个 B.300个 C.464个 D.600个

解:先考虑可组成无限制条件的六位数有多少个?应有P 15·P 55=600个.

由对称性,个位数小于十位数的六位数和个位数大于十位数的六位数各占一半.

∴有21

×600=300个符合题设的六位数.

应选B.

例13 以一个正方体的顶点为顶点的 四面体共有( ). A.70个 B.64个 C.58个 D.52个

解:如图,正方体有8个顶点,任取4个的组合数为C 48=70个.

其中共面四点分3类:构成侧面的有6组;构成垂直底面的对角面的有2组;形如(ADB 1C 1 )的有4组.

∴能形成四面体的有70-6-2-4=58(组) 应选C.

例14 如果把两条异面直线看成“一对”,那么六棱 锥的棱所在的12条直线中,异面直线共有( ). A.12对 B.24对 C.36对 D.48对 解:设正六棱锥为O —ABCDEF.

任取一侧棱OA(C 16)则OA 与BC 、CD 、DE 、EF 均形成异面直线对. ∴共有C 16×4=24对异面直线. 应选B.

例15 正六边形的中心和顶点共7个点,以其中三个点 为顶点的三角形共 个(以数字作答). 解:7点中任取3个则有C 37=35组.

其中三点共线的有3组(正六边形有3条直径). ∴三角形个数为35-3=32个.

例16 设含有10个元素的集合的全部子集数为S ,其中由3个元

素组成的子集 数为T ,则S T

的值为 。

解 10个元素的集合的全部子集数有:

S =C 010+C 110+C 210+C 310+C 410+C 510+C 610+C 710+C 810+C 910+C 1010=210=1024 其中,含3个元素的子集数有T=C 310=120

故S T =128151024120

例17 在50件产品 n 中有4件是次品,从中任意抽了5件 ,至少有3件是次品的抽法共 种(用数字作答). 解:“至少3件次品”即“有3件次品”或“有4件次品”. ∴C 34·C 246+C 44·C 146=4186(种)

例18有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( ).

A.1260种

B.2025种

C.2520种

D.5040种

解:先从10人中选2个承担任务甲(C210)

再从剩余8人中选1人承担任务乙(C18)

又从剩余7人中选1人承担任务乙(C17)

∴有C210·C18·C17=2520(种).

应选C.

例19集合{1,2,3}子集总共有( ).

A.7个

B.8个

C.6个

D.5个

解三个元素的集合的子集中,不含任何元素的子集有一个,由一个元素组成的子集数

C13,由二个元素组成的子集数C23。

由3个元素组成的子集数C33。由加法原理可得集合子集的总个数是

C13+C23+C33+1=3+3+1+1=8

故此题应选B.

例20假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有两件次品的抽法有( ).

A.C23C3197种

B.C23C3197 +C33C2197

C.C5200-C5197

D.C5200-C 13C4197

解:5件中恰有二件为次品的抽法为C23C3197,

5件中恰三件为次品的抽法为C33C2197,

∴至少有两件次品的抽法为C23C3197+C33C2197.

应选B.

例21两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一个座位),则不同座法的总数是( ).

A.C58C38

B.P12C58C38

C.P58P38

D.P88

解:对于8个人的任意一个排列均可“按先前排从左到右再后排从左到右”的次序入座.

∴应有P88种不同的入座法.

应选D.

例22 7人并排站成一行,如果甲、乙必须不相邻,那么不同排法的总数是 ( ).

A.1440

B.3600

C.4320

D.4800

解:7人的全排列数为P77.

若甲乙必须相邻则不同的排列数为P22P66.

∴甲乙必须不相邻的排列数为P77-P22P66=5P66=3600.

应选B.

例23用1,2,3,4,四个数字组成没有重复的四位奇数的个数是个(用具体数字作答).

解:末位数(C12),前三位数(P33).

∴有C12P33=12个四位奇数.

例24用1,2,3,4,四个数字组成的比1234大的数共有个(用具体数字作答).

解:若无限制,则可组成4!=24个四位数,其中1234不合题设.

∴有24-1=23个符合题设的数.

例25用0,1,2,3,4这五个数字组成没有重复数字的四位数,那么在这些四位数中,是偶数的总共有( ).

A.120个

B.96个

C.60 个

D.36个

解:末位为0,则有P34=24个偶数.

末位不是0的偶数有P12P13P23=36个.

∴共有24+36=60个数符合题设.

应选C.

例26已知集合A和集合B各含有12个元素,A∩B含4个元素,试求同时满足下面两个条件的集合C的个数:

(1)C?A∪B,且C中含有3个元素;

(2)C∩A≠φ(φ表示空集).

解:∵A∪B含有12+12-4=20个元素;

B含12个元素,

∴A∩B含20-12=8个元素,

若C中恰含A中1个元素,则有C112·C28个,

若C中恰含A中2个元素,则有C212·C28·C28个,

若C中恰含A中3个元素,则有C312个,

∴符合题设的集合C 的个数为 C 112C 28+C 212C 18+C 312=1084个.

例27 四面体的顶点和各棱中点共10个点,在其中取4 个不共面的点,不同的取法共有( )

A.150种

B.147种

C.144种

D.141种 解:从10点中任取4点的组合数为C 410=210.

其中有4·C 46=60组点,每组中的四点恰为一个侧面上的点. 其中任取同一棱上3点它们和相对棱的中点共面,即有6组这种情况应排除.

其中还有底面两棱中点和对面两棱中点共面,即有3组这种情况应排除.

∴符合题设的取法有150-6-3=141种. 应选D.

例28 已知(2x x

a -

)9的展开式中x 3的系数为49,常数a 的值为 .

解:T k+1=C k 9(x a

)9-k (2x )k

=C k 9·a 9-k

22k -

·x

k-9+2

k

令k-9+2k

=3,得k=8, ∴x 3的系数为C 89·a ·2-4=49

. 即169a=49

,得a=4.

例29 (

x x 2

-

)6的展开式中的常数项为( ) A.-160 B.-40 C.40 D.160

解:T k+1=C k 6(x )6-k (-x 2

)k

=C k 6·(-2)k

·x

2

26k

k --

令22

6k

k -

-=0,得k=3 ∴常数项为C 36·(-2)3=-160

应选A.

例30 若(4

x 21

x ?+

)n 展开式 中前三项系数成等差数列,求出展开式里的有理项。

解 由于展开式前三项系数成等差数列

所以 2C 1n (21)=C 0n +C 2n (21)2,n=1+8)

1(-n n

解方程得n=9或n=1(舍去) 又展开式的通项为

T γ+1=C γ8(x 21

)8-γγ

-?

??? ?

?41x 2121γX

x )4

1

(-=C γ8(21)γ

x 434γ

-

因0≤4-43γ≤8,且4-43γ

是整数。

所以γ是4的倍数。 取γ=0或γ=4

故(4

x 21

x ?+

)8展开式中第一项和第五项为有理 项,其有理项为 T 1=C 08x 4=x 4

T 5=C 48(21)4(x 4-3)=4

21×?=??????835

1

2345678x 例31 (x+2)10(x 2-1)的展开式中x 10 的系数是

(用数字作答)。

解 因(x+2)10展开式中x 10的系数是1,x 8的系数为C 21022=180 ,所以(x+2)10(x 2-1)的展开式中,x 10的系数为180-1=179 例32 9192除以100的余数 . 解:9192=(100-9)92≡992(mod 100). 992=(10-1)92=1092-…+C 9092·100-C 919210+1

≡ -C 9192·10+1(mod 100)

-C 9192·10+1=-920+1=-919≡-19(mod 100), -19≡81 (mod 100).

∴9192除以100的余数是81.

例33 由(3

23+x )100的展开所得的x 的多项式中,系数为有理数的共有( )

A.50项

B.17项

C.16项

D.15项

解:T k+1=C k 10(3x)10-k (3

2)k

=C k 10·(3)10-k (3

2)k (x)10-k (k=0,1,2, (100)

由2k ∈N ,3k

∈N ,k ∈{0,1,2,…,100},得

k=0,6,12,18,…,96,共17项. ∴应选B.

例34 在(3-x)7的展开式中,x 5的系数是 (用数字作答). 解:T k+1=C k 7·37-k ·(-x)k =C k 7·(-1)k ·x k , ∴T 6=C 57·37-5·(-1)5x 5=-189x 5. 即x 5的系数是-189.

例35 在(1-x 3)(1+x)10的展开式中,x 5的系数是( ). A.-297 B.-252 C.297 D.207 解:(1-x 3)(1+x)10

=(1-x 3)(…+C 550x 5+…+C 210x 2+…) ∴x 5的系数为+C 550-C 210=207. 应选D.

例36 求(2x 3-21

x )15的展开式的常数项.

解:T k+1=C k 5·(2x 3)5-k ·(-21

x )k =(-1)k ·C k 5·25-k ·x 15-3k-2k

令15-5k=0,得k=3

∴常数项为T 4=(-1)3·C 35·25-3=-40.

例37 在(x-x 1)8的展开式中,x 4的系数与41

x 的系数之差

是 .

解:T k+1=C k 8·(-x)8-k ·(-x 1

)k =C k 8·(-1)k ·x 8-k-k .

令8-2k=-4,得k=6,4k 28=-得k=2,

∴T 7=C 68·(-1)641x =28·41

x .4

42283x 28x )1(C T =-=

∴x 4与41

x 的系数之差是28-28=0.

例38 已知(x+a)7的展开式中,x 4的系数是-280,则a= .

解:T 4=C 37·x 4a 3=C 37a 3x 4.

由已知C 37a 3=-280?35a 3=-280,得a=-2.

例39 在(1-x 2)20的展开式中,如果第4r 项和第r+2项的二项式系数 相等,

(1)求r 的值;

(2)写出展开式中的第4r 项和第r+2项.

解:(1)第4r 项和第r+2项的二项式系数分别是1r 420C -和1

r 20C + 1

r 420C -=1

r 20C +?4r-1=r+1或4r-1+r+1=20,

得r=4和r=32

(舍去)

∴r=4

(2)T 4r =T 16=C 1520·(-x 2)15=-15504x 30, T r+2=T 6=C 520(-x 2)5=-15504x 10

例40 在(1+x+x 2)(1-x)10的展开式中,x 5的系数是 (用具体数字作答).

解:(1+x+x 2)(1-x)10

=(1+x+x 2)(1-1x+45x 2-120x 3+210x 4-252x 5+…) =…+(-120+210-252)x 5+….

∴x 5的系数是-120+210-252=-162.

例41 已知(1-2x)7=a 0+a 1x+a 2x 2+…+a 7x 7;那么a 1+a 2+ …+a 7= .

解:令x=1,代入已知式,得-1=a 0+a 1+…+a 7, 将x=0代入已知式,得1=a 0 ∴a 1+a 2+…+a 7=-1-a 0=-2.

例42 如果n 是正偶数,则C 0n +C 2n +C 4n +…+C n-2n +C n n =( ).

A.2n

B.2n-1

C.2n-2

D.(n-1)2n-1

E.(n-1)2n-2 解:∵C 0n +C 2n +…+C n-2n +C n n =C 1n +C 3n +…+C n-1n ,

又(C 0n +C 2n +…+C n-2n +C n n )+(C 1n +C 3n +…+C n-1n )= 2n , ∴2(C 0n +C 2n +…+C n-2n +C n n )=2n , C 0n +C 2n +…+C n-2n +C n n =2n-1. 应选B.

【同步达纲练习】

四、能力训练 (一)选择题

1.有多少个整数n 能使(n+i)4成为整数( ) A.0 B.1 C.2 D.3

(2)已知(ax+1)2n 和(x+a)2n+1的展开式中含x n 项的系数相同(a ≠0为实数,n ∈N),则a 的取值范围是( )

A.a=1

B.a >1

C.a < 1

D.a ≥1

3.在

???? ??+52311x x n 的展开式中,所有奇数项二项式系数之和等于1024,则中间项 的二项式系数是( )

A.330

B.462

C.682

D.792

4.在(3

12

x x -)8的展开式中的常数项是 ( ) A.7 B.-7 C.28 D.-28

5.n ∈N ,A =(7+2)2n+1

,B 为A 的小数部分,则AB 的值应是( ) A.72n+1 B.22n+1 C.32n+1 D.52n+1 6.某小组有8名学生,从中选出2名男生,1名女生,分别参加数、理、化单科竞赛,每人参加一种,共有90种不同的参赛方案,则男女生的人数应是( )

A.男生6名,女生2名

B.男生5名,女生3名

C.男生3名,女生5名

D.男生2名,女生5名

7.从0,1,2,3,4中每次取出3个不同的数字组成三位数,则

这些三位数的个位数字之和等于( )

A.80

B.90

C.110 D .120

8.从集合{1,2,3,……10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,则这样的子集共有( ) A.10个 B.16个 C.20个 D.32个

9.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5个球投放在这5个盒内,要求每个盒内投放一个球,并且恰有两个球的编号与盒子的编号相同,则 这样的投放方法的总数为( )

A.20

B.30

C.60

D. 120

10.用0,1,2,3,4,5,6这7个数字排成一个数字不重复且个位数最大,十位数次之,百位数最小的三位数的个数是( ) A.10 B.20 C.30 D. 40

11.要排一张5个独唱节目和3个合唱节目的演出节目表,如果合唱节目不排头,并且任何两个合唱节目不相邻,则不同排法的种类是( )

A.P 88

B.P 55·P 33

C.P 55·P 35

D.P 55·P 38

12.3人坐在一排8个座位上,若每人左右两边都有空座位,则坐法种数是( )

A.12

B.6

C.24

D. 120 13.设A ,B 分别为(1+x)n 展开式中的奇数项之和及偶数项之和,那么A 2-B 2的值为( )

A.(1+x)2n

B.(1+x)n

C.-(1-x 2)n

D.不是以上结果

14.(2x+x 21)2n 的展开式中,x 2的系数是224,则21

x 的系数是( )

A.14

B.28

C.56

D.112

15.在(32

4

1a a )n 的展开中,倒数第三项的系数的绝对值是45,

则展形式中a 2项的系数是( )

A.120

B.-120

C.210

D.-210 (二)填空题

16.n 是正奇数,则7n +7n-1C 1n +7n-2C 2n +7C n-1n 除以9的余数

是 .

17.今天是星期日,从今天起21991天后的第一天是星期 .

18.满足C 7x <C 5x 的所有自然数x 的和等于 . 19.1.0096精确到0.001的近似值是 . (三)解答题

20.在10个数-9,-7,-5,-1,0,2,4,6,8中任取两个数构成虚数a+bi (a ≠b),

求(1) 这样不同的虚数有多少个?

(2)有多少个辐角主值θ∈(2

,π)的 不同虚数?

(3)有多少个模大于5的不同虚数.

21.将数字0,1,2,3,5组成没有重复数字的五位偶数,按从小到大次序排列,那么第25个数是什么?

22.证明9·32n -8n-9能被64整除(n ∈N).

23.设(2-3x)100=a 0+a 1x+a 2x 2+……+a 100x 100,求(a 0+a 2+a 4+……+a 100)2-(a 1+a 3+a 5+……+a 99)2的值.

24.若(5

2222

x

x -+)n 展开式的二项式 系数中第二、第三、第四项的系数成一个等差数列,且展开式第六项是21,求x.

参考答案

【同步达纲练习】

(一)1.B 2.A 3.B 4.A 5.C 6.C 7.B 8.D 9.A 10.B 11.C 12.C 13.C 14.A 15.C

(二)16.7 17.四 18.45 19.1.055

(三)20.(1)81,(2)20,(3)64 21.32150 22.略 23.1 24.x=0

高考数学专题之排列组合小题汇总

温馨提示:(每题4分满分100分时间90分钟)姓名________________ 一、单选题 1.某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的 A B C D E F 这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F这两块实验田上,则不同的种植方法有 ( ) A. 360种 B. 432种 C. 456种 D. 480种 2.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有() A.种 B.种 C.种 D.种 3.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种 A. 19 B. 26 C. 7 D. 12 4.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为() A . B. C. D. 5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有() A. 300种 B. 150种 C. 120种 D. 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A. 105 B. 95 C. 85 D. 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有() A.种 B.种 C.种 D.种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有() A. 168种 B. 156种 C. 172种 D. 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种() A.14400 B.28800 C.38880 D.43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E、F必须排在一起,则这六项任务的不同安排方案共有() A. 240种 B. 188种 C. 156种 D. 120种 11.定义“有增有减”数列{}n a如下:* t N ?∈,满足 1 t t a a + <,且* s N ?∈,满足 1 S S a a + >.已知“有增有减”数列{}n a共4项,若{}() ,,1,2,3,4 i a x y z i ∈=,且x y z <<,则数列{}n a共有() 序号 1 2 3 4 5 6 7 8 9 10 11 12 选项 13 14 15 16 17 18 19 20 21 22 23 24 25

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

排列组合与二项式定理精华总结

排列组合 知识点 一、两个原理. 1. 乘法原理、加法原理:分类相加,分步相乘。 二、排列:元素是有顺序的 (1):对排列定义.:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2):排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10==n n n C C (3): 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中有限重复数为n 1、n 2……n k ,且 n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 三、组合:元素没有顺序之分 (1):组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. (2):组合数公式:)! (!!! )1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ (3):两个性质:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ (4):常用的证明组合等式方法例. i. 裂项求和法. 如: )!1(11)!1(!43!32!21+-=++++n n n Λ(利用! 1 )!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用m n m n m n C C C 11+-=+递推)如:4 13353433+=+++n n C C C C C Λ. vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++Λ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为 2 2120022110) ()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=?++?+?+?--ΛΛ,而右边n n C 2= 四、排列、组合综合 (1)直接法 (2)间接法 (3)捆绑法 (4)插空法 (5)占位法 (6)调序法 (7)平均法 (8)隔板法 (9)定位问题 (10)指定元素排列组合问题 五、二项式定理. 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+--ΛΛ. 展开式具有以下特点:

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合与二项式定理知识点

高中数学第十章-排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. §10. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ?对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ?相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ?排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ?排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

(完整版)排列组合二项式定理知识总结,推荐文档

n n +1n n n 排列组合、二项式定理总结复习 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的 方法 n 个不同元素中取出 m 个元素的一个组合 组合数 从 n 个不同元素中,任取 m (m ≤n )个元素的所有组合个数 m n m = n ! n m !(n - m )! 性质 C m = C n -m C m = C m + C m -1 排列组合题型总结 一. 直接法 1 .特殊元素法 例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 C C

(1)数字 1 不排在个位和千位 (2)数字 1 不在个位,数字 6 不在千位。 分析:(1)个位和千位有 5 个数字可供选择A2 ,其余 2 位有四个可供选择A2 ,由乘法原理: 5 4 A2 A2 =240 5 4 2.特殊位置法 (2)当 1 在千位时余下三位有A3 =60,1 不在千位时,千位有A1 种选法,个位有A1 种,余下 5 4 4 的有A2 ,共有A1 A1 A2 =192 所以总共有 192+60=252 4 4 4 4 二间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法A4 - 2 A3 +A2 =252 6 5 4 Eg 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 分析::任取三张卡片可以组成不同的三位数C 3 ? 23 ?A3 个,其中 0 在 5 3 百位的有C 2 ? 22 ?A2 个,这是不合题意的。故共可组成不同的三位数 4 2 C 3 ? 23 ?A3 - C 2 ? 22 ?A2 =432 5 3 4 2 Eg 三个女生和五个男生排成一排 (1)女生必须全排在一起有多少种排法(捆绑法) (2)女生必须全分开(插空法须排的元素必须相邻) (3)两端不能排女生 (4)两端不能全排女生 (5)如果三个女生占前排,五个男生站后排,有多少种不同的排法

(完整版)高考数学专题之排列组合小题汇总

5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有( ) A . 300种 B . 150种 C . 120种 D . 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A . 105 B . 95 C . 85 D . 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节, 且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( ) A . 120种 B . 156种 C . 188种 D . 240种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有( ) A . 168种 B . 156种 C . 172种 D . 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种( ) A . 14400 B . 28800 C . 38880 D . 43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有( ) A . 240种 B . 188种 C . 156种 D . 120种 11.定义“有增有减”数列{}n a 如下: *t N ?∈,满足1t t a a +<,且*s N ?∈,满足1S S a a +>.已知“有增有

(完整版)排列组合与二项式定理

8、九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数? 【参考答案】可以分为两类情况: ① 若取出6,则有() 2111 82772P C C C +种方法; ②若不取6,则有1277C P 种方法. 根据分类计数原理,一共有() 2111 8277 2P C C C ++1277C P =602种方法. 9、从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有 种. 【参考答案】由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有26C 种方法; 第二步是在组装计算机任意选取3台,有35C 种方法,据乘法原理共有3 526C C ?种方法.同理,完成第二类办法中有2536C C ?种方法.据加法原理完成全部的选取过程共有+?3526 C C 3502 536=?C C 种方法. 经典例题: 例1.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同取法共有( ) A .150种 B. 147种 C. 144种 D. 141种 【答案】取出的四个点不共面的情况要比取出的四个点共面的情况复杂,可采用间接法, 先不加限制任取四点,再减去四面共点的取法. 在10个点中任取4点,有4 10C 种取法,取出的4点共面有三类 第一类:共四面体的某一个面,有44 6C 种取法; 第二类:过四面体的一条棱上的三点及对棱的中点,如图中的平面ABE ,有6种取法; 第三类:过四面体的四条棱的中点,面与另外两条棱平行,如图中的平面EFGM ,共有3个. 故取4个不共面的点的不同取法共有4 10C -(44 6C +6+3)=141,因此选D 例2. 一天要排语文、数学、英语、生物、体育、班会六节课(上午四节,下午二节),要求上午第一节不排体育,

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点 2、排列、组合

3、二项式定理 内容典型题 定义①二项式定理: (a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n =∑ = n r r n C a n-r b r(n∈N+) ②二项式展开式第r+1项通项公式: T r-1 =C r n a n-r b r 其中C r n(r=0,1,2,…,n)叫做二项式系数. 8.二项式8)1 (- x的展开式中的第5项是( ) A. 70x4 B. 70x2 C. 56x3 D. -562 3 x 9.二项式(x-2)12展开式中第3项的系数是( ) A.264 B.-264 C.66 D.-1760 10.(x-2)8 的展开式中, x6的系数是( ) A. 56 B. -56 C. 28 D. 224 11.(x2+)5展开式中的10x是( ) A.第2项 B.第3项 C.第4项 D.第5项 12.二项式x-1 x 6 的展开式中常数项是( ) A. 1 B. 6 C. 15 D. 20 13.设(3-x)n=n n x a x a x a a+???+ + +2 2 1 ,已知 n a a a a+???+ + + 2 1 =64,则n=. 14.设二项式(3x+5)10= 1 8 8 9 9 10 10 a x a x a x a x a+ +???+ + +,则 1 8 9 10 a a a a a+ -???- + -=. 15.二项式2x-1 x 6 的展开式中二项式系数最大的项是. 性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. ②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大. ③二项式系数的和为n2,即 n C+1 n C+…+r n C+…+n n C=n2 ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即 n C+2 n C+…=1 n C+3 n C+…=1 2-n

相关文档
相关文档 最新文档