文档库 最新最全的文档下载
当前位置:文档库 › 青海大学“乙苯脱氢制苯乙烯”实验报告(预习报告)

青海大学“乙苯脱氢制苯乙烯”实验报告(预习报告)

青海大学“乙苯脱氢制苯乙烯”实验报告(预习报告)
青海大学“乙苯脱氢制苯乙烯”实验报告(预习报告)

乙苯脱氢制苯乙烯实验指导书

青海大学化学工程系化工工艺实验室

2017/8/24

乙苯脱氢制苯乙烯

一、实验目的

1. 了解以乙苯为原料,氧化铁为催化剂,在固定床单管反应器中制备苯乙烯的过程。

2. 学会使用化工实验中温度控制和流量控制的仪表、仪器。

3. 学会稳定工艺操作条件的方法。 二 、实验原理

1. 本实验的主副反应:

主反应: CH 2 CH 3

CH=CH 2 + H 2 117.8kJ/mol 副反应:

C 2H 5 + C 2H 4 105 kJ/mol C 2H 5 + H 2 + C 2H 6 -31.5 kJ/mol

C 2H 5 + H 2

CH 3 + CH 4 -54.4 kJ/mol

在水蒸气存在的条件下,还可能发生下列反应:

C 2H 5 +2 H 2O

CH 3 +CO 2 + 3H 2

此外还有芳烃缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应选择性下降,而且极易使催化剂表面结焦进而活性下降。 2. 影响本反应的因素 (1) 温度的影响

乙苯脱氢反应为吸热反应,ΔH 2980>0,从平衡常数与温度的关系式

2

298ln RT H T K P P ?=???

????可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响

乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式:υ

????

?

??=∑i n P n

P K K 总

可知,Δυ>0,降低总压P 总可使n K 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高平衡转化率。较适宜的水蒸气用量为:水:乙苯=1.5:1(体积比)或8:1(摩尔比)。

(3)空速的影响

乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。

3. 催化剂

本实验采用氧化铁系催化剂。其组成为:Fe2O3-CuO-K2O-Cr2O3-CeO2。

三、实验装置及流程(见图1)

出水

图1 乙苯脱氢制苯乙烯工艺实验流程图

烧杯

四、预习与思考

1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?本实验采用的什么方法?工业上又是如何来实现的?

答:乙苯脱氢生成苯乙烯反应是吸热反应。反应温度升高,平衡向生成乙苯的方向移动。反应温度为540℃。本实验采用采用的方法是接通电源使汽化器、反应器分别逐步升温至预定温度。汽化器温度达到300度,反应器温度达400度左右开始加入已校正好流量的蒸馏水。当反应度达到500度左右时,加入已校正好流量的乙苯,继续升温至540度使之稳定。加热温度用热电偶控制。工业上乙苯脱氢时常加入适量O2,在合适的条件下,O2与生成的H2化合成H2O,相当于移走生成物H2,促进平衡向生成苯乙烯的方向移动。

2、对本反应而言是体积增大还是减小?加压有利还是减压有利?工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以减低烃的分压?

答:乙苯脱氢生成苯乙烯为体积增加的反应。从平衡常数与压力的关系可知降低总压P总可使Kn增大,从而增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。工业上,通过加水蒸气和乙苯的混合气来实现减压操作。本实验采用加水蒸气的方法来降低乙苯分压以提高平衡转化。因为水蒸气热容量大;产物易分离;产物不起反应;水蒸气还可以保护裂解炉管;水蒸气还有清焦作用。

3、在本实验中你认为有哪几种液体产物生成?哪几种气体产物生成?如何分析?

答:液体产物:苯乙烯、乙苯、苯、甲苯。

气体产物:甲烷、乙烷、乙烯、氢气、二氧化碳、(水蒸气)

4、进行反应物料衡算,需要一些什么数据?如何收集并进行处理?

答:进行反应物料衡算需要乙苯的和水的加入量,精产品水层量和烃层量,并对粗产品中苯、甲苯、乙苯和苯乙烯含量进行分析,从而计算乙苯的转化率、苯乙烯的先择性和收率

五、实验步骤与方法

1、反应条件控制

气化温度300℃,脱氢反应温度540~600℃,水:乙苯=1.5:1(体积比),相当于乙苯加料0.5mL/min,蒸馏水0.75mL/min(50mL催化剂)。

2、操作步骤

1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。

2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水,并关闭乙苯加料泵旁放料阀。

3)当汽化器温度达到300℃,反应器升至400℃左右开始校蒸馏水流量为0.75 mL/min。当反应温度升至500℃左右,校正乙苯流量0.5 mL/min,继续升温至540℃,使之稳定10min。

4)反应开始每隔15min取一次数据,每个温度至少取两个数据,粗产品从分离器中放入烧杯内。再倒入预先称好的量筒中,进行称量,扣除水的重量(用体积换算)即为烃液重量。

5)取少量烃层液样品,用气相色谱分析其组成,并计算出各组分的百分含量。

6)反应结束后,停止加乙苯。反应温度维持在500℃左右。继续通水蒸气,进行催化剂的清焦再生,约半小时后停止通水,并降温。

3、实验记录及计算

(1)原始记录(详见下发原始记录表)

表1 原始记录

乙苯密度: kg/m3

(2)粗产品分析结果(详见下发粗产品分析结果表)

表2 粗产品分析结果

(3)计算结果 乙苯的转化率: %100?=

FF RF

x 苯乙烯的选择性: %100?=RF P

S 苯乙烯的收率: %100

??=S x Y 六、结果与讨论

对以上的实验数据进行处理,分别将转化率、选择性及收率对反应温度作图,找出最适宜的反应温度区域,并对所得的实验结果进行讨论。(包括曲线图趋势的合理性、误差分析、成败原因等)。

七、符号说明

ΔH 0298—298K 下标准热焓; K P ,K n —平衡常数; n i —i 组分的摩尔分数; P 总—压力,Pa ; R —气体常数; T —温度,K ; Δυ—反应前后摩尔数变化;

x —原料的转化率%; S —目的产物的选择性%; Y —目的产物的摩尔收率; RF —原料乙苯消耗量,g ; FF —原料乙苯加入量,g ; P —生成目的产物(苯乙烯)所消耗原料乙苯的量,g 。

参考文献

[1] 刘光永编.化工开发实验技术[M](第一版).天津:天津大学出版社,1994.4

[2] 吴指南主编.基本有机化工工艺学[M](修订版).北京:化学工业出版社,1990.6. [3] 魏文德编.有机化工原料大全[M](第三卷). 北京:化学工业出版社,1990.6.

备注:1、每组学生在实验前,在教师指定日期到实验室预习。

2、每组学生实验前由组长负责上交实验分工。

3、每位学生在正式实验前上交预习实验报告。预习实验报告、实验报告格式请按下发格式要求编写。

4、请在预习报告中分别画出原始记录、粗产品分析结果两个表(格式参考下发样表)。

5、粗产品色谱结果表由指导教师实验完毕打印下发,学生个人复印色谱表,并附在实验报告书后面。

乙苯、苯乙烯装置简介和重点部位及设备通用版

安全管理编号:YTO-FS-PD858 乙苯、苯乙烯装置简介和重点部位及 设备通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

乙苯、苯乙烯装置简介和重点部位 及设备通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合成单体与其他烯烃单体发生共聚反应,可生产丁苯橡胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂及不饱和聚酯树脂;此外还用于制药,染料行业,或制取农药乳化剂及选矿剂等。 苯乙烯的主要生产方法为乙苯脱氢法和环氧丙烷共氧化法,前者约占苯乙烯生产能力的90%,乙苯催化脱氢制苯乙烯的工艺有孟山都/鲁姆斯法、巴斯夫法、Fina/Badger法、Cdf法和三菱油化/环球化学法。而共氧化法步骤多,流程长,又存在环氧丙烷的联产问题,因此国内

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计 20万吨年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis ,Aspen Plus,Simulation and optimization

乙苯制苯乙烯

南京工业大学 化学化工学院 《化工过程与工艺设计》 设计题目乙苯脱氢制苯乙烯装置工艺设计 学生姓名吴美妍班级、学号化工100704 指导教师姓名林陵 设计时间 2013年 6 月27日-2013 年7月12日 课程设计成绩:

指导教师签字 目录 第一部分设计说明书 前言·······················错误!未定义书签。第一章概述····················错误!未定义书签。 工艺路线与产品················错误!未定义书签。 ···················错误!未定义书签。 ···················错误!未定义书签。 ···················错误!未定义书签。第二章原料与产品的性质··············错误!未定义书签。 原料性质···················错误!未定义书签。 产品性质···················错误!未定义书签。第四章安全和工业卫生···············错误!未定义书签。 第五章三废排放及治理方案·············错误!未定义书签。 第七章主要设备一览表···············错误!未定义书签。 表一非定型设备一览表(一)··········错误!未定义书签。 表二非定型设备一览表(二)·········错误!未定义书签。第八章原料、动力消耗及排出一览表·········错误!未定义书签。 第二部分设计计算书 第一章物料衡算··················错误!未定义书签。 第二章主要设备物料衡算、热量衡算和设备计算····错误!未定义书签。 进料泵····················错误!未定义书签。

乙苯脱氢制苯乙烯

乙苯脱氢制苯乙烯实验指导书 一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 3、掌握乙苯脱氢制苯乙烯的转化率、选择性、收率与反应温度的关系;找出最适宜的反应温度区域。 4、了解气相色谱分析方法。 二、实验的综合知识点 完成本实验的测试和数据处理与分析需要综合应用以下知识: (1)《化工热力学》关于反应工艺参数对平衡常数的影响,工艺参数与平衡组成间的关系。 (2)《化学反应工程》关于反应转化率、收率、选择性等概念及其计算、绝热式固定床催化反应器的特点。 (3)《化工工艺学》关于加氢、脱氢反应的一般规律,乙苯脱氢制苯乙烯的基本原理、反应条件选择、工艺流程和反应器等。 (4)《催化剂工程导论》关于工业催化剂的失活原因及再生方法。 (5)《仪器分析》关于气相色谱分析的测试方法。 三、实验原理 1、本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响本反应的因素 (1)温度的影响 乙苯脱氢反应为吸热反应,?H o >0,从平衡常数与温度的关系式20ln RT H T K p p ?= ???? ????可知,

提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp=Kn= γ? ? ? ? ? ? ? ∑i n P 总可知,当?γ> 0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故需采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3、催化剂 本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 四、预习与思考 1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的,工业上又是如何来实现的? 2、对本反应而言是体积增大还是减小?加压有利还是减压有利,工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? 3、在本实验中你认为有哪几种液体产物生成?有哪几种气体产物生成?如何分析? 4、进行反应物料衡算,需要—些什么数据?如何搜集并进行处理? 五、实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程见图1。 六、实验步骤及方法 1、反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水﹕乙苯=1.5﹕1(体积比),相当于乙苯加料0.5mL/min,蒸馏水0.75 mL/min (50毫升催化剂)。 2、操作步骤 (1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 (2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 (3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) (4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏水。当反应温度升至500℃左右,加入已校正好流量的乙苯,继续升温至540℃使之稳定半小时。 (5)反应开始每隔10~20分钟取一次数据,每个温度至少取两个数据,粗产品从分离器中放入量筒内。然后用分液漏斗分去水层,称出烃层液重量。 (6)取少量烃层液样品,用气相色谱分析其组成,并计算出各组分的百分含量。 (7)反应结束后,停止加乙苯。反应温度维持在500℃左右,继续通水蒸气,进行催化剂的清焦再生,约半小时后停止通水,并降温。

乙苯、苯乙烯装置简介和重点部位及设备(正式版)

文件编号:TP-AR-L4790 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 乙苯、苯乙烯装置简介和重点部位及设备(正式 版)

乙苯、苯乙烯装置简介和重点部位 及设备(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司 同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙 烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合 成单体与其他烯烃单体发生共聚反应,可生产丁苯橡 胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂 及不饱和聚酯树脂;此外还用于制药,染料行业,或

制取农药乳化剂及选矿剂等。 苯乙烯的主要生产方法为乙苯脱氢法和环氧丙烷共氧化法,前者约占苯乙烯生产能力的90%,乙苯催化脱氢制苯乙烯的工艺有孟山都/鲁姆斯法、巴斯夫法、Fina/Badger法、Cdf法和三菱油化/环球化学法。而共氧化法步骤多,流程长,又存在环氧丙烷的联产问题,因此国内外生产和研究重点多放在乙苯脱氢法上。 近年来许多公司研究用甲苯代替苯制苯乙烯的方法,如孟山都公司和三菱油化公司的甲苯—甲醇、甲苯—甲烷直接合成苯乙烯方法,是一种全新的工艺路线。在1992年第10届国际催化剂会议的大会专题报告中,该工艺开发研究列为当代4大烃化技术之一,值得引起苯乙烯技术研究者的重视。 目前,我国苯乙烯生产方法多采用乙苯催化脱氢

乙苯脱氢制取苯乙烯

一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 二、实验原理 1、本实验的主副反应 主反应:氢气 ?117.8kJ/mol 苯乙烯 乙苯+ 副反应:乙烯 苯 ?105.0kJ/mol 乙苯+ ? +-31.5kJ/mol 乙苯+ 氢气 苯 乙烷 乙苯+ +-54.4kJ/mol ? 乙烯 甲苯 氢气 在水蒸汽存在的条件下,还可能发生下列反应: + ? 2 + + 氢气 乙苯3 二氧化碳 水 甲苯 此外,还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响反应的因素 (1)温度的影响 乙苯脱氢为吸热反应,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯的选择性下降,能耗增加,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为540~600oC。 (2)压力的影响 乙苯脱氢为体积增大的反应,降低总压可使平衡常数增大,从而增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸汽的目的是降低乙苯的分压,以提高平衡转化率。较适宜的水蒸汽用量为:水/乙苯=1.5/1(体积比)。 (3)空速的影响

乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为止。 3、本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 三、实验装置及流程 实验装置及流程如图1所示。 图1乙苯脱氢制苯乙烯工艺实验流程图 1-乙苯流量计;2、4-加料泵;3-水计量管;5-混合器;6-汽化器;7-反应器;8-电热夹套;9、11-冷凝器;10-分离器;12-热电偶 四、反应条件控制 汽化温度300oC,脱氢反应温度540~600oC,水:乙苯=1.5:1(体积比),相当于乙苯加料0.5ml/min,蒸馏水0.75ml/min(50ml催化剂)。

乙苯脱氢制苯乙烯

实验报告 课程名称: 化工专业实验 指导老师: 成绩:__________________ 实验名称: 乙苯脱氢制苯乙烯 实验类型: 同组学生姓名: 一.实验目的 1.了解以乙苯为原料,氧化铁为催化剂,在固定床单管反应器种制备苯乙烯的过程。 2.学会稳定工艺操作条件的方法。 3.掌握乙苯脱氢制苯乙烯的转化率,选择性,收率及反应温度的关系,找出最适宜的反应温度区域。 4.学会使用温度控制和流量控制的一般仪表,仪器。 5.了解气相色谱分析及使用方法。 二.实验原理 1.本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2.影响本反应的因素 (1)温度的影响

乙苯脱氢反应为吸热反应,?H 0>0,从平衡常数与温度的关系式 可知,提高温度可增大平衡 常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp =Kn=γ ???? ? ??∑i n P 总可知,当?γ>0时,降低总压P 总可使Kn 增大,从而增加了反应的平衡转化率,故降低压力(高温反应无法采用负压操作,可以通入惰性组分使分压下降)有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3.催化剂 本实验采用GS-08催化剂,以Fe ,K 为主要活性组分,添加少量的IA ,IIA ,IB 族以稀土氧化物为助剂。 三.实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程,用Microsoft Visio 软件绘制见下图: 1 34 2 水

实验一 乙苯脱氢制苯乙烯

4.2 实验一 乙苯脱氢制苯乙烯 一 实验目的 (1)了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 (2)学会稳定工艺操作条件的方法。 二 实验原理 1.本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 (1)影响本反应的因素 1)温度的影响 乙苯脱氢反应为吸热反应,00 >?H ,从平衡常数与温度的关系式 20ln RT H T K p p ?=???? ????可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式n p K K =γ ???? ? ??∑i n P 总 可知,当γ?>时,降低总压总P 可使n K 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高平衡转化率。较适

宜的水蒸气用量为:水∶乙苯=1.5∶1(体积比)或8∶1(摩尔比)。 3)空速的影响 乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 (2)催化剂 本实验采用氧化铁系催化剂其组成为:Fe2O3—CuO—K2O3—CeO2。 三预习与思考 (1)乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的?工业上又是如何实现的? (2)对本反应而言是体积增大还是减小?加压有利还是减压有利?工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? (3)在本实验中你认为有哪几种液体产物生成?哪几种气体产物生成?如何分析? 四实验装置及流程 见图4.2-1。 五实验步骤及方法 (1)反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水∶乙苯=1.5∶1(体积比),相当于乙苯加料0.5ml/min,蒸馏水0.75mL/min(50毫升催化剂) (2)操作步骤 1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) 图4.2-1 乙苯脱氢制苯乙烯工艺实验流程图 1—乙苯计量管;2,4—加料泵;3—水计量管;5—混合器;6—汽化器;7—反应器; 8—电热夹套;9,11—冷凝器;10—分离器;12—热电偶 4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏

乙苯-苯乙烯工艺原理

第一章 乙苯装置工艺流程及生产原理 第一节 催化干气预处理部分 生产原理: 乙苯烃化催化剂最怕碱性物质,会造成催化剂失活。而催化干气多采用乙醇胺等碱性物质脱硫技术脱除硫化氢,因此为了防止碱性物质进入烃化反应系统,催化干气首先要经过水洗。干气中的丙烯会与苯生成丙苯,同时会增加甲苯的生成量,造成苯耗上升增加产品成本,所以需要通过吸收的办法尽可能降低干气中丙烯的含量。 工艺流程叙述: 催化干气进装置后进入催化干气水洗罐(D-101)。该罐具有两个作用,其一是将催化干气进装置时携带的液体除去,另一作用是用水将携带的MEA除去。罐内设填料一段,罐底设水洗循环泵(P-101A/B),水洗用水循环使用。 从催化干气水洗罐(D-101)顶部出来的气体依次进入催化干气换热器(E-101)、催化干气过冷器(E-102)与丙烯吸收塔(C-101)塔顶出来的低温催化干气、冷冻水换热,温度降至15℃,从底部进入丙烯吸收塔(C-101)。吸收剂从丙烯吸收塔顶部进入与催化干气逆向接触,将催化干气中的丙烯绝大部分除去,从丙烯吸收塔顶部出来的催化干气进入催化干气换热器(E-101)与进塔的催化干气换热回收部分冷量

后去反应部分。吸收了丙烯的吸收剂从塔底出来进入贫液-富液换热器(E- 103)与贫液换热后进入解吸塔(C-102)。 解吸塔进料进入解吸塔后,塔顶汽相进入解吸塔顶蒸汽发生器(E-106)冷凝冷却,然后进入解吸塔回流罐(D-102),冷凝下来的液体用解吸塔回流泵(P-103A/B)送至解吸塔顶部,未冷凝的气体从解吸塔回流罐顶部出来后依次进入解吸塔顶冷却器(E-107)解吸塔顶气过冷器(E-108)进一步冷凝冷却,然后进入解吸塔顶分液罐(D-103)进行气液分离,冷凝下来的液体用解吸塔顶凝液泵(P-104A/B)送入解吸塔回流罐(D-102),未冷凝的气体出装置。解吸塔塔底物料用吸收剂循环泵(P- 102A/B/C)加压后依次通过贫液-富液换热器(E-103)、贫液过冷器(E-104)冷却,返回丙烯吸收塔塔顶循环使用。解吸塔蒸汽发生器(E- 106)产0.21Mpa蒸汽,解吸塔底重沸器(E-109)热源为热载体。 第二节 烃化及反烃化部分 生产原理: 生成乙苯: C2H4+C6H6=C6H5C2H5

【完整版】10万吨年乙苯脱氢制苯乙烯装置工艺设计与实现可行性方案

10万吨/年乙苯脱氢制苯乙烯装置工艺设计方案 前言 本设计的内容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。

本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。 所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,内部结构简单,选价便宜。在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。 工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动. 本设计装置主要由脱氢反应和精馏两个工序系统所组成。原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。 此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。 苯乙烯设计任务书 一、设计题目:年产10万吨苯乙烯的生产工艺设计

最新乙苯脱氢制苯乙烯知识讲解

乙苯脱氢制苯乙烯 化工11-1 朱伦伦 工艺原理 以乙苯为原料,按1:3~1:8水比加入过热水蒸汽,在轴径向反应器内,于高温、负压条件下,通过催化剂床层进行乙苯脱氢反应,生成苯乙烯主产品;副反应生成苯、甲苯、甲烷、乙烷、丙烷、H2、CO和CO2。 主反应:Array 这是一个强吸热可逆增分子反应。 副反应是热裂解、氢化裂解和蒸汽裂解反应: C6H5CH2CH3→C6H6+C2H4 C6H5CH2CH3+H2→C6H5CH3+CH4 C6H5CH2CH3+H2→C6H6+C2H6 C+2H2O→2H2+CO2 CH4+H2O→3H2+CO C2H4+2H2O→2CO+4H2 水蒸汽变换反应:CO+H2O→H2+CO2 在水蒸汽浓度很高时,生成苯、甲苯的反应式可能被下列反应所代替: C6H5CH2CH3+2H2O→C6H5CH3+CO2+3H2 C6H5CH2CH3+2H2O→C6H6+CH4+CO2+2H2 在乙苯脱氢反应中,原料乙苯中的化学杂质也发生反应,生成物还会进一步发生反应,为此,最终生成物中还含有另一些副产物,如二甲苯、异丙苯、α-甲基苯乙烯、焦油等。 影响化学反应的因素主要有:反应温度、反应压力和水蒸汽/乙苯比(简称水比)。此外,该反应还受到反应物通过催化剂床层的液体体积时空速度(LHSV)、催化剂性能、原料乙苯中含杂质情况等影响。 反应温度:乙苯脱氢生成苯乙烯的反应为吸热反应,故乙苯转化率随着反应温度的升高而增加。当温度升高后,不但生成苯乙烯的正反应增加,而且消耗苯乙烯的逆反应以更高的速度增加。另外,当反应温度提高后,虽然乙苯转化率提高,但副反应(指吸热的副反应)也将加剧,故生成苯乙烯的选择性将降低,因而反应温度不宜过高。从降低能耗和延长催化剂寿命出发,希望在保证苯乙烯单程收率的前提下,尽量采用较低的反应温度。 反应压力:对于给定的反应温度和水比,乙苯的转化率随着反应压力的降低而显著增加。在相同的乙苯液体空速和水比下,随着反应压力降低,可相应降低反应温度,而苯乙烯的单程收率维持不变,苯乙烯选择性提高。这一特性是由乙苯脱氢生成苯乙烯系增分子反应所决定的。 此外,苯乙烯是容易聚合的物质。反应压力高,将有利于苯乙烯自聚,生成对装置正常运转十

乙苯、苯乙烯装置简介和重点部位及设备

安全管理编号:LX-FS-A17497 乙苯、苯乙烯装置简介和重点部位 及设备 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

乙苯、苯乙烯装置简介和重点部位 及设备 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合成单体与其他烯烃单体发生共聚反应,可生产丁苯橡胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂及不饱和聚酯树脂;此外还用于制药,染料行业,

乙苯苯乙烯安全生产要点 - 制度大全

乙苯苯乙烯安全生产要点-制度大全 乙苯苯乙烯安全生产要点之相关制度和职责,1工艺简述包括用苯烷基化制取乙苯和用乙苯脱氢法生产苯乙烯。工艺过程由烷基化、洗涤、乙苯精馏、脱氢、苯乙烯精馏等工序组成。简要工艺过程是将原料苯干燥使之含水小于10ppm,配入助催化剂... 1工艺简述 包括用苯烷基化制取乙苯和用乙苯脱氢法生产苯乙烯。工艺过程由烷基化、洗涤、乙苯精馏、脱氢、苯乙烯精馏等工序组成。 简要工艺过程是将原料苯干燥使之含水小于10ppm,配入助催化剂无水氯化氢,同乙烯和三氯化铝催化剂络合物进入烷基化/烷基转移反应器,在温度180℃、压力0.91MPa下进行烷基化/烷基转移反应。 反应的物料经闪蒸回收氯化氢,再进入串联的三级洗涤系统,除去三氯化铝和氯化氢。洗涤后的烷基化液送入精馏系统,烷基液被分离成苯、乙苯、多乙苯和残油。苯和多乙苯返回烷基化/烷基转移反应器,乙苯产品送贮罐。 将乙苯和初级蒸汽过热后与主蒸汽混合(蒸气:乙苯=1.3:1)进入第一级反应器。在入口温度628℃、出口压力0.0486MPa和催化剂作用下进行脱氢反应,然后于入口温度631℃、出口压力0.04MPa下在第二级反应器中继续脱氢生成苯乙烯,脱氢混合物经废热锅炉、过热蒸汽降温器、空调器降温、冷凝。分离器出来的脱氢液进精馏系统,分离苯乙烯、乙苯、苯、甲苯得到苯乙烯产品。乙苯、苯返回使用。付产品甲苯送罐区。 本装置生产过程的物料乙苯、苯、苯乙烯、多乙苯、氢气等都具有易燃、易爆、有毒、有害的特性,有些具有强腐蚀性,如氢化氢,催化剂络合物等。 2重点部位 2.1烷基化反应系统它是乙苯生产的核心部位。反应时温度、压力较高,反应条件较苛刻,物料易燃、易爆且有强腐蚀性。反应器需使用性能良好的防腐隔热衬砖为衬里。其它设备和阀门、管线均采用特殊防腐材料,但仍存在着跑、冒、滴、漏的危险。该类装置曾发生反应器被腐蚀而泄漏的事故。另外,一旦水进入反应器会使催化剂络合物中毒,并造成设备、管线堵塞。某厂苯乙烯装置因该反应器出料口堵塞而被迫停车。 2.2催化剂络合物配制系统该系统用苯、多乙苯、三氯化铝、无水氯化氢配制催化剂络合物供烷基化/烷基转移反应使用。物料具强腐蚀性;系统若进水会使催化剂失活并分解产生沉淀堵塞管线,威胁整个烷基化反应。某厂苯乙烯装置曾因配制系统反应器出口堵塞被迫停车清理。

乙苯、苯乙烯装置说明及危险因素、防范措施.docx

乙苯、苯乙烯装置说明及危险因素、防范措施 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合成单体与其他烯烃单体发生共聚反应,可生产丁苯橡胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂及不饱和聚酯树脂;此外还用于制药,染料行业,或制取农药乳化剂及选矿剂等。 苯乙烯的主要生产方法为乙苯脱氢法和环氧丙烷共氧化法,前者约占苯乙烯生产能力的90%,乙苯催化脱氢制苯乙烯的工艺有孟山都/鲁姆斯法、巴斯夫法、Fina/Badger法、Cdf法和三菱油化/环球化学法。而共氧化法步骤多,流程长,又存在环氧丙烷的联产问题,因此国内外生产和研究重点多放在乙苯脱氢法上。 近年来许多公司研究用甲苯代替苯制苯乙烯的方法,如孟山都公司和三菱油化公司的甲苯—甲醇、甲苯—甲烷直接合成苯乙烯方法,是一种全新的工艺路线。在1992年第10届国际催化剂会议的大会专题报告中,该工艺开发研究列为当代4大烃化技术之一,值得引起苯乙烯技术研究者的重视。 目前,我国苯乙烯生产方法多采用乙苯催化脱氢法。60年代和70年代建设的小型装置能耗和物耗较高,缺少市场竞争能力,随着国外技术的引进,大部分已停产,剩下的几套经多次技术改造,能耗和物耗有所下降,同时,利用地区差价和本企业下游产品的需求仍维持生产。 二、重点部位及设备

苯乙烯生产装置中反应岗位是在高温、高压、易燃、易爆、物料有毒有害的环境下生产的,精馏岗位也存在类似的情况。因此在苯乙烯生产过程中要遵守安全技术规定。 1.炉区 (1)蒸汽过热炉点火前应打开风门通风,并对炉膛和操作环境做动火分析。有关联锁均应挂上,分析燃料气中氧含量小于2%,并严禁带液(冬季要保温并进行排凝,以防因带液引起爆燃损坏炉体)。停车期间燃料系统应加切断盲板,防止燃料漏人炉膛和周围环境引起事故。 (2)开停工时严格按温度曲线控制升温、恒温和降温。正常生产时,应严格控制各工艺参数在工艺指标范围内。(3)当蒸汽过热炉点火后(包括正常生产)应检查炉内燃烧状况是否正常。 (4)在蒸汽过热炉停炉检修时,必须对燃料、原料、蒸汽(包括灭火蒸汽)等加堵盲板,以防窜人检修场所引起事故。 (5)对急冷锅炉、汽包检查有无外漏,排污是否正常以保证炉水质量。同时要经常检查、校对汽包液面计是否准确,以防因假液面造成停车或事故。 (6)炉区周围严禁堆放可燃物,检修结束后要及时拆除脚手架。当装置烃类大量泄测时,炉区有可能成为其火源,应开启蒸汽过热炉水幕等进行保护,同时停炉。 (7)如发生炉管破裂,应立即停炉熄火(但炉管蒸汽切记不能停还需适当加大)开灭火蒸汽(应进行排凝,否则凝液将损坏炉管)整个装置各系统均应采取相应措施。 2.压缩区 该区内设有消防水设施,可燃气体自动检测、报警设施。 (1)消防水设施:每个压缩机分别设有两股消防水,同时供应压缩机上部消防喷淋,形成水幕。

乙苯-苯乙烯精馏塔设计

毕业设计 题目年产10万吨苯乙烯工艺设计 姓名 所在系部化学工程 专业班级有机化工 指导老师 前言 本设计的容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。 本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。 所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,部结构简单,选价便宜。在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。 工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动. 本设计装置主要由脱氢反应和精馏两个工序系统所组成。原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。 此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。 苯乙烯设计任务书 一、设计题目:年产10万吨苯乙烯的生产工艺设计 二、设计原始条件: 1、 2、操作条件: 年工作日:300天,每天24小时,乙苯总转化率为55% 乙苯损失量为纯乙苯投料量为4.66%

乙苯催化脱氢合成苯乙烯的工艺流程

二、乙苯催化脱氢合成苯乙烯的工艺流程 脱氢反应: 强吸热反应; 反应需要在高温下进行; 反应需要在高温条件下向反应系统供给大量的热量。 由于供热方式不同,采用的反应器型式也不同。 工业上采用的反应器型式有两种: 一种是多管等温型反应器,是以烟道气为热载体,反应器放在加热炉内,由高温烟道气,将反应所需要的热量通过管壁传递给催化剂床层。 另一种是绝热型反应器,所需要的热源是由过热水蒸气直接带入反应系统。 采用这两种不同型式反应器的工艺流程,主要差别: 脱氢部分的水蒸气用量不同; 热量的供给和回收利用方式不同。 (一)多管等温反应器脱氢部分的工艺流程 反应器构成: 是由许多耐高温的镍铬不锈钢钢管组成; 或者内衬以铜锰合金的耐热钢管组成; 管径为100~185mm; 管长为3m; 管内装填催化剂; 管外用烟道气加热(见图4-9,P182)。

多管等温反应器脱氢部分的工艺流程图见图4-10(P182)所示。 反应条件及流程: 1.原料乙苯蒸气和一定量的水蒸气混合; 2.预热温度(反应进口):540℃; 3.反应温度(反应出口):580~620℃; 4.反应产物冷却冷凝: 液体分去水后送到粗苯乙烯贮槽; 不凝气体含有90%左右的H 2,其余为CO 2和少量C 1及C 2 可作为燃料气,也可以用作氢源。 5.水蒸气与乙苯的用量比(摩尔比)为6~9:1; (等温反应器脱氢,水蒸气仅作为稀释剂用)。 6.讨论: (1)等温反应器:要使反应器达到等温,沿反应器的反应管传热速率的改变,必须与反应所需要吸收热量的递减速率的改变同步。 (2)一般情况下,出口温度可能比进口温度高出几十度(传递给催化剂床层的热量,大于反应时需要吸收的热量。) (3)催化剂床层的最佳温度分布以保持等温为好。 尾气放空烟道气排 冷却水 阻聚剂循环烟道气配比蒸汽 水燃料雾化 蒸 汽粗笨乙烯至精馏工段 12345 671图4-10 多管等温反应器乙苯脱氢工艺流程 1-脱氢反应器;2-第二预热器;3-第一预热器;4-热交换器;5-冷凝器; 6-粗乙苯贮槽;7-烟囱;8-加热炉

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业设计

毕业设计 20万吨/年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at home and abroad, styrene reaction conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual handling capacity of 200,000 tons of ethylbenzene production targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis has important practical significance. Keywords:Ethylbenzene,Styrene,dehydrogenation,Aspen Plus,Simulation and optimization

相关文档
相关文档 最新文档