文档库 最新最全的文档下载
当前位置:文档库 › 朴素贝叶斯分类matlab实现

朴素贝叶斯分类matlab实现

朴素贝叶斯分类matlab实现
朴素贝叶斯分类matlab实现

实验二 朴素贝叶斯分类

一、实验目的

通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。

二、实验内容

设计Bayes 决策理论的随机模式分类器,用matlab 实现。

三、方法手段

Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定。

四、Bayes 算法

朴素贝叶斯分类或简单贝叶斯分类的工作过程如下:

(1)每个数据样本用一个n 维特征向量{}12,,...n X x x x =表示,分别描述对n 个属性A 1,A 2,…A n 样本的n 个度量。

(2)假定有m 个类C 1,C 2,…C m 。给定一个未知的数据样本X (即没有类标号),分类法将预测X 属于具有最高后验概率(条件X 下)的类。即是说,朴素贝叶斯分类将未知的样本分配给类C i ,当且仅当

()(),1,i j P C X P C X j m j i >≤≤≠ ()

这样,最大化()i P C X 。其()i P C X 最大的类C i 称为最大后验假定。根据贝叶斯定理

()()()P X H P H P H X P X =

()()()

()

i i i P X C P C P C X P X =

()

(3)由于P(X)对于所有类为常数,只需要()()i i P X C P C 最大即可。如果类的先验概率未知,则通常假定这些类是等概率的,即P(C 1)=P(C 2)=…=P(C m )。并据此只对()i P X 最大化。否则,最大化()()i i P X C P C 。注意,类的先验概率可以用()i i P C s s =计算其中 s i 是类C i 中的训练样本数,而s 是训练样本总数。

(4)给定具有许多属性的数据集,计算()i P X 的开销可能非常大。为降低计算

()i P X 的开销,可以做类条件独立的朴素假定。给定样本的类标号,假定属性值相互条件

独立,即在属性间,不存在依赖关系。这样,

()()1n

i k i k P X p x C ==∏ ()

概率()1i P X C ,()2i P X C ,…()n i P X C 可以由训练样本估值,其中

1)如果A k 是分类属性,则()k i ik i P X C s s =,其中s ik 是在属性A k 上具有值x k 的类C i

的样本数,而s i 是C i 中的训练样本数。

2)如果A k 是连续值属性,则通常假定该属性服从高斯分布,因而,

()(

)

2

2

2,,C

i

i i k i k C C x k C i P X C g x e

σμμσ??- ?

?

?==

()

其中,给定类C i 的训练样本属性A k 的值,(),,i i k C C g x μσ是属性A k 的高斯密度函数,而,i

i

C C μσ分别为平均值和标准差。

(5)为对未知样本X 分类,对每个类C i ,计算()()i i P X P C 。样本X 被指派到类C i ,当且仅当

()()()(),1,i i j j P X C P C P X C P C j m j i >≤≤≠

换言之,X 被指派到其()()i i P X P C 最大的类C i 。

号。训练数据在表中。数据样本用属性age,income,student和credit_rating描述。类标号属性buys_computer具有两个不同值(即(yes,no))。设C1对应于类buys_computer=“yes”,而C2对应于类buys_computer=“no”。我们希望分类的样本为

() X age income medium student yes credit rating fair

==≤===

"30","","",_""

我们需要最大化()()

P X C P C,i=1,2。每个类的先验概率P(C i)可以根据训练样本计算:

i i

P(buys_computer=”yes”)=9/14=

.

P(buys_computer=”no”)=5/14=

为计算()i

P X C,i=1,2,我们计算下面的条件概率:

P(age=”<30”|buys_computer=”yes”) =2/9=

P(age=”<30”|buys_computer=”no”) =3/5=

P(income=”medium”|buys_computer=”yes”) =4/9=

P(income=”medium”|buys_computer=”no”) =2/5=

P(student=”yes”|buys_computer=”yes”) =6/9=

P(student=”yes”|buys_computer=”no”) =1/5=

P(credit_rating=”fair”|buys_computer=”yes”) =6/9=

P(credit_rating=”fair”|buys_computer=”no”) =2/5=

使用以上概率,我们得到:

#

P(X|buys_computer=”yes”)=×××=

P(X|buys_computer=”no”)=×××=

P(X|buys_computer=”yes”)P(buys_computer=”yes”)=×=

P(X|buys_computer=”no”)P(buys_computer=”no”)=×=

因此,对于样本X,朴素贝叶斯分类预测buys_computer=”yes”。

五、实验结果

训练数据内容及格式如下:

需要分类的数据(预测数据)如下:

程序执行结果如下:

!

六、实验总结

贝叶斯分类的效率如何理论上讲,与其它所有分类算法相比较,贝叶斯分类具有最小的出错率。然而,实践中并非总是如此。这是由于对其应用的假定(如类条件独立性)的不准确性,以及缺乏可用的概率数据造成的。然而种种实验研究表明,与决策树和神经网络分类算法相比,在某些领域,该分类算法可以与之媲美。

贝叶斯分类还可以用来为不直接使用贝叶斯定理的其他分类算法提供理论判定。例如,在某种假定下,可以证明正如朴素贝叶斯分类一样,许多神经网络和曲线拟合算法输出最大的后验假定。

七、Batyes程序

function out=my_bayes(X,Y)

%X为原数据集,Y是要预测的数据,out是返回预测的结果%%%%%%%%%%%%%%%%%%%%%%打开文件

clc;

file = textread('','%s','delimiter','\n','whitespace',''); [m,n]=size(file);

for i=1:m words=strread(file{i},'%s','delimiter',' ');

words=words';

X{i}=words;

end

X=X';%转置

%%%%%%%%%%%%%%%%%%%%%打开文件

file = textread('','%s','delimiter','\n','whitespace','');

[m,n]=size(file);

for i=1:m

words=strread(file{i},'%s','delimiter',' ');

words=words';

Y{i}=words;

end

Y=Y';%转置

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%训练部分

[M,N]=size(X);

[m,n]=size(X{1});

decision=attribute(X,n); %提取决策属性

Pro=probality(decision);%计算决策属性个分量概率

for i=1:n-1

[post_pro{i},post_name{i}]=post_prob(attribute(X,i),decision ); %求各条件属性后验概率

end

%%%%%%%%%%%%%%%%%%%%%%%%预测部分

uniq_decis=unique(decision); %求决策属性的类别

P_X=ones(size(uniq_decis,1),1); %初始化决策属性后验概率[M,N]=size(Y);

k=1;

for i=1:M

for j=1:n-1

[temp,loc]=ismember(attribute({Y{i}},j),unique(attribute(X,j )));%决策属性计算后验概率

P_X=post_pro{j}(:,loc).*P_X;%各条件属性后验概率之积(贝叶斯公式)

end

[MAX,I]=max(P_X);%寻找最大值

out{k}=uniq_decis{I};%哪一类决策属性后验概率最大,则次样本属于那一类

k=k+1;

P_X=ones(size(uniq_decis,1),1);%再次初始化决策属性后验概率P_X,以便为下一样本计算作准备

end

out=out'; %输出结果(转置形式)

%%%%%%%%%%%%%%%%%%%%%各子程序

function y=attribute(X,n)%功能为提取出原数据集X中的第n个属性所对应的一列值

[M,N]=size(X);

for i=1:M

temp{i}=X{i}{n}; %将指定列值以temp暂量保存

end

y=temp';%转置

%%%%%%%%%%%%%%%%%

function [post_pro,post_name]=post_prob(E,D)

%E为目标属性,D为决策属性,post_pro计算目标属性对应于决策属性的后验概率

%post_name为所求的后验概率变量名称

[M,N]=size(D);

decision=unique(D);%决策属性种类

attri=unique(E); %条件属性种类

[m1,n1]=size(decision);

[m2,n2]=size(attri);

temp=cat(2,E,D); %连接条件属性和决策属性

post_pro=zeros(m1,m2); %后验概率初始化

for i=1:M

for j=1:m2

for k=1:m1

post_name{k,j}=cat(2,{attri{j}},{decision{k}}); if(isequal(temp(i,:),post_name{k,j}))

post_pro(k,j)=post_pro(k,j)+1; %条件属性后验概率(频数)

end

end

end

end

for i=1:m1

post_pro(i,:)=post_pro(i,:)/sum(post_pro(i,:));%求得条件属性后验概率

end

%%%%%%%%%%%%%%%%%%%

function y=probality(E) %计算该属性类的概率

[M,N]=size(E);

class=unique(E);%求该决策属性的类别

[m,n]=size(class);

p=zeros(m,1);%先验概率p初始化

for i=1:M

for j=1:m

if(isequal(E{i},class{j}))

p(j)=p(j)+1; %求各个样本的先验概率(频数) end end

end

y=p/M;%得各样本概率

:

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.wendangku.net/doc/a65568166.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

贝叶斯分类作业题

作业:在下列条件下,求待定样本x=(2,0)T的类别,画出分界线,编程上机。 1、二类协方差不等 Matlab程序如下: >> x1=[mean([1,1,2]),mean([1,0,-1])]',x2=[mean([-1,-1,-2]),mean([1,0,-1])]' x1 = 1.3333 x2 = -1.3333 >> m=cov([1,1;1,0;2,-1]),n=cov([-1,1;-1,0;-2,-1]) m = 0.3333 -0.5000 -0.5000 1.0000 n = 0.3333 0.5000 0.5000 1.0000 >> m1=inv(m),n1=inv(n) m1 = 12.0000 6.0000 6.0000 4.0000

n1 = 12.0000 -6.0000 -6.0000 4.0000 >> p=log((det(m))/(det(n))) p = >> q=log(1) q = >> x=[2,0]' x = 2 >> g=0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q g = -64 (说明:g<0,则判定x=[2,0]T属于ω1类) (化简矩阵多项式0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q,其中x1,x2已知,x 设为x=[ x1,x2]T,化简到(12x1-16+6x2)(x1-4/3)+(6x1-8+4x2) -(12x1+16-6x2)(x1+4/3)-(-6x1-8+4x2)x2, 下面用matlab化简,程序如下) >> syms x2; >> syms x1; >> w=(12*x1-16+6*x2)*(x1-4/3)+(6*x1-8+4*x2)*x2-(12*x1+16-6*x2)*(x1+4/3)-(-6*x1-8+4*x2)*x 2,simplify(w) w =

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.wendangku.net/doc/a65568166.html, Blog:https://www.wendangku.net/doc/a65568166.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

Bayes分类器设计

实验一 Bayes 分类器设计 【实验目的】 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。 【实验条件】 Matlab 软件 【实验原理】 根据贝叶斯公式,给出在类条件概率密度为正态分布时具体的判别函数表达式,用此判别函数设计分类器。数据随机生成,比如生成两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如50个)样本点,假设每类样本点服从二维正态分布,随机生成具体数据,然后估计每类的均值与协方差,在下列各种情况下求出分类边界。先验概率自己给定,比如都为0.5。如果可能,画出在两类协方差不相同的情况下的分类边界。 若第一类的样本为{}12,,n x x x ,则第一类均值的估计为1 1?n k k x n μ==∑,协方差的估计为1 1???()()n T k k k x x n μμ=∑=--∑。则在两类协方差不相同的情况下的判别函数为: 判别边界为g1(x)-g2(x)=0,是一条一般二次曲线(可能是椭圆、双曲线、抛物线等)。 【实验内容】 1、 自动随机生成两类服从二维正态分布的样本点 2、 计算两类样本的均值和协方差矩阵 3、 按照两类协方差不相同情况下的判别函数,求出判别方程曲线。 4、 通过修改不同的参数(均值、方差、协方差矩阵),观察判别方程曲线的变化。 【实验程序】 clear all; close all;

samplenum = 50;%样本的个数 n1(:,1) = normrnd(8,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n1(:,2) = normrnd(6,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n2(:,1) = normrnd(14,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n2(:,2) = normrnd(16,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 scatter(n1(1:samplenum,1),n1(1:samplenum,2),'ro');%画出样本 hold on scatter(n2(1:samplenum,1),n2(1:samplenum,2),'g*');%画出样本 u1 = mean(n1);%计算第一类样本的均值 e1=0; for i=1:20 e1 = e1+(n1(i,:)-u1)'*(n1(i,:)-u1);%计算协方差矩阵 end; u2 = mean(n2);%计算第二类样本的均值 e2=0; for i=1:20 e2 = e2+(n2(i,:)-u2)'*(n2(i,:)-u2);%计算协方差矩阵 end; e2=e2/20;%计算协方差矩阵 e1=e1/20;%计算协方差矩阵 %-------------通过改变条件来完成不同的曲线--------- % e2 = e1; %-------------------------------------------------- u1 = u1'; u2 = u2'; scatter(u1(1,1),u1(2,1),'b+');%画出样本中心 scatter(u2(1,1),u2(2,1),'b+');%画出样本中心 line([u1(1,1),u2(1,1)],[u1(2,1),u2(2,1)]); %画出样本中心连线 %求解分类方程 W1=-1/2*inv(e1); w1=inv(e1)*u1; w10=-1/2*u1'*inv(e1)*u1-1/2*log(det(inv(e1)))+log(0.5);%假设w1的先验概率为0.5 W2=-1/2*inv(e2); w2=inv(e2)*u2; w20=-1/2*u2'*inv(e2)*u2-1/2*log(det(inv(e2)))+log(0.5);% 假设w2的先验概率为0.5 syms x y; fn = [x,y]*(W1-W2)*[x,y]'+(w1-w2)'*[x,y]'+w10-w20; ezplot(fn,[0,30]);

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

简单分类器的MATLAB实现

简单分类器的MATLAB实现 摘要:本实验运用最小距离法、Fisher线形判别法、朴素贝叶斯法、K近邻法四种模式识别中最简单的方法处理两维两类别的识别问题,最后对实验结果进行了比较。 关键字:MATLAB 最小距离Fisher线形判别朴素贝叶斯K近邻法 一.M atlab语言简介 Matlab 语言(即Matrix 和Laboratory) 的前三位字母组合,意为“矩阵实验室”,Matlab 语言是一种具有面向对象程序设计特征的高级语言,以矩阵和阵列为基本编程单位。Matlab 可以被高度“向量化”,而且用户易写易读。传统的高级语言开发程序不仅仅需要掌握所用语言的语法,还需要对有关算法进行深入的分析。与其他高级程序设计语言相比,Matlab 在编程的效率、可读性以及可移植性等方面都要高于其他高级语言,但是执行效率要低于高级语言,对计算机系统的要求比较高。例如,某数据集是m*n的二维数据组,对一般的高级计算机语言来说,必须采用两层循环才能得到结果,不但循环费时费力,而且程序复杂;而用Matlab 处理这样的问题就快得多,只需要一小段程序就可完成该功能,虽然指令简单,但其计算的快速性、准确性和稳定性是一般高级语言程序所远远不及的。严格地说,Matlab 语言所开发的程序不能脱离其解释性执行环境而运行。 二.样本预处理 实验样本来源于1996年UCI的Abalone data,原始样本格式如下: 1 2 3 4 5 6 7 8 9 其中第一行是属性代码:1.sex 2.length 3.diameter 4.height 5.whole_weight 6.shucked_weight 7 .viscera weight 8. shell weight 9.age 原始样本是一个8维20类的样本集,就是根据Abalone的第一至第八个特征来预测第九个特征,即Abalone的年龄。为简单其见,首先将原始样本处理成两维两类别问题的样本。选取length和weiht作为两个特征向量,来预测第三个特征向量age.(age=6或者age=9),我们将age=6的样本做为第一类,age=12的样本做为第二类。 处理后的样本: length weight age

数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

朴素贝叶斯分类的改进

朴素贝叶斯分类器的改进 摘要:朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础。 关键词:朴素贝叶斯;主动学习;贝叶斯网络分类器;训练样本;树增广朴素贝叶斯 1 问题描述 随着计算机与信息技术的发展,人类获取的知识和能够及时处理的数据之间的差距在加大,从而导致了一个尴尬的境地,即“丰富的数据”和“贫乏的知识”并存。在数据挖掘技术中,分类技术能对大量的数据进行分析、学习,并建立相应问题领域中的分类模型。分类技术解决问题的关键是构造分类器。分类器是一个能自动将未知文档标定为某类的函数。通过训练集训练以后,能将待分类的文档分到预先定义的目录中。常用的分类器的构造方法有决策树、朴素贝叶斯、支持向量机、k近邻、神经网络等多种分类法,在各种分类法中基于概率的贝叶斯分类法比较简单,在分类技术中得到了广泛的应用。在众多的分类器的构造方法与理论中,朴素贝叶斯分类器(Naive Bayesian Classifiers)[1]由于计算高效、精确度高。并具有坚实的理论基础而得到了广泛的应用。文献朴素贝叶斯的原理、研究成果进行了具体的阐述。文章首先介绍了朴素贝叶斯分类器,在此基础上分析所存在的问题。并从三个不同的角度对朴素贝叶斯加以改进。 2 研究现状 朴素贝叶斯分类器(Na?ve Bayesian Classifier)是一种基于Bayes理论的简单分类方法,它在很多领域都表现出优秀的性能[1][2]。朴素贝叶斯分类器的“朴素”指的是它的条件独立性假设,虽然在某些不满足独立性假设的情况下其仍然可能获得较好的结果[3],但是大量研究表明此时可以通过各种方法来提高朴素贝叶斯分类器的性能。改进朴素贝叶斯分类器的方式主要有两种:一种是放弃条件独立性假设,在NBC的基础上增加属性间可能存在的依赖关系;另一种是重新构建样本属性集,以新的属性组(不包括类别属性)代替原来的属性组,期望在新的属性间存在较好的条件独立关系。 目前对于第一种改进方法研究得较多[2][4][5]。这些算法一般都是在分类精度和算法复杂度之间进行折衷考虑,限制在一定的范围内而不是在所有属性构成的完全网中搜索条件依赖关系。虽然如

模式识别作业--两类贝叶斯分类

深圳大学研究生课程:模式识别理论与方法 课程作业实验报告 实验名称:Bayes Classifier 实验编号:proj02-01 姓名:汪长泉 学号:2100130303 规定提交日期:2010年10月20日 实际提交日期:2010年10月20日 摘要:在深入掌握多维高斯分布性质,贝叶斯分类的基础上,用计算机编程实现一个分类两类模式样本的贝叶斯分类器。用matlab编程,并分析了实验结果,得出贝叶斯分类的一般结论。

1. 贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。 1.1 两类情况 两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。 ① 用i ω,i =1, 2表示样本x (一般用列向量表示)所属的类别。 ② 假设先验概率()P ω1,()P ω2已知。(这个假设是合理的,因为如果先验概率未知,可以从训 练特征向量中估算出来,即如果N 是训练样本总数,其中有,N N 12个样本分别属于 2,1ωω,则相应的先验概率: ()/P N N ω≈11,2 ()/P N N ω≈2) ③ 假设(类)条件概率密度函数 (|),i p ωx i =1,2 已知,用来描述每一类中特征向量的分 布情况。如果类条件概率密度函数未知,则可以从可用的训练数据中估计出来。 1.2贝叶斯判别方法 贝叶斯分类规则描述为: 如果2(|)(|)P ωP ω>1x x ,则x ∈1ω 如果2(|)(|)P ωP ω<1x x ,则x ∈2ω (2-1-1) 贝叶斯分类规则就是看x ∈ω1的可能性大,还是x ∈2ω的可能性大。(|)i P ωx , i =1,2解释为当样本x 出现时,后验概率(|)P ω1x 和(|)P ω2x 的大小从而判别为属于 1ω或属于2ω类。 1.3三种概率的关系――――贝叶斯公式 ()() (|)= () i i i p |P P p ωωωx x x (2-1-3) 其中,()p x 是x 的概率密度函数(全概率密度),它等于所有可能的类概率密度函数乘以相应的先验概率之和。 ()(|)()i i i p p P ωω==∑2 1 x x

贝叶斯分类器

实验报告 一. 实验目的 1、 掌握密度函数监督参数估计方法; 2、 掌握贝叶斯最小错误概率分类器设计方法。 二.实验内容 对于一个两类分类问题,设两类的先验概率相同,(12()()P P ωω=),两类的类条件概率密度函数服从二维正态分布,即 11(|)~(,)P N ω1x μΣ2(|)~(,)P N ω22x μΣ 其中,=[3,6]T 1μ,0.50=02???? ?? 1Σ,=[3,-2]T 2μ,20=02??????2Σ。 1) 随机产生两类样本; 2) 设计最大似然估计算法对两类类条件概率密度函数进行估计; 3) 用2)中估计的类条件概率密度函数设计最小错误概率贝叶斯分类器,实现对两类样本的分类。 三.实验原理 最大似然估计 1. 作用

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数θ作为真实* θ的参数估计。 2. 离散型 设X 为离散型随机变量, 12=(,,...,)k θθθθ为多维参数向量,如果随机变量 1,...,n X X 相互独立且概率计算式为 {}1(;,...) i i i k P x p x θθX ==,则可得概率函数为 {}1111,...,(;,...)n n n i k i P x x p x θθ=X =X ==∏,在 12=(,,...,)k θθθθ固定时,上式表示11,...,n n x x X =X =的概率;当 11,...,n n x x X =X =已知的时候,它又变成 12=(,,...,)k θθθθ的函数,可以把它记为12111(,,...,)(;,...,)n k k i L p x θθθθθ==∏,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值 11,...,n n x x X =X =,那么它出现的可能性应该是较大的,即似然 函数的值也应该是比较大的,因而最大似然估计就是选择使12(,,...,) k L θθθ达到最 大值的那个θ作为真实* θ的估计。 3. 连续型 设X 为连续型随机变量,其概率密度函数为1(;,...) i k f x θθ, 1,...n x x 为从该总体中 抽出的样本,同样的如果 1,...n x x 相互独立且同分布,于是样本的联合概率密度为12111(,,...,)(;,...,) n k k i L f x θθθθθ==∏。大致过程同离散型一样。 最大后验概率判决准则 先验概率 1() P ω和 2() P ω,类条件概率密度 1(|) P X ω和 2(|) P X ω,根据贝叶斯公 式1 (|)() (|)(|)() i i i c j j j p x P P X p X P ωωωωω== ∑,当 12(|)(|) P P ωω>x x 则可以下结论,在x 条件 下,事件 1ω出现的可能性大,将x 判定为1ω类。

朴素贝叶斯matlab实现

clc clear close all data=importdata('data.txt'); wholeData=data.data; %交叉验证选取训练集和测试集 cv=cvpartition(size(wholeData,1),'holdout',0.04);%0.04表明测试数据集占总数据集的比例 cvpartition(n,'holdout',p)创建一个随机分区,用于在n个观测值上进行保持验证。该分区将观察分为训练集和测试(或保持)集。参数p必须是标量,当0

if label{i,1}=='R' labelData(i,1)=1; elseif label{i,1}=='B' labelData(i,1)=2; else labelData(i,1)=3; end end trainLabel=labelData(training(cv),:); trainSampleNumber=size(trainLabel,1); testLabel=labelData(test(cv),:); %计算每个分类的样本的概率 labelProbability=tabulate(trainLabel); tabulate函数的功能是创建向量X信息数据频率表。其函数使用格式: tbl = tabulate(x) 创建的TBL(数据频率表)的结构:第一列:x的唯一值第二列:每个值的实例数量第三列:每个值的百分比 %P_yi,计算P(yi) P_y1=labelProbability(1,3)/100;(第一行,第三个元素)

基于朴素贝叶斯分类器的文本分类算法

基于朴素贝叶斯分类器的文本分类算法(上) 2010-02-21 10:23:43| 分类:Lucene | 标签:|字号大中小订阅 转载请保留作者信息: 作者:phinecos(洞庭散人) Blog:https://www.wendangku.net/doc/a65568166.html,/ Email:phinecos@https://www.wendangku.net/doc/a65568166.html, Preface 本文缘起于最近在读的一本书-- Tom M.Mitchell的《机器学习》,书中第6章详细讲解了贝叶斯学习的理论知识,为了将其应用到实际中来,参考了网上许多资料,从而得此文。文章将分为两个部分,第一部分将介绍贝叶斯学习的相关理论(如果你对理论不感兴趣,请直接跳至第二部分<<基于朴素贝叶斯分类器的文本分类算法(下)>>)。第二部分讲如何将贝叶斯分类器应用到中文文本分类,随文附上示例代码。 Introduction 我们在《概率论和数理统计》这门课的第一章都学过贝叶斯公式和全概率公式,先来简单复习下: 条件概率 定义设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A下发生的条件事件B发生的条件概率。 乘法公式设P(A)>0 则有P(AB)=P(B∣A)P(A) 全概率公式和贝叶斯公式 定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。 定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。 定理设试验俄E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则 P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(A|Bj)P(Bj)=P(B|Ai)P(Ai)/P(A) 称为贝叶斯公式。说明:i,j均为下标,求和均是1到n 下面我再举个简单的例子来说明下。 示例1 考虑一个医疗诊断问题,有两种可能的假设:(1)病人有癌症。(2)病人无癌症。样本数据来自某化验测试,它也有两种可能的结果:阳性和阴性。假设我们已经有先验知识:在所有人口中只有0.008的人患病。此外,化验测试对有病的患者有98%的可能返回阳性结果,对无病患者有97%的可能返回阴性结果。 上面的数据可以用以下概率式子表示:

实验一Bayes分类器设计

实验报告 课程名称:模式识别 学院:电子通信与物理学院专业:电子信息工程 班级:电子信息工程2013-3姓名: 学号: 指导老师:

实验一Bayes 分类器设计 本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。 1实验原理 最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==c j i i i i i P X P P X P X P 1)()() ()()(ωωωωω j=1,…,x (2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑==c j j j i i X P a X a R 1)(),()(ωωλ,i=1,2,…,a (3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即 则k a 就是最小风险贝叶斯决策。 2实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x :

已知类条件概率密度曲线如下图: )|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果进行分类。 3 实验要求 1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。 2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。 3) 如果是最小风险贝叶斯决策,决策表如下: 最小风险贝叶斯决策表: 请重新设计程序,画出相应的后验概率的分布曲线和分类结果,并比较两个结果。

贝叶斯分类仿真实验

实验一 贝叶斯分类仿真实验 1. 引言 贝叶斯定理用数学家Thoms Bayes 命名的,他是18世纪概率论和决策论的早期研究者。贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。 贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。 1.1 贝叶斯决策基本思想 贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想: ★已知类条件概率密度参数表达式和先验概率; ★利用贝叶斯公式转换成后验概率; ★根据后验概率大小进行决策分类。 1.2 贝叶斯公式 设H1,H2,……,H M 为样本空间S 的一个划分,如果以P(Hj)表示事件Hi 发生的概率,且P(Hj)>0(j=1,2,…,n)。对于任一事件X,P(X)>0,则贝叶斯公式如下: P(Hj|X)=P(X|Hj)P(Hj)/ ∑=M j 1Hj)P(Hj)|P(X 2. 基于最小错误率贝的叶斯决策 2.1 对于贝叶斯公式的深入理解 对于引言中贝叶斯的公式,可能大家对P(H|X)与P(X|H)的区别是什么等问题存在疑问,下面我们就来深入理解该公式,X 是一个元组,假设其中可以分成M 类,M 的先验概率是P(H),而P(X|H)则被我们看成是概率密度函数对于待归类的样品,贝叶斯可以计算出属于M 类中各个类的概率大小,看X 属于那个类的可能性大,就把他归属为那一类。 ★先验概率 针对M 个出现的可能性而言的,不考虑任何其他的条件。例如,有统计资料表明出产产品总数为N ,其中合格品为N1,不合格品为N2,P(H1)=N1/N ,P(H2)=N2/N 。我们可以看到,这两者都可以事先计算出来。但是如果我们只有先验概率是不够的,假设我们生产的产品是N1多于N2,那么我们得到的概率就是合格的可能性大于不合格的可能性,故我们只能把所有的产品都判断为合格,因为合格的概率大一些,但这样的结果并没有让我们把不合格的产品分离出来,这就表明我们仅从先验概率来进行分类识别是不够的,我们还需要更多的初始信息。于是我们引进了类条件概率密度。 ★类条件概率密度

相关文档
相关文档 最新文档