文档库 最新最全的文档下载
当前位置:文档库 › 第五章-静电场-习题解答

第五章-静电场-习题解答

第五章-静电场-习题解答
第五章-静电场-习题解答

第5章 静电场习题解答

5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。 (B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。 (D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )

02a

λ

πεi ( C )

04a

λπεi ( D )()02a λ

πε+i j

5.3两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )

(A)(B)(C)(D)

5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 (A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;

(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a U b >U c ; (D) U a

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )

(A) 如果高斯面内无电荷,则高斯面上E

处处为零;

(B) 如果高斯面上E

处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;

(D) 如果高斯面上E

处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ]

(A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;

(D)场强的方向总是从电势高处指向低处.

5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

(B )穿过高斯面上每一面元的电通量均为零。 (C )穿过整个高斯面的电通量为零。 (D )以上说法都不对。

5.9 一个中性空腔导体,腔内有一个带正电的带电体,当另一中性导体接近空腔导体时,(1)腔内各点的

O 1R 2R E r O 1R 2R E r O 1R 2R E r q O S T

P O 2R E 1R r

a b c

场强 ( B ) (A) 变化; (B) 不变; (C) 不能确定。

(2)腔内各点的电位 ( c ) (A) 升高; (B) 降低; (C) 不变; (D) 不能确定。

5.10 对于带电的孤立导体球 ( B ) (A) 导体内的场强与电势大小均为零。

(B) 导体内的场强为零,而电势为恒量。 (C) 导体内的电势比导体表面高。

(D) 导体内的电势与导体表面的电势高低无法确定。 5-11当一个带电导体达到静电平衡时: [答案D] (A)表面上电荷密度较大处电势较高 (B)表面曲率较大处电势较高

(C)导体内部的电势比导体表面的电势高

(D)导体内任一点与其表面上任一点的电势差等于零

5.12 极板间为真空的平行板电容器,充电后与电源断开,将两极板用绝缘工具拉开一些距离,则下列说法

正确的是 ( D ) (A) 电容器极板上电荷面密度增加;

(B) 电容器极板间的电场强度增加; (C) 电容器的电容不变;

(D) 电容器极板间的电势差增大。

5.13 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为

2

04a

q πε方向由O 指向D 。

5.14 在场强为E 的均匀电场中取一半球面,其半径为R ,电场强度的方向与半球面

的对称轴平行。则通过这个半球面的电通量为E R 2

π,若用半径为R 的圆面将半球面封闭,则通过这个封闭的半球面的电通量为 0 。

5.15A 、B 为真空中两块平行无限大带电平面,已知两平面间的电场强度大小为0E ,两平面外侧电场强度大小都是0E /3,则A 、B 两平面上的电荷面密度分别为0032E ε-

和003

4

E ε。 5.16电量都是q 的三个点电荷,分别放在正三角形的三个顶点.正三角形的边长是a 。试问:

(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡?(2)这种平衡与三角形的边长有无关系? 解:(1)如题图示。由对称性,可以A 处点电荷为研究对象,由力平衡知:

q '为负电荷

2

220)3

3(π4130cos π412a q q a q '=?εε

解得q q 3

3-

=' (2)与三角形边长无关.

5.17 长L =15cm 的直导线AB 上均匀地分布着线密度为9

105-?=λC /m 的电荷。求在导线的延长线上与导线一端B 相距d =5cm 处P 点的场强。

解:建立如图所示的坐标系,在导线上取电荷元x d λ。

电荷元x d λ在P 点所激发的场强方向如图所示,场强大小为

2

0)(41x d L x

E P -+=

d d λπε

A

B

C

?

60b

a

O

A

B

导线上电荷在P 点所激发的总场强方向沿x 轴正方向,大小为

)/(675)20

.01

05.01(105109)11(4)(419900

2

0m V L d d x d L x

E E L

P P ≈-???=+-=

-+==-??πελλπεd d

5.18如图所示,长为l 、电荷线密度为λ的两根相同的均匀带电细塑料棒,沿同一直线放置,两棒近端相距l ,求:两棒之间的静电相互作用力(如图建立坐标系)。 解:在左边直线上取微元d x ,电荷为d d q x λ=

它在右边直线上'x 处的电场强度:()

2

0d d 4x

E x x λπε='- 左边直线在右边直线上'x 处的电场强度:()

2

d d 4l

x

E E x x λπε==

'-?

?

0114x l x λπε??

=

- ?''-??

因而右边带电直线'x 处的微元d 'x 所受到的静电场力为

d d F E x λ'= 右边带电直线所受到的静电场力为:30211d d 4l

l

F E x x x l x λλλπε??

''=

- ?''-???

?= 32

20'4'l

l x l ln x λπε-??

=

???

?204ln 43λπε= 5.19半径R 为50cm 的圆弧形细塑料棒,两端空隙d 为2cm ,总电荷量为9

1012.3-?C 的正电荷均匀地分

布在棒上。求圆心O 处场强的大小和方向。 解:电荷线密度d

R Q

-=

πλ2,任取线元θd d R l =,θd 为线元对圆心O 点的圆心角则电荷元电量为

θλλd d d R l Q ==,电荷元在圆心O 点的场强为

2

0d 41d R R E θ

λπε=

θθ

λπεcos d 41d 2

0R

R E y = 000y 20

009

922sin cos d

E dE d 4R 4R 4R 3.12100.02

9100.72(V /m )

20.50.020.5

θθθλθλλθπεπεπεπ--===-≈-

?=-??

?=-?-??

近似解法

)/(72.041

20m V R d

E -=-=

λπε

5.20无两条无限长平行直导线相距为0r ,均匀带有等量异号电荷,电荷线密度为λ,如图所示。(1)求两导线构成的平面上任一点的电场强度(按图示方式选取坐标,该点到λ+带电线的垂直距离为x );(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。

答案:(1)设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有

012E i x λπε+??

=

???

(2分) 0012E i r x λπε-??=

?-??

(2分)

-000001122()

E E E i

x r x r i

x r x λπελ

πε+??

=+=+ ?-??

=

- (2分)

(2)设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有

2

00

2F F i r λλπε+-==(2分)

2

00

2F F i r λλπε-+=-=-(2分)

显然有F F +-=-,相互作用力大小相等,方向相反,两导线相互吸引。 显然有F F +-=-,相互作用力大小相等,方向相反,两导线相互吸引。 题号:30123015 分值:10分

难度系数等级:3

5.21一段半径为a 的细圆弧,对圆心的张角为0θ,其上均匀分布有正电荷q ,如图所示,(1)试以a 、q 、0θ表示出圆心O 处的电场强度。

答案:如图选择坐标系。在圆弧上取一小电荷元, 0

d d q

q R R θθ=(2分)

在O 点处激发:22000

d d d 44q q E R R θ

πεπεθ== (3分)

由于对称性,0

2

2

sin d 0x E E θθ

θ-

=

=?, (2分)

00

00

022

2200002

2

cos d cos d sin

422

y q q

E E R R θθθθθθθθπεθπεθ--===?? (3分) 522 在半径为R ,电荷体密度为ρ的均匀带电球内,挖去一个半径为r 的小球,如图所示。试求:P P '、各点的场强。(P P O O ''、、、在一条直线上。)

5.

解:应用场强叠加原理求解

P 点场强大小为

))((3)(3

441

34412

3023

023

PO O O PO O O PO

PO

PO

rP RP P r r r r r r r r r E E E -+=++

-

=+=''ερπρπεπρπε

场强方向沿x 轴方向,正值沿x 轴正方向。 P '点场强大小为

R

r

O O '

P P '

R

r

O O '

P P 'x

q 0

θa

o

+++

+++

++

+图30122015

人教版高中物理选修3-1第一章静电场综合测试题答案及详解.docx

高中物理学习材料 选修3-1第一章静电场综合测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟. 第Ⅰ卷(选择题共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.(2009·江苏淮阴高二检测)最早提出用电场线描述电场的物理学家是 ( ) A.牛顿 B.伽利略 C.法拉第 D.阿基米德 2.如图所示,静电计垫放在绝缘物上,开关S1一端与金属球A连接,另一端与金属外壳B相接.开关S2一端与金属球连接,另一端与大地相接.当S1与S2都断开时,使A球带电,看到静电计指针张开一个角度.然后合上S1后再断开,再合上S2,可看到指针张角 ( ) A.先减小,之后不变 B.先减为零,之后又张开 C.先减为零,之后不再张开 D.先不变,之后变为零 3.(2009·河南宝丰一中高二检测)关于电场强度和电势,下列说法正确的是 ( ) A.由公式可知E与F成正比,与q成反比 B.由公式U=Ed可知,在匀强电场中,E为恒值,任意两点间的电势差与这两点间的距离成正比 C.电场强度为零处,电势不一定为零 D.无论是正电荷还是负电荷,当它在电场中移动时,若电场力做功,它一定是从电势高处移到电势低处,并且它的电势能一定减少 4.如图所示,在A板附近有一电子由静止开始向B板运动,则关于电子到达了B板时的速率,下列解释正确的是( ) A.两板间距越大,加速的时间就越长,则获得的速率越大 B.两板间距越小,加速度就越大,则获得的速率越大 C.与两板间的距离无关,仅与加速电压U有关 D.以上解释都不正确 5.如图所示,图中K、L、M为静电场中的3个相距较近的等势面.一带电粒子射入此静电场中后,沿abcde轨迹运动.已知φK<φL<φM,且粒子在ab段做减速运动.下列判断中正确的是 ( ) A.粒子带负电 B.粒子在a点的加速度大于在b点的加速度 C.粒子在a点与e点的速度大小相等 D.粒子在a点的电势能小于在d点的电势能 6.如图所示,C为中间插有电介质的电容器,a和b为其两极板,a板接地;P和Q为两竖直放置的平行金属板,在两板间用绝缘线悬挂一带电小球;P板与b板用导线相连,Q板接地.开始悬线静止在竖直方向,在b板带电后,悬线偏转了角度α.在以下方法中,能使悬线的偏角α变大的是 ( ) A.缩小a、b间的距离 B.加大a、b间的距离 C.取出a、b两极板间的电介质 D.换一块形状大小相同、介电常数更大的电介质 7.如图所示,O点置一个正点电荷,在过O点的竖直平面内的A点,自由释放一个带正电的小球,小球的质量为m,带电量为q,小球落下的轨迹如图中的实线所示,它与以O点为圆心、R 为半径的圆(图中虚线表示)相交于B、C两点,O、C在同一水平线上,∠BOC=30°,A距OC的高度为h,若小球通过B点的速度为v,则下列叙述正确的是 ( ) ①小球通过C点的速度大小是2gh; ②小球通过C点的速度大小是v2+gR; ③小球由A到C电场力做功是mgh- 1 2 mv2; ④小球由A到C电场力做功是 1 2 mv2+mg ? ? ?? ? R 2 -h. A.①③ B.①④ C.②④ D.②③ 8.带电粒子以速度v0沿竖直方向垂直进入匀强电场E中,如图所示,经过一段时间后,其速度变为水平方向,大小仍为v0,则一定有( ) A.电场力与重力大小相等 B.粒子运动的水平位移大小等于竖直位移大小 C.电场力所做的功一定等于重力做的功的负值 D.电势能的减小一定等于重力势能的增大 9.(2009·海门模拟)一个质量为m,电荷量为+q的小球以初速度v0水平抛出,在小球经过的竖直平面内,存在着若干个如图所示的无电场区和有理想上下边界的匀强电场区,两区域相互间隔,竖直高度相等,电场区水平方向无限长.已知每一电场区的场强大小相等,方向均竖直向上,不计空气阻力,下列说法正确的是( ) A.小球在水平方向一直做匀速直线运动 B.若场强大小等于 mg q ,则小球经过每一电场区的时间均相同 C.若场强大小等于 2mg q ,则小球经过每一无电场区的时间均相同 D.无论场强大小如何,小球通过所 有无电场区的时间均相同 10.静电透镜是利用电场使电子束 会聚或发散的一种装置,其中某部分有 静电场的分布如图所示,虚线表示这个 静电场在xOy平面内的一簇等势线,等 势线形状相对于Ox轴、Oy轴对称.等 势线的电势沿x轴正向增加,且相邻两 鑫达捷

高中物理 第一章 静电场 课时作业7(含解析)新人教版选修3-1

课时作业(七) 一、选择题(1、8、9为多项选择题,其余为单项选择题) 1.导体处于静电平衡时,下列说法正确的是( ) A.导体内部没有电场 B.导体内部没有电荷,电荷只分布在导体的外表面 C.导体内部没有电荷的定向运动 D.以上说法均不正确 解析静电平衡时导体内无电场,故A项正确.导体内部没有净电荷,净电荷只分布在表面,故B项正确.平衡时内部无电场,所以也没有电荷定向运动,故C项正确. 答案ABC 设置目的考查静电平衡状态下导体的特点 2.处于静电平衡中的导体,内部场强处处为零的原因是( ) A.外电场不能进入导体内部 B.所有感应电荷在导体内部产生的合场强为零 C.外电场和所有感应电荷的电场在导体内部叠加的结果为零 D.以上解释都不正确 解析静电平衡原因是导体内部任一位置外电场与感应电场的矢量和是零. 答案 C 3.一个不带电的空心金属球,在它的球心处放一个正电荷,其电场分布是图中的( ) 解析球内表面感应出负电荷,球壳层内属于“内部”处于静电平衡状态,无电场.导体壳原来不带电,由于内表面带负电,所以外表面带等量的正电.正电荷产生的场强垂直于球壳表面向外,故B项正确. 答案 B 设置目的考查不接地时球壳带电特点 4.如图所示,在原来不带电的金属细杆ab附近P处,放置一个正点电荷,达到静电平衡后,下列说法正确的是( )

A.a端的电势比b端的高B.b端的电势比d点的低 C.a端的电势不一定比d点的低D.杆内c处的场强的方向由a指向b 解析处于静电平衡状态的导体,内部场强为零,整体是一个等势体,故B项正确. 答案 B 设置目的考查静电平衡状态下导体的性质 5.一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电的细杆 MN,如图所示.金属球上感应电荷产生的电场在球内直径上A、B、C三点的 电场强度大小分别为E A、E B、E C,三者相比( ) A.E A最大B.E B最大 C.E C最大D.E A=E B=E C 解析感应电荷在A、B、C三点产生的电场强度分别与MN在A、B、C三点产生的电场强度大小相等、方向相反,由于C点离MN最近,故E C最大,E B次之,E A最小,故C项正确. 答案 C 6.在点电荷-Q的电场中,一金属圆盘处于静电平衡状态,若圆平面与点电荷在同一平面内,则盘上感应电荷在盘中A点所激发的附加场强E′的方向在图中正确的是( ) 解析场源电荷是负电荷,其在A点产生的电场方向指向-Q,故圆盘上感应电荷的电场方向背离-Q方向. 答案 A 7.已知均匀带电的球壳在壳内任意一点产生的电场强度均为零,在壳外某点产 生的电场强度等同于把壳上电量全部集中在球心处的点电荷所产生的电场强 度.在真空中现有一半径为R、电荷量为+Q的均匀带电球,球心位置O固定,P为球外一点,M为球内一点,如图所示,以无穷远为电势零点,关于P、M两点的电场强度和电势,下列说法中正确的是( ) A.若Q不变,P点的位置也不变,而令R变小,则P点的场强不变 B.若Q不变,P点的位置也不变,而令R变大(P点仍在球外),则P点的电势升高

第一章静电场单元测试卷(附详细答案)

第一章静电场单元测试卷 一、选择题(1-8题单选,每题3分,9-13题多选,每题4分) 1.下列选项中的各 1/4圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各 1/4 圆环间彼此绝缘.坐标原点O 处电场强度最大的是 ( ) 2.将一电荷量为 +Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等.a 、b 为电场中的两点,则 如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,∠MOP = 60°.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为E 1;若将N 点处的点电荷移至P 点,则O 点的场强大小变为E 2,E 1与E 2之比为( ) A .1∶2 B .2∶1 C .2∶ 3 D .4∶ 3 3.点电荷A 和B ,分别带正电和负电,电量分别为4Q 和Q ,在AB 连线上,如图1-69所示,电场强度为零的地方在 ( ) A .A 和 B 之间 B .A 右侧 C .B 左侧 D .A 的右侧及B 的左侧 4.如图1-70所示,平行板电容器的两极板A 、B 接于电池两极,一带正电的小球悬挂在电容器内部,闭合S ,电容器充电,这时悬线偏离竖直方向的夹角为θ,则下列说法正确的是( ) A .保持S 闭合,将A 板向B 板靠近,则θ增大 B .保持S 闭合,将A 板向B 板靠近,则θ不变 C .断开S ,将A 板向B 板靠近,则θ增大 D .断开S ,将A 板向B 板靠近,则θ不变 图1-69 B A Q 4Q 图1-70 图1-71 A B C D

5.如图1-71所示,一带电小球用丝线悬挂在水平方向的匀强电场中,当小球静止后把悬线烧断,则小球在电场中将作( ) A .自由落体运动 B .曲线运动 C .沿着悬线的延长线作匀加速运动 D .变加速直线运动 6.如图是表示在一个电场中的a 、b 、c 、d 四点分别引入检验电荷时,测得的检验电荷的电量跟它所受电场力的函数关系图象,那么下列叙述正确的是( ) A .这个电场是匀强电场 B .a 、b 、c 、d 四点的场强大小关系是E d >E a >E b >E c C .a 、b 、c 、d 四点的场强大小关系是E a >E b >E c >E d D .无法确定这四个点的场强大小关系 7.以下说法正确的是( ) A .由q F E = 可知此场中某点的电场强度E 与F 成正比 B .由公式q E P = φ可知电场中某点的电势φ与q 成反比 C .由U ab =Ed 可知,匀强电场中的任意两点a 、b 间的距离越大,则两点间的电势差也一定越大 D .公式C=Q/U ,电容器的电容大小C 与电容器两极板间电势差U 无关 8.如图1-75所示,质量为m ,带电量为q 的粒子,以初速度v 0,从A 点竖直向上射入真空中的沿水平方向的匀强电场中,粒子通过电场中B 点时,速率v B =2v 0,方向与电场的方向一致,则A ,B 两点的电势差为:( ) 9.两个用相同材料制成的半径相等的带电金属小球,其中一个球的带电量的绝对值是另一个的5倍,它们间的库仑力大小是F ,现将两球接触后再放回原处,它们间库仑力的大小可能是( ) A.5 F /9 B.4F /5 C.5F /4 D.9F /5 10. A 、B 在两个等量异种点电荷连线的中垂线上,且到连线的距离相等,如 图1-75 A B

人教版高中物理选修3-1第一章静电场国庆作业

(精心整理,诚意制作) 第一章静电场练习一 一、单项选择题:(每小题6分,共24分) 1、把质量为m的正点电荷q,在电场中从静止开始释放,在它运动的过程中,如果不计重力,下面说法正确的是() A、点电荷运动轨迹必和电场线重合 B、点电荷的速度方向必定与所在电场线的切线方向一致 C、点电荷的加速度方向必定与所在电场线的切线方向垂直 D、点电荷受电场力的方向必定与所在电场线的切线方向一致 2、关于点电荷的下列说法中,正确的是() A、只有体积很小的带电体才能看成点电荷 B、体积很大的带电体一定不能看成点电荷 C、当两个带电体的大小及形状对它们之间相互作用力的影响可忽略时,两个带电体可看成点电荷 D、一切带电体都可以看成点电荷 3、在光滑绝缘水平面上,有一个正方形的abcd,顶点a、c处分别固定一个正点电荷,电荷量相等,如图所示。若将一个带负电的粒子置于b点,自由释放,粒子将沿着对角线bd往复运动。粒子从b点运动到d点的过程中() A、先作匀加速运动,后作匀减速运动 B、先从高电势到低电势,后从低电势到高电势 C、电势能与机械能之和先增大,后减小 D、电势能先减小,后增大 4、宇航员在探测某星球时发现:①该星球带负电,而且带电均匀;②该星球表面没有大气;③在一次实验中,宇航员将一个带电小球(其带电量远远小于星球电量)置于离星球表面某一高度处无初速释放,恰好处于悬浮状态.如果选距星球表面无穷远处的电势为零,则根据以上信息可以推断() A、小球一定带正电 B、小球的电势能一定小于零 C、只改变小球的电量,从原高度无初速释放后,小球仍处于悬浮状态 D、只改变小球离星球表面的高度,无初速释放后,小球仍处于悬浮状态 二、多项选择题:(每小题6分,共30分) 5、如图甲所示,在一条电场线上有A、B两点,若从A点由静止释放一电子,假设电子仅受电场力作用,电子从A点运动到B点的速度时间图象如图乙所示。则() A、电子在A、B两点受的电场力F AE B

第五章静电场

O P 1 P 2 X b O 一、两个相距为2a 、带电量为q +的点电荷,在其连线的垂直平分线上放置另一个点电荷0q ,且0q 与连线相距为b 。试求:(1)连线中点处的电场强度和电势;(2)0q 所受电场力;(3)0q 放在哪一位置处,所受的电场力最大。 二、均匀带电量为Q 的细棒,长为L ,求其延长线上距杆端点为L 的位置A 的场强和电势;若将其置于电荷线密度为λ的无限长直导线旁边并使其与长直导线垂直,左端点与导线相距为a ,试求它们之间的相互作用力。 三、如图所示,半径为R 的带电圆盘,其电荷面密度沿半径呈线性变化0(1)r R σσ=- ,试求圆盘轴线上距圆盘中心为O 为x 处的场强E . 四、宽度为b 的无限大非均匀带正电板,电荷体密度为,(0)kx x b ρ=≤≤, 如图所示。试求:(1)平板外两侧任意一点1P 、2P 处的电场强度E ; (2)平板内与其表面上O 点相距为X 的点P 处的电场强度E .

五、半径为R 的无限长圆柱,柱内电荷体密度2 ar br ρ=-,r 为某点到圆柱轴线的距离,a 、b 为常量。(1)求带电圆柱内外的电场分布;(2)若择选距离轴线1m 处为零电势点(1R <),则圆柱内外的电势分布如何? 六、实验发现,在地球大气层的一个大区域中存在方向竖直向下的电场。在200m 高度的场强21 1.010E V m =?, 在300m 高度的场强220.610E V m =?。试求从离地面200m 到300m 间大气中平均电荷体密度ρ。 七、如图所示,将一个电荷量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球心为d 。设无穷远处为零电势,求:导体球球心O 点的电场和电势。 八、大多数生物细胞的细胞膜可以用分别带有电荷的同心球壳系统来模拟。设半径为R 1和R 2(R 1< R 2)球壳上分别带有电荷Q 1和Q 2 .求:(1)r< R 1;R 1 R 2三个区域的电场强度的分布;(2)若Q 1=Q 2=Q ,R 1和R 2间的电势分布。

第一章静电场检测

第一章静电场检测 一、选择题(本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,第1~6题只有一个选项正确,第7~10题有多个选项正确,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.下列关于点电荷的说法,正确的是( ) A.只有体积很小的带电体才可看成点电荷 B.体积很大的带电体一定不是点电荷 C.当两个带电体的形状和大小对相互作用力的影响可忽略时,这两个带电体可看成点电荷 D.任何带电体,都可以看成是电荷全部集中于球心的点电荷 2.带负电的粒子在某电场中仅受静电力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速圆周运动。该电场可能由( ) A .一个带正电的点电荷形成 B .一个带负电的点电荷形成 C .两个分立的带等量负电的点电荷形成 D .一带负电的点电荷与带正电的无限大平板形成 3.如图所示,空间有一电场,电场中有两个点a 和b 。下列表述正确的是( ) A.该电场是匀强电场B.a 点的电场强度比b 点的大 C.a 点的电势比b 点的高 D.正电荷在a 、b 两点受力方向相同 4.某静电场的电场线分布如图所示,图中P 、Q 两点的电场强度的大小分别为E P 和E Q ,电势分别为φP 和φQ ,则( ) A .E P >E Q ,φP >φQ B .E P >E Q ,φP <φQ C .E P φQ D .E P

2020_2021学年高中物理第一章静电场2库仑定律课时作业含解析新人教版选修3_1.doc

库仑定律 (20分钟50分) 一、选择题(本题共7小题,每小题5分,共35分) 1.下列关于点电荷的说法,正确的是 ( ) A.只有体积很大的带电体才能看成点电荷 B.体积很大的带电体一定不能看成点电荷 C.一切带电体都能看成点电荷 D.当两个带电体的大小及形状对它们之间的相互作用力的影响可以忽略时,这两个带电体才可以看成点电荷 【解析】选D。带电体能否被看成点电荷,与体积大小无关。当带电体的大小及形状对相互作用力的影响可以忽略时,这样的带电体就可以看成点电荷。例如,两带电球体半径均为a,若将它们放在球心相距3a的位置时,它们不能看成点电荷;若将它们放在相距100a的位置时,因为它们的大小和形状对相互作用力的影响非常小,小到可以忽略的程度,故此时两带电球体可以看成点电荷。 2.两个半径均为r的金属球放在绝缘支架上,两球面最近距离为r,带等量异种电荷,电荷量为Q。两球之间的静电力为下列选项中的哪一个 ( ) A.等于k B.大于k C.小于k D.等于k 【解析】选B。两球间的距离和球本身的大小差不多,不符合简化为点电荷的条件,因为库仑定律的公式计算只适用于点电荷,所以不能用公式去计算,我们可以根据电荷间的相互作用的规律来作一个定性分析。由于两带电体带等量异种电荷,电荷间相互吸引,因此电荷在导体球上的分布不均匀,会向正对的一面集中,电荷间的距离就要比3r小。 根据库仑定律,静电力一定大于k。电荷的吸引不会使电荷全部集中在相距为r的两点上,所以说静电力也不等于k。正确选项为B。

3.关于库仑定律,以下说法中正确的是( ) A.库仑定律是实验定律 B.库仑定律适用于点电荷,点电荷其实就是体积很小的带电体 C.库仑定律表示对静止的点电荷间的相互作用 D.根据库仑定律,当两个点电荷间的距离趋近于零时,则库仑力趋近于无穷大 【解析】选A。库仑定律是库仑通过实验得出的规律,实验过程中注意确保间距要大且电荷量不能变,故A正确;当两带电体的间距远大于自身的大小时,才能看成点电荷,并不是体积很小就能当作点电荷,故B错误;库仑定律只要是点电荷及其电量不变,库仑力就会满足与两电荷量的乘积成正比,与两电荷间距的平方成反比,不一定是静止的电荷,故C错误; 由公式 F=可知,当r→0时,此时已不满足点电荷条件,所以公式不适用,故D错误。 4.两点电荷相距为d,相互作用力为F,保持两点电荷的电荷量不变,改变它们之间的距离,使之相互作用力的大小变为4F,则两电荷之间的距离应变为( ) A.4d B.2d C. D.不能确定 【解析】选C。设两点电荷带电荷量分别为q1和q2,则F=k,又因为4F=k,所以d x=d,故选项C正确。 5.如图所示,abcde是半径为r的圆的内接正五边形,在其顶点a、b、c、d处各固定有电荷量为+Q的点电荷,在e处固定有电荷量为-3Q的点电荷,放置在圆心O处的点电荷-q受到的静电力的大小和方向为( ) A.,方向从e指向O B.,方向从e指向O

高中物理第一章静电场1.9带电粒子在电场中的运动自编作业选修3_1

带电粒子在电场中的运动 △变式训练1 如图所示,质量为m,电量为q 的带电粒子,以初速度v0进入电场后沿直线运动到上极板,(1)物体做的是什么运动?(2)带电体的电性? △强化练习2 下列粒子从初速度为零的状态经加速电压为U 的电场后,( )粒子速度最大,( )粒子动能最大 A 、质子(H 11-质量数1,带电量+1价) B 、氘核(H 21-质量数2,带电量+1价) C 、氦核(He 4 2-质量数4,带电量+2价)D 、钠离子( Na -质量数23,带电量 +1价) 强化练习3 一个带+q 的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图,AB 与电场线夹角为θ,已知带电微粒的质量为m ,电量为 q ,A 、B 相距为L,(1)说明微粒在电场中运动的性质,要求说明理由.2)若微粒恰能运动到B 点,求微粒射入电场时速度V 0? 强化练习4 如图,在点电荷+Q 的电场中,不计重力的带电粒子-q 以初速度V 0沿电场线MN 方向进入电场,(1)分析粒子的运动情况?(2)若此粒子质量为m,运动到N 点速度恰好为零,求MN 两点的电势差U MN 强化练习5 如图从F 处释放一个无初速度电子向B 板方向运动,指出下列对电子运动描述中,正确的是(设电源电压均为U) ( ) A.电子到达B 板时的动能是Ue B.电子从B 板到达C 板时动能的变化量为零 C.电子到达D 板时动能为Ue D.电子在A板与D板间作往返运动 △强化练习6 质子(H 11---质量为m 、电量为e)和二价氦离子(He 4 2---质量为4m 、电量为2e) 以相同的初动能垂直射入同一偏转电场中,离开电场后,它们的偏转角正切之比为 ,侧移之比为 。 拓展练习7 如图所示,有三个质量相等分别带正电、负电和不带电的小球,从平行板电场中的P 点以相同的初速度垂直于E 进入电场,它们分别落到A 、B 、C 三点,则可判断( ) A .三个小球在电场中运动的加速度a A >a B >a C B .三个小球到达极板时的动能E kA >E kB >E kC C .三个小球在电场中运动时间相等 D .小球A 带正电,B 不带电,C 带负电 强化练习8 一个电子以初速V 0=3.0×106m/s 沿着垂直于场强方向射入两带电平行金属板,金属板长L=6.0×10-2 m ,两板之间可以看 成是匀强电场,场强大小为E=2×103N/C ,电子的电量e=1.6×10-19C ,质量m=9.1 × 10-31 kg ,求:(1)电子射离电场时的速度; (2)出射点与入射点沿场强方向的侧移距离。

第五章 静电场中的电介质

第5章静电场中的电介质 ◆本章学习目标 理解:电介质的概念和分类;电介质对电场的影响;电介质的极化和极化电荷;D的高斯定理;电容器和电容的概念,电容器的能量。 ◆本章教学内容 1.电介质对电场的影响 2.电介质的极化 3.D的高斯定律 4.电容器和它的电容 5.电容器的能量 ◆本章重点 用D的高斯定理计算电介质中静电场的分布和电介质的极化电荷密度; 电容和电容器能量的计算。 ◆本章难点 电介质的极化机制、电位移矢量。

5. 1 电介质对电场的影响 如果介质是均匀的,极化的介质内部仍然没有净电荷,但介质的表面会出现面电荷,称为极化电荷。极化电荷不是自由电荷,不能自由流动(有时也称为束缚电荷),但极化电荷仍能产生一个附加电场使介质中的电场减小。 介质中的电场是自由电荷电场与极化电荷的电场迭加的结果。下面考虑一种比较简单而常见的情况,即各向同性介质均匀地充满电场的情况来定量地说明这种迭加的规律。所谓介质均匀地充满电场,举例来说,对于平板电容器,只需要一种各向同性的均匀介质充满两板之间就够了;而对于点电荷,原则上要充满到无穷远的地方。实验证明,若自由电荷的分布不变,当介质均匀地充满电场后,介质中任一点的和场的电场强度E为原来真空中的电场强度的分之一,即 其中为介质的相对介电常量,取决于介质的电学性质。对于“真空”, ,对于空气,近似有,对其它介质,。 加入介质以后场强的变化是由于介质中产生的极化电荷激发的附加电场参与迭加而形成的。在介质均匀地充满电场这种简单条件下,我们可以通过真空中的电场和介质中的电场的比较,由自由电荷分布推算出极化电荷的分布。以点电荷为例,真空中的点电荷在其周围空间任一点p激发的电场为 充满介质以后,点电荷本身激发的场强并不会因极化电荷的出现而改变,即仍为上式。极化电荷是分布在介质表面上,即介质与点电荷交界面上。这是一个很小的范围,从观察p看去,极化电荷也是一个点电荷,设其电量为,它在p 点激发的电场应为 介质中的场强应是与迭加的结果

2014作业02_第一章静电场

第一章 静电场 1. 已知空气中,某种球对称分布的电荷产生的电位在球坐标系中的表达式为 ()e br a r r ?=(a ,b 均为常数),单位V ,求体电荷密度ρ。 2. 已知某空间电场强度(2)x y z E yz x e xze xye =-++,问:(1)该电场可能是静态电场吗?(2)如果是静电场,求与之对应的电位分布。 3. 一个半径为6cm 的导体球,要使得它在空气中带电且不放电,试求导体球所能带的最大电荷量及导体球表面电位。已知空气的击穿场强为6310V/m ?。 4. 从静电场基本方程出发,证明当电介质均匀时,极化电荷密度p ρ存在的条件是自由电荷的体密度ρ不为零,且有关系式0(1/)p ρεερ=--。 5. 试证明不均匀电介质在没有自由电荷体密度时可能有极化电荷体密度,并导出极化电荷体密度p ρ的表达式。 6. 一个半径为R 介质球,介电常数为ε,球内的极化强度r K P e r = ,其中K 为常数。试计算(1)束缚电荷体密度和面密度;(2)自由电荷密度;(3)球内、外的电场和电位分布。 (说明:虽然介质是均匀的,但极化强度P 不是常矢量,所以介质的极化是非均匀的。因此,介质体内可能有极化电荷,此即意味着介质内有自由电荷分布,但介质表面上通常不存在面分布的自由电荷) 7. 一个空气平行板电容器的板间距为d ,极板面积为S ,两板之间所加电压为0U 。如果保持所加电源不变,使两板的间距扩大到10d 。求下面每一个量变化的倍数:0U 、C 、E 、D 、Q 、极板面电荷密度σ、电容器储存的能量e W 。 8. 高压同轴线的最佳尺寸设计:一个高压同轴圆柱电缆,外导体的内半径为2cm ,内外导体间电介质的击穿场强为200kV/cm 。内导体的半径a ,其值可以自由选定,但有一最佳值。因为若a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过电介质的击穿场强。另一方面,由于E 的最大值m E 总是在内导体表面上,当a 很小时,其表面的E 必定很大。试问a 为何值时,该电缆能承受最大电压?并求此最大电压值? (击穿场强:当电场增大到某一数值时,使得电介质中的束缚电荷能够脱离它们的分子而自由移动,这时电介质就丧失了它的绝缘性能,称为被击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿场强)。 9. 有一分区均匀电介质电场,区域1(0z <)中的相对介电常数为1r ε,区域2(0z >)中的相对介电常数为2r ε。已知1201050x y z E e e e =-+,求1D ,2E 和2D 。

(新课标)高中物理第一章静电场课时作业5(含解析)新人教版选修31

(新课标)高中物理第一章静电场课时作业5(含解析)新人教版 选修31 课时作业(五) 一、选择题(2、11题为多选题,其余为单项选择题) 1.关于电势差的下列说法中,正确的是( ) A .电势差与电势一样,是相对量,电势差的值与零电势点的选取有关 B .电势差是一个标量,没有正值和负值之分 C .由于电场力做功跟移动电荷的路径无关,所以电势差也跟移动电荷的路径无关,只跟这两点的位置有关 D .A 、B 两点的电势差是恒定的,不随零电势点的改变而改变,所以U AB =U BA 解析 电势差与零电势点选取无关,故A 项错误.电势差也有负的,表示初位置电势比末位置电势低,故B 项错误.电势差只决定于初末位置,与电荷移动的路径无关,故C 项正确.U AB =-U BA ,故D 项错误. 答案 C 设置目的 考查对电势差概念的理解 2.关于U AB =W AB q 和W AB =qU AB 的理解,正确的是( ) A .电场中的A 、 B 两点间的电势差和两点间移动电荷的电量q 成反比 B .在电场中A 、B 两点移动不同的电荷,电场力的功W AB 和电量q 成正比 C .U AB 与q 、W AB 无关,甚至与是否移动的电荷都没有关系 D .W AB 与q 、U AB 无关,与电荷移动的路径无关 解析 A 、C 项,电势差公式U AB =W AB q 是比值定义法,电场中的A 、B 两点间的电势差和两点间 移动电荷的电量q 和电场力做功均无关.故A 项错误,C 项正确;B 项,电场中A 、B 两点间的电势差是一定的,在电场中A 、B 两点移动不同的电荷,电场力的功W AB 和电量q 成正比.故B 项正确;D 项,由公式W AB =qU AB 可知,W AB 与q 、U AB 都有关,与电荷移动的路径无关.故D 项错误.故选B 、C 两项. 答案 BC 3.如图所示,在一正的点电荷产生的电场中有A 、B 两点,一点电荷为-3.2×10 -19 C 的试探电荷从A 点移到B 点的过程中,克服电场力做功为W =6.4×10 -20 J ,则A 、B 两点间的电势差U AB 等于( )

第五章 静电场

第五章 静电场 §5-1电荷的基本性质 1. 电的定义:基本粒子的一种属性。(质子带正电,电子带负电,中子不带电) 物体之间由于相互作用而得到或失去一些电子,从而显示出带电性质。 2.电的基本性质: (1) 物体所带电量只能是基本电荷电量的整数倍。基本电荷电量:)(10 602.119 c e -?= (2) 电可以在物体之间(由于交换电子)转移,在转移过程中,代数量守恒。 (3) 带电物体之间存在着相互作用力,服从库仑定律。 (4) 电分为正电和负电两种。两带电体之间作用力的方向,同性相斥;异性相吸。 §5-2 库仑定律 1. 点电荷:当带电体的大小形状在所研究的问题中可忽略不计时,该带电体可看成点电荷。 2. 库仑定律:在真空中,两点电荷之间的相互作用力大小为 (平方反比律,有源场) ,真空的电容率:2211201085.8C m N ---?=ε §5-3 电场强度 1. 电场: (1) 定义:电荷之间产生力的作用的媒介。 (2) 特征:是一种特殊的物质,无形无质,充满整个空间。服从叠加原理。 2. 场强: (1) 定义:0/q = (单位正电荷所受到的静电场力,描述场对电荷的施力本领) (2) 方向:正电荷受到的静电场力的方向 (3) 大小:由产生电场的电荷决定,与试探电荷0q 无关,是空间的分布函数。 (4) 测量:若试探电荷的电量不是足够少,0q 的存在将影响产生电场的电量分布,从而达不到 预期的测量目的。若试探电荷的体积不是足够小,则测量只能反映试探电荷所在区域场强的平均值。 (5) 受力:q 0= 0q 为作用对象,E 为其它电荷(除0q 外)在0q 所在位置产生的电场。 (6) 叠加原理:空间中某点的场强由所有电荷共同激发。(每个电荷产生的电场占据整个空间) 3. 电场(力)线:为描述电场的分布而人为引入的有向曲线。 (1) 用电力线的疏密程度来描述场强的大小。 (2) 用有向曲线的切线方向(向前)来描述场强的方向。 (3) 电力线的特征是:有源,无旋。

第五章静电场

第五章静电场 内容提要: 一.库仑定律 二.静电场、电场强度的叠加原理 三.电场强度的定义;点电荷系的电场强度叠加原理;连续带电体的电场强度叠加原理;连续带电体的电场强度叠加原理。 四.电场的图示法--电场线;通量;曲面的法线;电通量的定义; 五.高斯定理的意义;高斯定理的应用 六.静电场的保守性和环流定理 七.电势差和电势 八.静电场中的导体 九.电容、电容器 十、电介质及其极化 目的要求: 1.了解电荷的基本性质,理解库仑定律。 2.掌握描述电场的参量:电场强度、电势及它们间的关系,掌握场强叠加原理。 3.理解电场的高斯定理,掌握用高斯定理计算电场强度的条件和方法。 4.理解电场的环流定理,掌握用两种方法计算电势和由电势计算电场强度的条件和方法。 5.了解导体的静电平衡条件及由于导体的存在对电场分布的影响。 6.理解电容器的电容,了解电容器储存电能的表达式。理解电容器储存的静电场能量;会计算电场的能量和能量密度。 7.了解电介质的极化现象,了解各向同性电介质中D 和E 间的关系和区别,了解电介质中的高斯定理,了解电介质对电容器电容的影响。 重点与难点: 1.库仑定律的意义及应用。 2.电场强度矢量是从力的角度描述电场的物理量; 3.用高斯定理计算电场强度的条件和方法; 4.高斯定理反映的电场性质,库仑定律和高斯定理是用不同形式表示电场与场源电荷关系的同一规律。 5.?=?0 l d E 说明静电场是保守力场,可引入电势的概念。 6.用两种方法计算电势和由电势计算电场强度的条件和方法 7.导体的静电感应平衡条件及性质;

8.求电容的一般方法 9.电位移矢量D 的意义,电场线和电位移线的区别。 教学思路及实施方案: 本课应强调: 1.强调库仑定律是静电学的基本实验规律。说明库仑定律只适用于点电荷,当0→r 时,任何带电体已不能看作点电荷了;两点电荷之间的作用力在它们的连线上,所以电场力是有心力,可引入电势和电势能的概念。 2.电场力是通过一种特殊的物质—电场来传递的。场强叠加原理是计算电场强度的第一种方法的理论基础,应重点讲解。 3.高斯定理是麦克斯韦电磁场理论的重要组成部分,高斯定理来源于库仑力与距离的严格平方反比。库仑定律和高斯定理是用不同形式表示电场与场源电荷关系的同一规律。 4.用高斯定理计算电场强度的条件是电场分布具有某种对称性,这就要求电荷分布具有某种对称性。用高斯定理计算电场强度实际上是对某些对称分布的场强已知场强的方向,求场强的大小。 5.由于静电场是保守力场,才能引入电势能和电势的概念 6.求解静电平衡的导体问题的基本出发点是电荷守恒定律和导体内部的合场强处处为零。 7.对于线性电介质,只要将真空中的公式的εε→0,即可得到电介质中的相应公式。 教学内容: 第一节 第一节 电荷 库仑定律 一、电荷守恒定律 正负电荷的代数和在任何物理过程中始终保持不变。 二、库仑定律 0221 r r q q k F = 实验原理库仑的扭秤是由一根悬挂在细长线上 的轻棒和在轻棒两端附着的两只平衡球构成的。当球 上没有力作用时,棒取一定的平衡位置。如果两球中 有一个带电,同时把另一个带同种电荷的小球放在它 附近,则会有电力作用在这个球上,球可以移动,使 棒绕着悬挂点转动,直到悬线的扭力与电的作用力达 到平衡时为止。因为悬线很细,很小的力作用在球上 就能使棒显著地偏离其原来位置,转动的角度与力的 大小成正比。库仑让这个可移动球和固定的球带上不 同量的电荷,并改变它们之间的距离: 第一次,两球相距36个刻度,测得银线的旋转角 度为36度。 第二次,两球相距18个刻度,测得银线的旋转角

第一章静电场测试题

第一章静电场测试题 1.以下叙述中正确的是( C ) A.带电量较小的带电体可以看成是点电荷 B.电场线的形状可以用实验来模拟,这说明电场线是实际存在的 C.一般情况下,两个点电荷之间的库仑力比它们之间的万有引力要大得多 D.电场线的分布情况可以反映出电场中各点的场强方向,但无法描述电场的强弱2.关于摩擦起电和感应起电的实质,下列说法正确的是:(BC ) A、摩擦起电现象说明了机械能可以转化为电能,也说明通过做功可以创造电荷 B、摩擦起电说明电荷可以从一个物体转移到另一个物体 C、感应起电说明电荷可以从物体的一个部分转移到物体另一个部分 D、感应起电说明电荷从带电的物体转移到原来不带电的物体上去了 3.绝缘细线上端固定,下端悬挂一个轻质小球a,a的表面镀有铝膜,在a的附近,有一个绝缘金属球b,开始a、b都不带电,如图所示,现在使a带电,则:( D ) A、a、b之间不发生相互作用 B、b将吸引a,吸住后不放 C、b立即把a排斥开 D、b先吸引a,接触后又把a排斥开 4、如图所示,当带正电的球C移近不带电的枕形金属导体时,枕形导体上的电荷移动情况是:() A、枕形金属导体上的正电荷向B端移动,负电荷不移动 B、枕形金属导体上的带负电的电子向A端移动,正电荷不移动 C、枕形金属导体上的正、负电荷同时分别向B端和A端移动 D、枕形金属导体上的正、负电荷同时分别向A端和B端移动 5、下述说法正确的是(B ) A.根据E = F/q,可知电场中某点的场强与电场力成正比。 B.根据E = KQ/r2,可知点电荷电场中某点的场强与该点电荷的电量Q成正比。 C.根据场强叠加原理,可知合电场的场强一定大于分电场的场强。 D.电场线就是点电荷在电场中的运动轨迹 6. 以下对“静电场”一章中几个公式的理解,错误 ..的是:AD A.公式C=Q/U指出,电容器的电容随电容器所带电荷量Q的增加而增加 B.由E=U/d可知,同一个电容器两板电势差U越大时板内电场强度E越大 C.在公式F=kq1q2/r2中,kq2/r2是q1所在位置的电场强度的大小 D.公式W AB=qU AB中,电荷q沿不同路径从A点移动到B点,静电力做功不同 7.对于点电荷的电场,我们取无限远处作零电势点,无限远处电场强度也为零,那么( C). (A)电势为零的点,电场强度一定为零,反之亦然 (B)电势为零的点,电场强度不一定为零,但电场强度为零的点,电势一定为零 (C)电场强度为零的点,电势不一定为零;电势为零的点,场强不一定为零 (D)场强为零的点,电势不一定为零,电势为零的一点,电场强度一定为零 8.若带正电荷的小球只受到电场力的作用,则它在任意一段时间内( AC). (A)一定沿电场线由高电势处向低电势处运动

大学物理静电场作业题.

第五章静电场 习题5-9 若电荷均匀地分布在长为L的细棒上,求证:(1)在棒的延长线,且离棒中心为r处的电场强度为 (2)在棒的垂直平分线上,离棒为r处的电场强度为 若棒为无限长(即L→),试将结果与无限长均匀带电直线的电场强度相比较。 证明:(1) 延长线上一点P的电场强度,故由几何关系可得 电场强度方向:沿x轴。 (2) 若点P在棒的垂直平分线上,如图所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此点P的电场强度E方向沿y轴,大小为利用几何关系,,则 当L→时,若棒单位长度所带电荷为常量,则P点电场强度 其结果与无限长带电直线周围的电场强度分布相同。 习题5-10 一半径为R的半球壳,均匀地带有电荷,电荷面密度为,求球心处电场强度的大小。 解:将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为 (圆环电场强度) 由于平行细圆环在点O激发的电场强度方向相同,利用几何关系,,,统一积分变量,电场强度大小为 积分得 习题5-12 两条无限长平行直导线相距为r0,均匀带有等量异号电荷,电荷线密度为。(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x);(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。 解:(1)设点P在导线构成的平面上,E+E-分别表示正负电导线在P点的

电场强度,则有 (2)设F+,F-分别表示正负带电导线单位长度所受的电场力,则有 显然有,相互作用力大小相等,方向相反,两导线相互吸引。 习题5-15 边长为a的立方体如图所示,其表面分别平行于Oxy、Oyz和Ozx 平面,立方体的一个顶点为坐标原点。现将立方体置于电场强度E= (E1+kx)i+E2j (k,E1,E2为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量。 解:如图所示,由题意E与Oxy面平行,所以任何相对Oxy面平行的立方体表面,电场强度的通量为零,即。而 考虑到面CDEO与面ABGF的外法线方向相反,且该两面的电场分布相同,故有 同理 因此,整个立方体表面的电场强度通量 习题5-18 一无限大均匀带电薄平板,电荷面密度为,在平板中部有一半径为r的小圆孔。求圆孔中心轴线上与平板相距为x的一点P的电场强度。 分析:本题的电场强度分布虽然不具备对称性,但可以利用具有对称性的无限大带电平面和带圆盘的电场叠加,求出电场的分布,要回灵活应用。 若把小圆孔看做由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度)的小圆盘。这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和。 解:(由5-4例4可知,)在无限大带点平面附近 为沿平面外法线的单位矢量;圆盘激发的电场 它们的合电场强度为 习题5-20 一个内外半径分别为R1和R2的均匀带电球壳,总电荷为Q1,球壳外同心罩一个半径为R3的均匀带电球面,球面带电荷为Q2。球电场分

相关文档
相关文档 最新文档