文档库 最新最全的文档下载
当前位置:文档库 › 数据库原理期末总结

数据库原理期末总结

数据库原理期末总结
数据库原理期末总结

第一章绪论:

1.信息:信息是关于现实世界事物的存在方式或运动状态的反映的综合,是一种被加工为

特定形式的数据,有意义和价值。

2.数据:是描述事物的符号记录,是信息的具体表现形式。

3.数据库:是长期存储在计算机的、有组织的、可共享的大量的数据集合。

4.数据库中的数据:按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数

据独立性和易扩展性,可共享。

5.数据库管理系统位于用户与操作系统之间的一层数据管理软件。

主要功能:数据定义、组织、存储、操纵,数据库的事务管理和运行管理、建立和维护。

6.数据库系统是在计算机系统中引入数据库的系统。

包括:数据库、数据库管理系统、应用系统、数据库管理员(DBA)、用户。

7.数据处理:对各种数据进行收集、储存、加工和传播等。

8.数据管理:数据处理的中心问题,对数据进行分类、组织、编码、存储、检索和维护。

9.数据管理的三个阶段:人工管理、文件系统、数据库系统阶段。

10.数据库与文件系统的根本区别:数据结构化。

11.在数据库中,不仅文件部数据彼此相关,而且文件之间在结构上也有机地联系在一起。

12.数据的独立性包括:a.物理独立性:用户的应用程序与存储在磁盘上的数据库中的数据

是相互独立的。b.逻辑独立性:应用程序与数据库的逻辑结构相互独立。

13.数据的独立性是由DBMS的二级映象功能来保证的。

14.DBMS必须提供的控制功能:安全性保护、完整性检查、并发控制、数据库恢复。

15.模型现实世界特征的模拟和抽象;数据模型是现实世界数据特征的抽象。

16.两个不同层次的模型:a.概念模型(数据库设计)b.逻辑模型(DBMS的实现)和物理

模型(系统部的表示和存取方法)

17.抽象过程:现实世界——信息世界——机器世界。

18.数据模型的三要素:数据结构、数据操作、完整性约束

19.数据结构: 组成数据库的对象类型的集合、对系统静态特性的描述。

20.数据操作:检索(查询)和更新(包括插入、删除、修改)两大类操作。

21.完整性约束:数据及其联系所满足的制约和依存规则,以保证数据的正确、有效和相容。

22.码(Key):唯一标识实体的属性集。

23.E-R图表示实体型、属性和联系的方法:实体型——矩形;联系——菱形;属性——椭

圆。

24.关系模型是建立在严格的数学概念之上的,它的数据结构是一二维表。

25.关系:一个关系对应一二维表。元组:一行。属性:一列。

主码:可唯一标识元组的属性或属性组,也称为关系的键。

关系模式:对关系的描述,一般表示为:关系名(属性1,属性2,…,属性n),如:学生(学号,,年龄,性别,专业,年级)。

26.数据操纵主要包括查询、插入、删除和修改数据。

27.数据库系统的三级模式结构:外模式、模式、模式。

28.两层映象:外模式/模式映像、模式/模式映像。

29.外模式/模式映像:当模式改变时,外模式/模式的映像要作相应的改变,以保证外模式

保持不变。保证了数据的逻辑独立性。

30.模式/模式映像:定义数据逻辑结构和存储结构之间的对应关系,当数据库的存储结构

改变时,模式/模式的映像也必须作相应的修改,使得模式保持不变。保证了数据的物理独立性。

31.模式:数据库中全部数据的逻辑结构和特性的描述。只是对记录型的描述,而与具体的

值无关;不仅要定义数据的逻辑结构,还要定义数据间的联系,安全性、完整性要求。

32.外模式:数据库用户能够看见和使用的局部数据的逻辑结构和特征的描述。

注:一个应用程序只能使用一个外模式。

33.模式:也称存储模式,是数据物理结构和存储方式的描述,是数据在数据库部的表示方

式。

注:一个数据库只能有一个模式。

第二章关系数据库:

1.关系的三种完整性约束:实体完整性、参照完整性、用户自定义的完整性。

2.域:具有相同数据类型的值的集合。域中值的个数成为基数。

3.域表示属性的取值围。

4.笛卡尔积:给定一组域D1,D2,…,D n,这些域中可以有相同的。D1,D2,…,D n的笛

卡尔积为:D1×D2×…×D n={(d1,d2,…,d n)| d i∈D i ,i=1,2,…,n},其中每一个元素(d1,d2,…,d n)叫做一个n元组(n-tuple)或简称元组(Tuple)。元素中的每一个值d i叫做一个分量(Component)。

例如:给出三个域:

i.D1=导师集合SUPERVISOR={,易}

ii.D2=专业集合SPECIALITY={计算机,信息}

iii.D3=研究生集合POSTGRADUATE={勇,晨,王敏}

则D1×D2×D3= {

(,计算机,勇),(,计算机,晨),

(,计算机,王敏),(,信息,勇),

(,信息,晨),(,信息,王敏),

(易,计算机,勇),(易,计算机,晨),

(易,计算机,王敏),(易,信息,勇),

(易,信息,晨),(易,信息,王敏)}

5.关系:D1×D2×…×D n的子集叫做在域D1,D2,…,D n上的关系。n是关系的目或度。

6.由于域可以相同,为了加以区分,必须对每列起一个名字,称为属性(Attribute)。

7.候选码:若关系中的某一属性组的值能唯一地标识一个元组,则该属性组就是候选码。

8.若一个关系有多个候选码,则选定其中一个为主码。主码的属性称为主属性

9.关系的三种类型:基本关系、查询表、视图。

注:基本表是实际存在的表;查询表式查询结果对应的表;视图表是虚表,不对应实际存储的数据。

10.实体完整性规则:若属性A是基本关系R的主属性,则属性A不能取空值。

用户定义的完整性:针对某一具体关系数据库的约束条件。

11.并:R∪S={t|t∈R∨t∈S} 差:R-S={t|t∈R∧t S} 交:R∩S={t|t∈R∧t∈S}

广义笛卡尔积:R×S={t r⌒t s|t r∈R∧t s∈S}

例如:给定两个关系R和S

则有:

12.选择:在关系R中选择满足给定条件的诸元组。σF(R)={t|t∈R∧F(t)=‘真’}

例:查询信息系(IS)全体学生:σSdept=‘IS’(Student)

查询年龄小于20岁的学生:σSage<20(Student)

13.投影:关系R上的投影,是从R中选择出若干属性列构成新的关系。

πA(R)={t[A]|t∈R}

例:查询学生的和所在的系:πSname,Sdept(Student)

查询学生关系中有哪些系:πSdept(Student)

14.连接:从两个关系的笛卡尔积中选取属性间满足一定条件的元组。

R?S={t r⌒t s|t r∈R∧t s∈S∧t r[A]θt s[B]}

AθB

15.等值连接:θ为“=”的连接为等值连接

16.自然连接:两个关系中进行比较的分量必须是相同的属性组,并且去掉结果中重复的属

性列。

例5 对于下面的两个关系R和S,考虑三个连接

17.除运算:给定关系R(X,Y)和S(Y,Z),其中X,Y,Z为属性组。R中的Y与S中

的Y可以有不同的属性名,但必须出自相同的域集。R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影的集合。

R÷S={t r[X]| t r∈R∧πY(S)?Y x}

例6 对于下面的关系R和S,计算R÷S。

对于关系R,A可以取四个值:{a1,a2,a3,a4},其中:

a1的象集(B,C)a1 ={(b1,c2),(b2,c3),(b2,c1)}

a2的象集(B,C)a2 ={(b3,c7),(b2,c3)}

a3的象集(B,C)a3 ={(b4,c6)}

a4的象集(B,C)a4 ={(b6,c6 )}

S在(B,C)上的投影为:{(b1,c2),(b2,c1),(b2,c3)}

R÷S的结果为:

?几个例子关系:

例7查询选修2号课程的学生的学号

πSno(σCno=‘2’(SC))

例9 查询至少选修了一门其直接先行课为5号课程的学生。

πSname(σCpno=‘5’(Course)?SC?πSno,Sname(Student))

例10 查询选修了全部课程的学生的学号和。

πSno,Cno(SC)÷πCno(Course)?πSno,Sname(Student)

18.元组关系演算以元组变量作为为此变元的基本对象。典型的关系演算语言:ALPHA。第三章关系数据库标准语言SQL:

1.

2.SQL的三级模式结构:外模式——视图和部分基本表、模式——基本表、模式——

存储文件。

3.定义模式:CREATE SCHEMA <模式名> AUTHORIZATION <用户名>

CREATE SCHEMA “S-T” AUTHORIZATION WANG;为用户wang定义了一个模式S-T。

4.删除模式:DROP SCHEMA <模式名>

注:CASCADE和RESTRICT两者必选其一。

CASCADE—级联删除:把该模式中所有的数据库对象全部一起删除。

RESTRICT—限制删除:如果该模式中已经定义了下属的数据库对象,则拒绝该删除语句的执行。没有下属对象时才能执行。

例:DROP SCHEMA ZHANG CASCADE;删除模式zhang,同时已经定义的表也被删除。

5.模式实际上定义了一个命名空间,在这个空间可以进一步定义该模式包含的数据库

对象:基本表、视图、索引等。

6.创建了一个模式,就建立了一个数据库的命名空间,一个框架,这个空间中首先应

定义的是该模式包含的基本表。

7.非空值约束:不知道、不确定或无法填入的值。

唯一性约束:指明基本表上的某个列或某些列的组合在不同的元组中的取值不能相同。

主键约束:用于定义基本表的主键。

外键约束:是指一个表(称从表)的一个列或列组合,它的值需要引用另一个表(称引用表)的主键或唯一性键的值。

8.ON DELETE选项是设置当引用表中具有外键约束的行被删除时,系统所做的处理。

有三种可能的处理办法:

RESTRICT:缺省选项,引用表中凡是被从表所引用的行都不准删除;

CASCADE:从表中所有引用了引用表中被删除行的行也随之被删除;

SET NULL:外键的值被设置为NULL。

9.定义基本表:CREATE TABLE <表名>;

注:“< >”中的容是必选项“[ ]”中的容是可选项;DEFAULT选项是列指定缺省值。

例1建立一个学生表Student,课程表course,选课表sc。

CREATE TABLE Student (

Sno CHAR(5)PRIMARY KEY,

Sname CHAR(20)UNIQUE,

Ssex CHAR(1),

Sage INT DEFAULT 18,

Sdept CHAR(15));

CREATE TABLE Course (

Cno CHAR(2)PRIMARY KEY,

Cname CHAR(30)NOT NULL,

Cpno CHAR(2),

Ccredit SMALLINT));

CREATE TABLE SC (

Sno CHAR(5),

Cno CHAR(2),

Grade SMALLINT,

PRIMARY KEY(Sno,Cno),

FOREIGN KEY(Sno)REFERENCES Student(Sno),

FOREIGN KEY(Cno)REFERENCES Course(Cno)ON DELETE CASCADE));

10.修改基本表:ALTER TABLE <表名>+[ADD [<新列名> <数据类型>][完整性约束]]

[DROP<完整性约束名>]

[MODIFY <列名> <数据类型>];

例2向Student表增加“入学时间(Scome)”列。

ALTER TABLE Student ADD Scome DATE;

例3将Student表Sage的数据类型改为INT

ALTER TABLE Student MODIFY Sage INT;

例4 删除Student表学生(Sname)的唯一性约束。

ALTER TABLE Student DROP UNIQUE(Sname);

数据库原理简答题总结

数据库原理简答题总结第一章数据库概论 1.人工管理阶段数据管理的特点: (1)数据不保存在机器中 (2)无专用的软件对数据进行管理 (3)只有程序的概念,没有文件的概念 (4)数据面向程序 2.文件系统阶段数据管理的特点: (1)数据可长期保存在外存的磁盘上 (2)数据的逻辑结构和物理结构有了区别 (3)文件组织已呈多样化。有索引、链接和散列文件 (4)数据不再属于某个特定的程序,可重复使用。 3.文件系统显露出三个缺陷: (1)数据冗余性 (2)数据不一致性 (3)数据联系弱 4.数据库阶段的管理方式具有以下特点: (1)采用复杂的数据模型表示数据结构 (2)有较高的数据独立性 (3)数据库系统为用户提供方便的用户接口 (4)系统提供四方面的数据控制功能 (5)对数据的操作既可以以记录为单位,又可以以数据项为单位 5.数据描述三个领域之间的关系: 从事物的特性到计算机中的数据表示,经历了三个领域:现实世界、信息世界、机器世界。 (1)现实世界:存在于人们头脑之外的客观世界,称为现实世界。 (2)信息世界:是现实世界在人们头脑中的反映。 (3)机器世界:信息世界的信息在机器世界中以数据形式存储。 信息世界中数据描述的术语有:实体、实体集、属性、实体标识符 机器世界中数据描述的术语有:字段、记录、文件、关键码 它们的对应关系是: 在数据库中每个概念都有类型和值之区分,类型是概念的内涵,值是概念的外延 6.数据描述的两种形式: 数据描述有物理描述和逻辑描述两种形式。 物理数据描述指数据在存储设备上的存储方式,物理数据是实际存放在存储设备上的数据。 逻辑数据描述指程序员或用户用以操作的数据形式,是抽象的概念化数据。 数据管理软件的功能之一,就是要把逻辑数据转换成物理数据,以及把物理数据转换成逻辑数据。 7.物理存储介质层次:

excel期末知识点总结

1.文件的建立与打开: office图表新建新工作簿确定 打开 2.文件的保存与加密保存: office图表保存 xls 准备加密文档输入密码确定再次输入并确定 3.强制换行:alt+enter 4.删除与清除:删除整个单元格,清除格式、内容、批注 5.填充序列: 等差等比: 在单元格中输入起始值开始填充序列选择等差等比、行列输入步长值、终止值 文字序列: 在单元格输入文字序列 office按钮 excel选项常用编辑自定义序列选中刚才输入的文字序列导入确定6.复制移动: 移动覆盖左键拖拽 复制移动覆盖 ctrl+左键拖拽 移动插入 shift+左键拖拽 复制移动插入 ctrl+shift+左键拖拽 7.插入行列:选中要插入数量的行或列右键插入 8.为行、列、单元格命名: 先选中要命名的区域在左上角的名称框内输入名字 直观,快速选定 如何删除名称:公式名称管理器选中删除 9.批注:单击单元格审阅新建批注 10.科学计数法: >=12位用科计表示 123456789012=1.234567E+11 1.A3=R3C1 R为行C为列 C1 C2 C3 R1 R2 R3A3 2.数组运算Ctrl+Shift+Enter 3.将某一函数,作为另一函数的参数调用。最多可以嵌套七层 COUNT(参数1,参数2,…)功能:求一系列数据中数值型数据的个数。 COUNTA(参数1,参数2,…)功能:求“非空”单元格的个数。 COUNTBLANK(参数1,参数2,…)功能:求“空”单元格的个数。 COUNTIF功能:求符合条件的单元格数 4.四舍五入函数ROUND(number, num_digits) =ROUND(1234.567,2)=1234.57 =ROUND(1234.567,1)=1234.6 =ROUND(1234.567,0)=1235 =ROUND(1234.567,-1)=1230 =ROUND(1234.567,-2)=1200 负的往左,正的往右

数据库原理知识总结和期末试卷

数据库知识要点归纳 第1章数据库基础知识 1.数据库(DB)是一个按数据结构来存储和管理数据的计算机软件系统。 数据库是长期储存在计算机内的、有组织的、可共享的数据集合。 数据库管理数据两个特征:1.数据整体性 2.数据库中的数据具有数据共享性 2.数据库管理系统(DBMS)是专门用于管理数据库的计算机系统软件 3.数据库应用系统是在数据库管理系统(DBMS)支持下建立的计算机应用系统,简写为DBAS。数据库应用系统是由数据库系统、应用程序系统、用户组成的。 例如,以数据库为基础的财务管理系统、人事管理系统、图书管理系统,成绩查询系统等等。 4.数据库系统DBS是一个实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质、处理对象和管理系统的集合体。它通常由软件、数据库和数据管理员组成。 5.数据库中数据独立性数据和程序之间的依赖程度低,独立程度大的特性称为数据独立性高。1、数据的物理独立性数据的物理独立性是指应用程序对数据存储结构的依赖程度。2、数据的逻辑独立性数据的逻辑独立性是指应用程序对数据全局逻辑结构的依赖程度。 6.数据库的三级模式是模式、外模式、内模式。1.模式(Schema)一个数据库只有一个模式 2.外模式(External Schema)一个数据库有多个外模式。3.内模式(Internal Schema)一个数据库只有一个内模式。 7.数据库系统的二级映象技术 第2章数据模型与概念模型 1.实体联系的类型:一对一联系(1:1)一对多联系(1:n)多对多联系(m:n) 2.E-R图描述现实世界的概念模型,提供了表示实体集、属性和联系的方法。 长方形表示实体集椭圆形表示实体集的属性菱形表示实体集间的联系 3.数据模型的三要素数据结构、数据操作、数据约束条件 数据结构分为:层状结构、网状结构和关系结构 常见的数据模型:层次模型、网状模型和关系模型。 层次模型用树形结构来表示各类实体以及实体间的联系

数据库技术与应用教程各章节知识点汇总

数据库技术及应用教材(第 2 版)各章节知识点 第1 章数据库系统概述 1.1 数据库管理技术的产生和发展 1.1.1 人工管理阶段(20 世纪50 年代之前) 特点:①数据不保存 ②数据不具独立性 ③数据不共享 1.1.2 文件管理/系统阶段(20 世纪50 年代-60 年代中期)特点: ①数据可以保存 ②独立性依然差 ③冗余量大 1.1.3 数据库管理阶段20 世纪60 年代以后 1.2.1 基本概念 1. 数据Data 2. 数据库Database, DB 3. 数据库管理系统Database Management System, DBMS 功能:数据定义、数据操纵、数据控制、数据通信 4. 数据库系统Database System, DBS 包括数据库、数据库管理系统、应用系统、数据库管理员(Database Administrator, DBA)和用户 1.2.2 数据库系统的特点 1. 数据共享性好 2. 数据独立性强 3. 数据结构化

4. 统一的数据控制功能123数据库系统的组成(同上) 124数据库系统的抽象级别 DBMS中的数据被描述为逻辑模式、物理模式和外模式三级抽象1.3数据模型(概念模型、逻辑模型和物理模型) 1.3.1基本组成 1. 数据结构 2. 数据操作 3. 数据约束 1.3.2层次模型 1.3.3网状模型 1.3.4关系模型(应用最广泛) 1.3.5面向对象模型 1.3.6对象关系模型 第2章关系数据库 2.1关系数据模型的基本概念 关系数据库系统是支持关系模型的数据库系统 关系模型由数据结构、关系操作和完整性约束3部分组成 1. 数据结构(二维表) (1关系 (2元组 (3属性 (4键 ((1)超键:能唯一标识元组的属性过属性集

大数据库期末重要题型总结材料

题型: 1 E-R图/文字描述/伪代码(实体-属性)/真实代码(create table) 2关系代数表达式书写,画自然连接表格 3 select语句书写(3部分) 题型一 E-R图 问题2[12标记〕:考虑下图描述的发票(发票)数据库的ER图。 (1)给出的从ER图的要求和约束的精确说明。 [5商标〕 (2)转换图转换成关系模式,通过提供相应的CREATE TABLE语句。指定所有键 和外键约束。 Question 2 [12 marks]: Consider the following figure that describes the CM E-R diagram of an invoice(发票) database. (1) Give a precise specification of the requirements and constraints from the E-R diagram. [5 marks] (2) Translate the diagram into relational model by supplying the appropriate CREATE TABLE statements. Specify all the key and foreign key constraints. [7 marks] 矩形:实体。多个实体的集合是实体集。椭圆形:属性(带有下划线是主码)。 菱形:联系集。有箭头的一方是“一”,没有箭头是“多”,从有箭头的开始分析: A(有箭头)对B,一个A对多个B,一个B只有一个A。 联系集有没有属性跟要不要描述联系集是没有关系的!但是一般没有属性就不写, 有属性就写。联系集有写时,实体集不需要写上对方的主码,有属性的联系集, 多对多或多对一时,两边的实体集的主码都作为外码写进此联系集。一对一时, 任选一个实体集的主码;没写时,实体集多的一方要写上一的一方的主码,如果 联系集有属性,还要把属性写到多的一方。 。 [7商标〕

数据库知识点重点章节总结学习资料

1. 基本概念 (1) 数据库(DB):是一个以一定的组织形式长期存储在计算机内的,有组织的可共享的相关数据概念(2) 数据库管理系统(DBMS);是位于用户与操作系统之间的一层数据管理软件,是数据库系统的核心(3) 数据库系统(DBS);计算机系统中引入数据库后的系统构成(4) 实体;凡是现实世界中存在的可以相互区别开,并可以被我们所识别的事物.概念等对象均可认为是实体(5) 属性;是实体所具有的某些特征,通过属性对实体进行刻画.实体由属性组成(6) 码;唯一标识实体的属性集称为码(7) 域;属性的取值范围称为该属性的域 (8) 实体型;具有相同属性的实体必然具有共同的特征和性质。用实体名和属性名集合来抽象和刻画同类实体,称为实体型。(9) 实体集;同一类型实体的集合。(10) 1 :1联系:如果实体集E1中每个实体至多和实体集E2中的一个实体有联系,反之亦然,那么E1和E2的联系称为“1:1联系”。1:N联系:如果实体集E1中每个实体可以与实体集E2中任意个(零个或多个)实体有联系,而E2中每个实体至多和E1中一个实体有联系,那么E1和E2的联系是“1:N联系”。M:N联系:如果实体集E1中每个实体可以与实体集E2中任意个(零个或多个)实体有联系,反之亦然,那么E1和E2的联系称为“M:N联系”。(11)现实世界(现实世界是指我们要管理的客户存在的各种事物.事物之间的发生.变化过程)、观念世界(信息世界)、数据世界 2.数据管理技术的发展阶段 人工管理阶段(数据不保存,系统没有专用的软件对数据进行管理,数据不共享,数据不具有独立性)、文件系统阶段(数据以文件形式可长期保存下来,文件系统可对数据的存取进行管理,文件组织多样化,程序与数据之间有一定独立性)、数据库系统阶段(数据结构化,数据共享性高,冗余少于且易扩充,数据独立性高,有统一的数据控制功能) 3. 数据库系统的特点 (1) 数据结构化 (2) 共享性高,冗余度低,易扩充 (3) 独立性高 (4) 由DBMS统一管理和控制 4. DBMS的数据控制功能 (1) 数据的安全性保护 (2) 数据的完整性检查 (3) 并发控制 (4) 数据库恢复 5. 数据模型的组成要素 数据结构数据结构是所研究的对象类型的集合,是刻画一个数据模型性质最重要的方 面,是对系统静态特性的描述。 数据操作数据操作是指对数据库中各种对象(型)的实例(值)允许执行的操作的集 合,包括操作及有关的操作规则。是对系统动态特性的描述。 数据的约束条件数据的约束条件是一组完整性规则的集合。完整性规则是给定的数据 模型中数据及其联系所具有的制约和依存规则,以保证数据的正确、有效、相容。 6. 最常用的数据模型 层次、网状、关系、面向对象模型 7. 关系模型 ?关系: 一张表 ?元组: 表中的一行 ?属性: 表中的一列 ?主码: 表中的某个属性组,它可以唯一确定一个元组 ?域: 属性的取值范围 ?分量: 元组中的一个属性值 ?关系模式: 对关系的描述。 表示为:关系名(属性1,属性2,…属性n)

数据库原理总结

第一章数据库概论 1.人工管理阶段,文件系统阶段,数据库阶段,高级数据库阶段(对象数据库技术,分布式数据库系统,开放数据库互连技术,xml数据库技术,现代信息集成技术) 2.数据描述:概念设计中:实体,实体集,属性,实体标识符; 逻辑设计中:字段,记录,文件,关键码; 物理设计中:位,字节,字,块,桶,卷; 3.概念模型,逻辑模型(层次,网状,关系,对象),外部模型,内部模型; 4.三层模式(外模式,逻辑模式,内模式),两级映像(外模式/逻辑模式映像,逻辑模式/内模式映像) 5.数据库系统:数据库,硬件,软件,数据库管理员 第二章关系模型和关系运算理论 1.超键:能唯一标识元组的属性或属性集。 候选键:不含有多余属性的超键 主键:用户选作元祖标识的候选键。 外键:是其他模式的主键。 实体完整性规则,参照完整性规则,用户定义的完整性规则 关系模式的三层体系结构:关系模式,子模式,存储模式 2.关系代数的5个基本操作:并,差,笛卡尔积,投影,选择; 关系代数的4个组合操作:交,连接,自然连接,除法。 关系代数的7个扩充操作:改名,广义投影,赋值,外连接,外部并,半连接,聚集操作3.关系代数表达式的启发式优化算法: 尽可能早的执行选择操作; 尽可能早的执行投影操作; 避免直接做笛卡尔积 第三章关系数据库语言SQL 1.SQL的组成:数据定义语言,数据操纵语言,嵌入式,数据控制语言 2.数据定义:数据类型ok,数据库,数据表,索引的创建等ok。 3.数据查询,数据更新ok。 4,视图,嵌入式,动态SQL语句,存储过程。 第四章关系数据库的规范化设计 1.定义1:函数依赖:设有关系模式R(U),U为属性集,x、y为U的子集,函数依赖(FD)是形为X→Y的一个命题,只要r是R的当前关系,对r中任意两个元组t和s,都有t[X]=s[X]蕴涵t[Y]=s[Y],那么称FDX→Y在关系模式R(U)中成立。 定义2:如果X→Y和Y→X同时成立,则可记为X←→Y。 定义3:设F是在关系模式R上成立的函数依赖的集合,X→Y 是一个函数依赖。如果对于R 的每个满足F的关系r也满足X→Y ,那么称F逻辑蕴涵X→Y,记为F ? X→Y。 定义4:设F是函数依赖集,被F逻辑蕴涵的函数依赖全体构成的集合,称为函数依赖集F 的闭包(closure),记为F+。即F+ ={X→Y | 记为F ? X→Y }

java期末考试知识点总结

java知识点总结 应同学要求,特意写了一个知识点总结,因比较匆忙,可能归纳不是很准确,重点是面向对象的部分。 java有三个版本:JAVA SE 标准版\JAVA ME移动版\JAVA EE企业版 java常用命令:java, javac, appletview java程序文件名:.java, .class java的两类程序:applet, application; 特点,区别,这两类程序如何运行 java的主方法,主类,共有类;其特征 java的数据类型,注意与C++的不同,如字符型,引用型,初值 java与C++的不同之处,期中已总结 java标记符的命名规则 1)标识符有大小写字母、下划线、数字和$符号组成。 2)开头可以是大小写字母,下划线,和$符号(不能用数字开头) 3)标识符长度没有限制 4)标识符不能使关键字和保留字 面向对象的四大特征 抽象、封装、继承、多态 封装,类、对象,类与对象的关系,创建对象,对象实例变量 构造函数,默认构造函数,派生类的构造函数,构造函数的作用,初始化的顺序,构造方法的重载 构造函数:创建对象的同时将调用这个对象的构造函数完成对象的初始化工作。把若干个赋初值语句组合成一个方法在创建对象时一次性同时执行,这个方法就是构造函数。是与类同名的方法,创建对象的语句用new算符开辟了新建对象的内存空间之后,将调用构造函数初始化这个新建对象。 构造函数是类的特殊方法: 构造函数的方法名与类名相同。 构造函数没有返回类型。 构造函数的主要作用是完成对类对象的初始化工作。 构造函数一般不能由编程人员显式地直接调用。 在创建一个类的新对象的同时,系统会自动调用该类的构造函数为新对象初始化。 类的修饰符:public类VS 默认; abstract类; final类; 1)类的访问控制符只有一个:public,即公共的。公共类表明它可以被所有其他类访问和引用。 若一个类没有访问控制符,说明它有默认访问控制特性,规定该类智能被同一个包中的类访问引用(包访问控制)。 2)abstract类:用abstract修饰符修饰的类被称为抽象类,抽象类是没有具体对象的概念类,抽象类是它所有子类的公共属性集合,用抽象类可以充分利用这些公共属性来提高开发和维护效率。 3)final类:被final修饰符修饰限定的,说明这个类不能再有子类。所以abstract与final 不能同时修饰一个类。 域和方法的定义 1)域:定义一个类时,需要定义一组称之为“域”或“属性”的变量,保存类或对象的数据。

信息技术期末总结

工作汇报/工作计划/教学工作总结 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-ZJ-028400 信息技术期末总结 It closing summary

信息技术期末总结 绵阳中学英才学校郭林 作为新教师踏上工作岗位已经有一年了,这一年已来,我通过向优秀老教师学习、向同事交流、向学生授课等多方面逐渐走向成熟,对教师这个光荣的行业以及我所教学的学科有了更深刻的认识。信息技术作为一门重要的技术,已经被越来越多的人们所使用。在当今及未来社会,掌握信息技术是对人的一种基本要求,人们都知道不懂得信息技术的人必将被现代社会所淘汰。但是,信息技术课作为一门新课,还很年轻,需要我们教师同行及社会各界人士等不断地关心、支持、探索、交流,使我们的信息技术课教学内容不断更新,教学水平不断提高。本学期在学校领导和教师的大力支持下,取得了一定的成绩。如:论文《小组合作学习在信息技术教学中的探讨》荣获市二等奖、辅导初一学生参加《首届全国中学生漫画制作大赛》、《全国信息学奥林匹克竞赛》荣获国家二等奖等。以下就是我这个学期总结: 一、立足实际、搞好教学。 怎样让一个接触过信息技术知识的学生,在熟练地掌握最基本的知识的同时能够完成一些一定质量的信息作品,这是开始上课前首先思考的问题。 1、揭开“信息作品”的神秘面纱。

对学生来说,信息技术课经过一年的学习已经不在陌生,大多学生对电脑的构成、工作原理已不存在神秘感。但是神秘的事情却是电脑怎样才能完成一些信息作品。 首先我帮助学生揭开“信息作品”的神秘面纱。所谓“信息作品”就是利用计算机软件和自身的智慧有计划、有动机的制作出来的具有一定思想的作品。让学生沿着这样一个正确的标准去汲取新鲜的知识。这个学期我们主要学习的是Word文字处理软件和Photoshop图象处理软件,所以我就从信息作品入手来完成这两个软件的学习。第一步就是确定目标信息作品。比如说文字处理软件有许多,为什么我们选择学习Word,这就在于我们的目标信息作品是一个电子板报,它不仅仅是文字的录入,还有排版、图片的插入与编辑、手绘图形的制作等等。 2、登堂入室。 经过上述的教学,让学生从实质上了解了“信息作品”制作当中的一系列问题,基本上打破了对“信息作品”的神秘感,并且激发了学生的学习兴趣。下一步就要真正接触到怎样使用计算机来完成目标信息作品的知识了。 学习一个软件首先是了解这个软件界面框架,所以我就从软件界面框架着手开始授课。在具体的学习制作过程中,我采用了演示——模仿法进行教学。如:在学习在Word中插入图片进行美化文档的时候,我首先展示一张利用Word 制作的关于“神六”的报道板报,对于时事新闻学生兴趣高涨,都积极的讨论怎样才能把这么多漂亮图片放在Word中去,提出了这个问题,这时我就只需要在多媒体投影仪上操作一遍,学生都能很快学会这个知识点。 3、自由探寻、创新。

《数据库原理》知识点总结

《数据库原理》知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

目录未找到目录项。 一数据库基础知识(第1、2章) 一、有关概念 1.数据 2.数据库(DB) 3.数据库管理系统(DBMS) Access 桌面DBMS VFP SQL Server Oracle 客户机/服务器型DBMS MySQL DB2 4.数据库系统(DBS) 数据库(DB) 数据库管理系统(DBMS) 开发工具 应用系统 二、数据管理技术的发展 1.数据管理的三个阶段 概念模型 一、模型的三个世界 1.现实世界

2.信息世界:即根据需求分析画概念模型(即E-R图),E-R图与DBMS 无关。 3.机器世界:将E-R图转换为某一种数据模型,数据模型与DBMS相关。 注意:信息世界又称概念模型,机器世界又称数据模型 二、实体及属性 1.实体:客观存在并可相互区别的事物。 2.属性: 3.关键词(码、key):能唯一标识每个实体又不含多余属性的属性组合。 一个表的码可以有多个,但主码只能有一个。 例:借书表(学号,姓名,书号,书名,作者,定价,借期,还期) 规定:学生一次可以借多本书,同一种书只能借一本,但可以多次续借。 4.实体型:即二维表的结构 例 student(no,name,sex,age,dept) 5.实体集:即整个二维表 三、实体间的联系: 1.两实体集间实体之间的联系 1:1联系 1:n联系 m:n联系 2.同一实体集内实体之间的联系 1:1联系 1:n联系 m:n联系 四、概念模型(常用E-R图表示) 属性: 联系: 说明:① E-R图作为用户与开发人员的中间语言。 ② E-R图可以等价转换为层次、网状、关系模型。 举例: 学校有若干个系,每个系有若干班级和教研室,每个教研室有若干教员,其中有的教授 和副教授每人各带若干研究生。每个班有若干学生,每个学生选修若干课程,每门课程有若干学生选修。用E-R图画出概念模型。

数据库原理与应用期末复习总结含试题及其答案

数据库原理综合习题答案 1.1名词解释 (1) DB:即数据库(Database),是统一管理的相关数据的集合。DB能为各种用户共享,具有最小冗余度,数据间联系密切,而又有较高的数据独立性。 (2) DBMS:即数据库管理系统(Database Management System),是位于用户与操作系统之间的一层数据管理软件,为用户或应用程序提供访问DB的方法,包括DB的建立、查询、更新及各种数据控制。DBMS总是基于某种数据模型,可以分为层次型、网状型、关系型、面向对象型DBMS。 (3) DBS:即数据库系统(Database System),是实现有组织地、动态地存储大量关联数据,方便多用户访问的计算机软件、硬件和数据资源组成的系统,即采用了数据库技术的计算机系统。 (4) 1:1联系:如果实体集E1中的每个实体最多只能和实体集E2中的一个实体有联系,反之亦然,那么实体集E1对E2的联系称为“一对一联系”,记为“1:1”。 (5) 1:N联系:如果实体集E1中每个实体与实体集E2中任意个(零个或多个)实体有联系,而E2中每个实体至多和E1中的一个实体有联系,那么E1对E2的联系是“一对多联系”,记为“1:N”。 (6) M:N联系:如果实体集E1中每个实体与实体集E2中任意个(零个或多个)实体有联系,反之亦然,那么E1对E2的联系是“多对多联系”,记为“M:N”。 (7) 数据模型:模型是对现实世界的抽象。在数据库技术中,表示实体类型及实体类型间联系的模型称为“数据模型”。它可分为两种类型:概念数据模型和结构数据模型。 (6) 概念数据模型:是独门于计算机系统的模型,完全不涉及信息在系统中的表示,只是用来描述某个特定组织所关心的信息结构。 (9) 结构数据模型:是直接面向数据库的逻辑结构,是现实世界的第二层抽象。这类模型涉及到计算机系统和数据库管理系统,所以称为“结构数据模型”。结构数据模型应包含:数据结构、数据操作、数据完整性约束三部分。它主要有:层次、网状、关系三种模型。 (10) 层次模型:用树型结构表示实体类型及实体间联系的数据模型。 (11) 网状模型:用有向图结构表示实体类型及实体间联系的数据模型。 (12) 关系模型:是目前最流行的数据库模型。其主要特征是用二维表格结构表达实体集,用外鍵表示实体间联系。关系模型是由若干个关系模式组成的集合。 (13) 概念模式:是数据库中全部数据的整体逻辑结构的描述。它由若干个概念记录类型组成。概念模式不仅要描述概念记录类型,还要描述记录间的联系、操作、数据的完整性、安全性等要求。 (14) 外模式:是用户与数据库系统的接口,是用户用到的那部分数据的描述。 (15) 内模式:是数据库在物理存储方面的描述,定义所有的内部记录类型、索引和文件的组成方式,以及数据控制方面的细节。 (16) 模式/内模式映象:这个映象存在于概念级和内部级之间,用于定义概念模式和内模式间的对应性,即概念记录和内部记录间的对应性。此映象一般在内模式中描述。 (17) 外模式/模式映象:这人映象存在于外部级和概念级之间,用于定义外模式和概念模式间的对应性,即外部记录和内部记录间的对应性。此映象都是在外模式中描述。 (18) 数据独立性:在数据库技术中,数据独立性是指应用程序和数据之间相互独立,不受影响。数据独立性分成物理数据独立性和逻辑数据独立性两级。 (19) 物理数据独立性:如果数据库的内模式要进行修改,即数据库的存储设备和存储方法有所变化,那么模式/内模式映象也要进行相应的修改,使概念模式尽可能保持不变。也就是对模式的修改尽量不影响概念模式。

高一期末知识点总结

高一期末知识点总结 第一篇:宇宙与地球 专题1 地球在宇宙中的位置 A 1、天体的概念 2、最基本的天体共同的特征 3、主要天体的特征(恒星、星云、行星、卫星、彗星、流星体) 4、天体系统的层次 5、太阳系的中心天体 6、河外星云的成员 7、宇宙年 8、太阳系八大行星按距离太阳远近的名称 9、八大行星的共同特点 10、距离地球最近的恒星 11、太阳辐射的形式 12、太阳结构(外层、内层) 13、太阳大气的主要特征 14、各层主要的太阳活动的标志 15、太阳活动的主要标志 16、太阳活动的周期 17、太阳对地球的影响

18、八大行星的分类 19、地球成为有生命存有的天体的条件 专题2 地球的伙伴——月球B 20、月球的环境特点 21、月球的地形特点 22、月球公转周期、自转周期、方向 23、地球的天然卫星 24、熟悉月相的名称、各月相的出现的农历时间 25、月相循环一个周期的时间、名称 26、日食、月食出现的原因 27、日食、月食时,月球、地球、太阳的三者位置 28、日食、月食出现时的月相情况 29、潮、汐的概念 30、潮、汐出现的原因(不必展开阐述) 31、理解潮汐随月球而不是太阳的出没而出现潮起潮落的现象的原因 32、连续两次涨潮的时间间隔 33、大潮、小潮出现的月相农历时间 34、潮汐与人类的关系 专题3 人类对太空的探索A 35、太空探索的意义、太空探索的历程 专题4 地球的运动C

36、地球自转的方向、周期、一个周期所需的时间、速度 37、地轴北端的指向 38、恒星日与太阳日的区别(时间、参照物、成因) 39、南、北两极上空所观察到的地球自转的方向 40、什么是地方时、区时、北京时间 41、时区划分的方法 42、国际日期变更线两侧日期的变化 43、地球表面作水平运动的物体发生偏向的的规律(南、北半球、赤道的区别) 44、地球公转的方向、周期、速度 45、黄赤交角的度数 46、太阳直射点在赤道、北回归线、南回归线上的日期、节气 47、正午太阳高度角在纬度和季节上变化的规律 48、晨昏线的区分 49、昼夜长短在纬度和季节上变化的规律极昼、极夜现象 50、天文角度、传统上、气候上四季的划分 第二篇岩石与地貌 专题5 板块运动B 1、用于解释地壳运动的三大学说的名称 2、六大板块的名称 3、板块构造学说的主要观点

数据库实验期末总结以及心得

数据库原理实验学期总结 班级 摘要 学习数据库已经有一个学期的时间,经过一个学期的SQL Server 2000课程的学习,老师在课堂上耐心、细致的讲解,以及内容详细、层次鲜明、易于记忆和理解的教学课件,让我了解了SQL Server 2000的基础知识,学会了创建数据库以及对数据库操作的一些基本应用,现就所学到知识作出以下的学习心得总结: SQL Server 是一个关系数据库管理系统,SQL Server 2000 是Microsoft 公司推出的SQL Server 数据库管理系统的一个版本,具有使用方便,可伸缩性好与相关软件集成程度高等优点,可跨越从运行Microsoft Windows 98 的膝上型电脑到运行Microsoft WindowsXP 的大型多处理器的服务器等多种平台使用。 一、数据库实验的主要意义的目的 数据库是数据管理的最新技术,是计算机科学的重要分支。目前,对数据库各种模型的研究以及理论上的探讨都还在蓬勃开展,其应用也从一般管理扩大到计算机辅助设计,人工智能以及科技计算等领域。数据库实验有利于同学理解书中复杂抽象的理论,让同学建立直观印象,加强实践操作技能,加深对理论的理解。 二、概述本学期的实验内容和目的 本学期实验内容:1数据库的创建和管理2 数据表的创建和管理3 表中数据的操作4 视图的创建和使用5索引的创建和使用6 存储过程的创建和使用7 触发器的创建和使用目的:掌握使用SQL Server 2005 开发数据库系统的方法

三、总结 1.我的实验完成的实际情况 数据库实验报告(一) 实验内容: 1.在STUDENT数据库中创建一个名为t_course(课程信息)的表,要求如下:c_number char(10) primary key, c_name char(30), hours int ,credit real;

数据库知识点整理(全)

UNIT 1 四个基本概念 1.数据(Data):数据库中存储的基本对象 2.数据库的定义 :数据库(Database,简称DB)是长期储存在计算机内、有组织的、可共享的大量数据集合 3.数据库管理系统(简称DBMS):位于用户与操作系统之间的一层数据管理软件(系统软件)。 用途:科学地组织和存储数据;高效地获取和维护数据 主要功能: 数据定义功能; 数据操纵功能; 数据库的运行管理; 数据库的建立和维护功能(实用程序) 4.数据库系统(Database System,简称DBS):指在计算机系统中引入数据库后的系统 数据库系统的构成 数据库 数据库管理系统(及其开发工具) 应用系统 数据库管理员(DBA)和用户 数据管理技术的发展过程 人工管理阶段 文件系统阶段 数据库系统阶段 数据库系统管理数据的特点如下 (1) 数据共享性高、冗余少;(2) 数据结构化;(3) 数据独立性高;(4) 由DBMS进行统一的数据控制功能 数据模型 用来抽象、表示和处理现实世界中的数据和信息的工具。通俗地讲数据模型就是现实世界数据的模拟。 数据模型三要素。

数据结构:是所研究的对象类型的集合,它是刻画一个数据模型性质最重要的方面;数据结构是对系统静态特性的描述 数据操作:对数据库中数据允许执行的操作及有关的操作规则;对数据库中数据的操作主要有查询和更改(包括插入、修改、删除);数据操作是对系统动态特性的描述 数据的约束条件:数据及其联系应该满足的条件限制 E-R图 实体:矩形框表示 属性:椭圆形(或圆角矩形)表示 联系:菱形表示 组织层数据模型 层次模型 网状模型 关系模型(用“二维表”来表示数据之间的联系) 基本概念: 关系(Relation) :一个关系对应通常说的一张表 元组(记录): 表中的一行 属性(字段):表中的一列,给每一个属性名称即属性名 分量:元组中的一个属性值,分量为最小单位,不可分 主码(Key):表中的某个属性组,它可以唯一确定一个元组。 域(Domain):属性的取值范围。

大学数据结构期末知识点重点总结

第一章概论 1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算 2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系 可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R) 结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据 关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系 3.数据类型 a.基本数据类型 整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型 复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型 4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多) 5.四种基本存储映射方法:顺序、链接、索引、散列 6.算法的特性:通用性、有效性、确定性、有穷性 7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化 8.渐进算法分析 a.大Ο分析法:上限,表明最坏情况 b.Ω分析法:下限,表明最好情况 c.Θ分析法:当上限和下限相同时,表明平均情况 第二章线性表 1.线性结构的基本特征 a.集合中必存在唯一的一个“第一元素” b.集合中必存在唯一的一个“最后元素” c.除最后元素之外,均有唯一的后继 d.除第一元素之外,均有唯一的前驱 2.线性结构的基本特点:均匀性、有序性 3.顺序表 a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度 b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元) c. 线性表的优缺点: 优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样 缺点:空间难以扩充 d.检索:ASL=【Ο(1)】 e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】 f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】 4.链表 4.1单链表 a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】 d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n)】 e.不足:next仅指向后继,不能有效找到前驱 4.2双链表 a.增加前驱指针,弥补单链表的不足 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;) d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;) 4.3顺序表和链表的比较 4.3.1主要优点 a.顺序表的主要优点 没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利 b.链表的主要优点 无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况 4.3.2应用场合的选择 a.不宜使用顺序表的场合 经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素 b.不宜使用链表的场合 当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择 第三章栈与队列 1.栈 a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种 b.应用: 1)数制转换 while (N) { N%8入栈; N=N/8;} while (栈非空){ 出栈; 输出;} 2)括号匹配检验 不匹配情况:各类括号数量不同;嵌套关系不正确 算法: 逐一处理表达式中的每个字符ch: ch=非括号:不做任何处理 ch=左括号:入栈 ch=右括号:if (栈空) return false else { 出栈,检查匹配情况, if (不匹配) return false } 如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式: 计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式: <表达式> ::= <项><项> + | <项><项>-|<项> <项> ::= <因子><因子> * |<因子><因子>/|<因子> <因子> ::= <常数> ?<常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式 InfixExp为中缀表达式,PostfixExp为后缀表 达式 初始化操作数栈OP,运算符栈OPND; OPND.push('#'); 读取InfixExp表达式的一项 操作数:直接输出到PostfixExp中; 操作符: 当‘(’:入OPND; 当‘)’:OPND此时若空,则出错;OPND若 非空,栈中元素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若为‘(’,弹出即 可 当‘四则运算符’:循环(当栈非空且栈顶不是 ‘(’&& 当前运算符优先级>栈顶运算符优先 级),反复弹出栈顶运算符并输入到 PostfixExp中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP; while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP; 运算符:退出两个操作数, 计算,并将结果入栈} c.递归使用的场合:定义是递归的;数据结构是 递归的;解决问题的方法是递归的 2.队列 a.若线性表的插入操作在一端进行,删除操作 在另一端进行,则称此线性表为队列 b.循环队列判断队满对空: 队空:front==rear;队满: (rear+1)%n==front 第五章二叉树 1.概念 a. 一个结点的子树的个数称为度数 b.二叉树的高度定义为二叉树中层数最大的叶 结点的层数加1 c.二叉树的深度定义为二叉树中层数最大的叶 结点的层数 d.如果一棵二叉树的任何结点,或者是树叶, 或者恰有两棵非空子树,则此二叉树称作满二 叉树 e.如果一颗二叉树最多只有最下面的两层结点 度数可以小于2;最下面一层的结点都集中在 该层最左边的位置上,则称此二叉树为完全二 叉树 f.当二叉树里出现空的子树时,就增加新的、特 殊的结点——空树叶组成扩充二叉树,扩充二 叉树是满二叉树 外部路径长度E:从扩充的二叉树的根到每个 外部结点(新增的空树叶)的路径长度之和 内部路径长度I:扩充的二叉树中从根到每个内 部结点(原来二叉树结点)的路径长度之和 2.性质 a. 二叉树的第i层(根为第0层,i≥0)最多有 2^i个结点 b. 深度为k的二叉树至多有2k+1-1个结点 c. 任何一颗二叉树,度为0的结点比度为2的 结点多一个。n0 = n2 + 1 d. 满二叉树定理:非空满二叉树树叶数等于其 分支结点数加1 e. 满二叉树定理推论:一个非空二叉树的空子 树(指针)数目等于其结点数加1 f. 有n个结点(n>0)的完全二叉树的高度为 ?log2(n+1)?,深度为?log2(n+1)?? g. 对于具有n个结点的完全二叉树,结点按层 次由左到右编号,则有: 1) 如果i = 0为根结点;如果i>0,其父结点 编号是(i-1)/2 2) 当2i+1∈N,则称k是k'的父结点,k'是 的子结点 若有序对∈N,则称k' k″互为兄弟 若有一条由k到达ks的路径,则称k是 的祖先,ks是k的子孙 2.树/森林与二叉树的相互转换 a.树转换成二叉树 加线: 在树中所有兄弟结点之间加一连线 抹线: 对每个结点,除了其最左孩子外, 与其余孩子之间的连线 旋转: 45° b.二叉树转化成树 加线:若p结点是双亲结点的左孩子,则将 的右孩子,右孩子的右孩子, 所有右孩子,都与p的双亲用线连起来 线 调整:将结点按层次排列,形成树结构 c.森林转换成二叉树 将各棵树分别转换成二叉树 将每棵树的根结点用线相连 为轴心,顺时针旋转,构成二叉树型结构 d.二叉树转换成森林 抹线:将二叉树中根结点与其右孩子连线,及 沿右分支搜索到的所有右孩子间连线全部抹 掉,使之变成孤立的二叉树 还原:将孤立的二叉树还原成树 3.周游 a.先根(次序)周游 若树不空,则先访问根结点,然后依次先根周 游各棵子树 b.后根(次序)周游 若树不空,则先依次后根周游各棵子树,然后 访问根结点 c.按层次周游 若树不空,则自上而下自左至右访问树中每个 结点 4.存储结构 “左子/右兄”二叉链表表示法:结点左指针指 向孩子,右结点指向右兄弟,按树结构存储, 无孩子或无右兄弟则置空 5. “UNION/FIND算法”(等价类) 判断两个结点是否在同一个集合中,查找一个 给定结点的根结点的过程称为FIND 归并两个集合,这个归并过程常常被称为 UNION “UNION/FIND”算法用一棵树代表一个集合, 如果两个结点在同一棵树中,则认为它们在同 一个集合中;树中的每个结点(除根结点以外) 有仅且有一个父结点;结点中仅需保存父指针 信息,树本身可以存储为一个以其结点为元素 的数组 6.树的顺序存储结构 a. 带右链的先根次序表示法 在带右链的先根次序表示中,结点按先根次序 顺序存储在一片连续的存储单元中 每个结点除包括结点本身数据外,还附加两个 表示结构的信息字段,结点的形式为: info是结点的数据;rlink是右指针,指向结点 的下一个兄弟;ltag是一个左标记,当结点没 有子结点(即对应二叉树中结点没有左子结点 时),ltag为1,否则为0 b. 带双标记位的先根次序表示法 规定当结点没有下一个兄弟(即对应的二叉树 中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法 结点按层次次序顺序存储在一片连续的存储单 元中 第七章图 1.定义 a.假设图中有n个顶点,e条边: 含有e=n(n-1)/2条边的无向图称作完全图 含有e=n(n-1) 条弧的有向图称作有向完全图 若边或弧的个数e < nlogn,则称作稀疏图, 否则称作稠密图 b. 顶点的度(TD)=出度(OD)+入度(ID) 顶点的出度: 以顶点v为弧尾的弧的数目 顶点的入度: 以顶点v为弧头的弧的数目 c.连通图、连通分量 若图G中任意两个顶点之间都有路径相通,则 称此图为连通图 若无向图为非连通图,则图中各个极大连通子 图称作此图的连通分量 d.强连通图、强连通分量 对于有向图,若任意两个顶点之间都存在一条 有向路径,则称此有向图为强连通图 否则,其各个极大强连通子图称作它的强连通 分量 e.生成树、生成森林 假设一个连通图有n个顶点和e条边,其中n-1 条边和n个顶点构成一个极小连通子图,称该 极小连通子图为此连通图的生成树 对非连通图,则将由各个连通分量构成的生成 树集合称做此非连通图的生成森林 2.存储结构 a.相邻矩阵表示法 表示顶点间相邻关系的矩阵 若G是一个具有n个顶点的图,则G的相邻矩 阵是如下定义的n×n矩阵: A[i,j]=1,若(Vi, Vj)(或)是图G的边 A[i,j]=0,若(Vi, Vj)(或)不是图G的边 b.邻接表表示法 为图中每个顶点建立一个单链表,第i个单链表 中的结点表示依附于顶点Vi的边(有向图中指 以Vi为尾的弧)(建立单链表时按结点顺序建 立) 3.周游 a. 深度优先周游: 从图中某个顶点V0出发,访问此顶点,然后依 次从V0的各个未被访问的邻接点出发,深度优 先搜索遍历图中的其余顶点,直至图中所有与 V0有路径相通的顶点都被访问到为止 b. 广度优先周游: 从图中的某个顶点V0出发,并在访问此顶点之 后依次访问V0的所有未被访问过的邻接点,随 后按这些顶点被访问的先后次序依次访问它们 的邻接点,直至图中所有与V0有路径相通的顶 点都被访问到为止,若此时图中尚有顶点未被 访问,则另选图中一个未曾被访问的顶点作起 始点,重复上述过程,直至图中所有顶点都被 访问到为止 4.拓扑排序 拓扑排序的方法是:1)选择一个入度为0的顶 点且输出之 2)从图中删掉此顶点及所有的出边 3)回到第1步继续执行,直至图空或者图不空 但找不到无前驱(入度为0)的顶点为止 5.单源最短路径(Dijkstra算法) 6.每对顶点间的最短路径(Floyd算法) 7.最小生成树 a.Prim算法 b.Kruskal算法 c.两种算法比较:Prim算法适合稠密图, Kruskal算法适合稀疏图 第八章内排序 算法最大时间平均时间 直接插入排 序 Θ(n2) Θ(n2) 冒泡排序Θ(n2) Θ(n2) 直接选择排 序 Θ(n2) Θ(n2) Shell排序Θ(n3/2) Θ(n3/2) 快速排序Θ(n2) Θ(nlog n) 归并排序Θ(nlog n) Θ(nlog n) 堆排序Θ(nlog n) Θ(nlog n) 桶式排序Θ(n+m) Θ(n+m) 基数排序Θ(d·(n+r)) Θ(d·(n+r)) 最小时间S(n) 稳定性 Θ(n) Θ(1) 稳定 Θ(n) Θ(1) 稳定 Θ(n2) Θ(1) 不稳定 Θ(n3/2) Θ(1) 不稳定 Θ(nlog n) Θ(log n) 不稳定 Θ(nlog n) Θ(n) 稳定 Θ(nlog n) Θ(1) 不稳定 Θ(n+m) Θ(n+m) 稳定 Θ(d·(n+r)) Θ(n+r) 稳定 第十章检索 1.平均检索长度(ASL)是待检索记录集合中元 素规模n的函数,其定义为: ASL= Pi为检索第i个元素的概率;Ci为找到第i个元 素所需的比较次数 2.散列 a.除余法 用关键码key除以M(取散列表长度),并取余 数作为散列地址 散列函数为:hash(key) =key mod M b.解决冲突的方法 开散列方法:把发生冲突的关键码存储在散列 表主表之外(在主表外拉出单链表) 闭散列方法:把发生冲突的关键码存储在表中 另一个位置上 c.线性探查 基本思想:如果记录的基位置存储位置被占用, 就在表中下移,直到找到一个空存储位置;依 次探查下述地址单元:d0+1,d0+2,...,m-1, 0,1,...,d0-1;用于简单线性探查的探查 函数是:p(K, i) = i d.散列表的检索 1.假设给定的值为K,根据所设定的散列函数h, 计算出散列地址h(K) 2. 如果表中该地址对应的空间未被占用,则检 索失败,否则将该地址中的值与K比较 3. 若相等则检索成功;否则,按建表时设定的 处理冲突方法查找探查序列的下一个地址,如 此反复下去,直到某个地址空间未被占用(可 以插入),或者关键码比较相等(有重复记录, 不需插入)为止 e.散列表的删除:删除后在删除地点应加上墓 碑(被删除标记) f.散列表的插入:遇到墓碑不停止,知道找到真 正的空位置 第十一章索引技术 1.概念: a.主码:数据库中的每条记录的唯一标识 b.辅码:数据库中可以出现重复值的码 2.B树 a.定义:B树定义:一个m阶B树满足下列条 件: (1) 每个结点至多有m个子结点; (2) 除根和叶外 其它每个结点至少有??个子结点; (3) 根结点至少有两个子结点 例外(空树,or独根) (4) 所有的叶在同一层,可以有??- 1到m-1个 关键码 (5) 有k个子结点的非根结点恰好包含k-1个关 键码 b.查找 在根结点所包含的关键码K1,…,Kj中查找给 定的关键码值(用顺序检索(key少)/二分检索 (key多));找到:则检索成功;否则,确定要查 的关键码值是在某个Ki和Ki+1之间,于是取 pi所指结点继续查找;如果pi指向外部结点, 表示检索失败. c.插入 找到的叶是插入位置,若插入后该叶中关键码 个数

相关文档
相关文档 最新文档