文档库 最新最全的文档下载
当前位置:文档库 › 立体几何专题训练附答案

立体几何专题训练附答案

立体几何专题训练附答案
立体几何专题训练附答案

立体几何

G5 空间中的垂直关系

18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.

(1)证明:CF⊥平面ADF;

(2)求二面角D- AF- E的余弦值.

19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.

(1)证明:O1O⊥底面ABCD;

(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.

19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD.

因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD.

由题设知,O1O∥C1C.故O1O⊥底面ABCD.

(2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1.

由(1)知,O1O⊥底面ABCD,所以O1O C1.

又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,

因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1.

进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB=2.因为∠CBA=60°,所以OB=3,OC=1,OB1=7.

在Rt△OO1B1中,易知O1H=OO1·O1B1

OB1

=2

3

7

.而O1C1=1,于是C1H=O1C21+O1H2=1+

12

7

19

7

.

方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.

如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0),

B 1(3,0,2),

C 1(0,1,2).

易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.

设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n2·OB

→1=0,n2·OC →1=0,即???3x +2z =0,y +2z =0.

取z =-3,则x =2,y =23,所以n 2=(2,23,-3).

设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??

????n1·n2|n1|·|n2|=2319=25719

. 故二面角C 1-OB 1-D 的余弦值为

25719

. 19.、、[2014·江西卷] 如图1-6,四棱锥

P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .

(1)求证:AB ⊥PD .

(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P - ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.

19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD . 又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .

(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .

在Rt △BPC 中,PG =

2 33,GC =2 63,BG =6

3

.

此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B ?

??

??6

3,-63,0,

C ?

????63,263,0,D ? ????0,263,0,P ? ????0,0,63,故PC →=? ????63,26

3,-63,BC →=(0,6,0),CD =

? ????-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),

则由n 1⊥PC →,n 1⊥BC →,得?????63x +2 63y -63=0,6y =0,

解得x =1,y =0,则n 1=(1,0,1).

同理可求出平面DPC 的一个法向量为n 2=? ??

??0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=

|n1·n2|

|n1||n2|

12·

14

+1=

105

. 19.、[2014·辽宁卷] 如图1-5所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.

(1)求证:EF ⊥BC ;

(2)求二面角E -BF -C 的正弦值.

19.解:(1)证明:方法一,过点E 作EO ⊥BC ,垂足为O ,连接OF .由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =π2

,即FO ⊥BC .又EO ⊥BC ,EO ∩FO =O ,所以BC ⊥平面EFO .又EF ?平面EFO ,所以EF ⊥BC .

方法二,由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线,并将其作为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线,并将其作为z 轴,建立如图所示的空间直角坐标系,易得

B (0,0,0),A (0,-1,3),D (3,-1,0),

C (0,2,0),因而E (0,12,32),F (32,12

,0),所以EF

=(32,0,-32

),BC →=(0,2,0),因此EF →·BC →

=0,

从而EF →⊥BC →

,所以EF ⊥BC .

(2)方法一,在图1中,过点O 作OG ⊥BF ,垂足为G ,连接EG .因为平面ABC ⊥平面BDC ,所以EO ⊥面BDC ,又OG ⊥BF ,所以由三垂线定理知EG ⊥BF ,

因此∠EGO 为二面角E -BF -C 的平面角.

在△EOC 中,EO =12EC =12BC ·cos 30°=32

. 由△BGO ∽△BFC 知,OG =

BO BC ·FC =34,因此tan ∠EGO =EO OG =2,从而得sin ∠EGO =255

,即二面角E -BF -C 的正弦值为2 5

5

.

方法二,在图2中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量n 2=(x ,y ,z ),

又BF →

=(

32,12,0),BE →

=(0,12,32), 所以?????n2·BF →=0,n2·BE →=0,

得其中一个n 2=(1,-3,1).

设二面角E -BF -C 的大小为θ,且由题知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=??????n1·n2|n1||n2|=15

, 因此sin θ=

25

=2 55,即所求二面角正弦值为2 5

5.

19.G 5、G 11[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A 111中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .

(1)证明:AC =AB 1;

(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1 -C 1的余弦值.

19.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.

又AB ⊥B 1C ,所以B 1C ⊥平面ABO . 由于AO ?平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.

(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .

又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.

以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O - xyz .

因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ? ??

??

0,0,

33,B (1,0,0),B 1?

????0,

33,0,C ? ??

??0,-33,0. AB1→=?

????0,33,-33, A1B1→

=AB =?

????1,0,-33,

B1C →

1=BC =? ??

??-1,-33,0.

设n =(x ,y ,z )是平面AA 1B 1的法向量,则

???n·AB1=0,n ·A1B1→=0,

即?

???

?33y -33z =0,x -33

z =0.

所以可取n =(1,3,3). 设m 是平面A 1B 1C 1的法向量,

则???

??m ·A1B1

→=0,m ·B1C1

→=0,

同理可取m =(1,-3,3).

则cos 〈n ,m 〉=n·m |n||m|=1

7

.

所以结合图形知二面角A -A 1B 1 - C 1的余弦值为17

.

18.,,,[2014·四川卷] 三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .

(1)证明:P 是线段BC 的中点;

(2)求二面角A - NP - M

18.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,

所以AO ⊥BD ,OC ⊥BD .

因为AO ,OC ?平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .

又因为AC ?平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .

又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .

因为NH ,NP ?平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ?平面NHP ,所以BD ⊥HP .

又OC ⊥BD ,HP ?平面BCD ,OC ?平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.

(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ

.

由(1)知,NP ∥AC ,所以NQ ⊥NP .

因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.

由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC =3. 由俯视图可知,AO ⊥平面BCD .

因为OC ?平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC =6. 作BR ⊥AC 于R

因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =

AB2-? ??

??AC 22

=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,

所以NQ ∥BR .

又因为N 为AB 的中点,所以Q 为AR 的中点,

所以NQ =BR 2

104. 同理,可得MQ =10

4

.

故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,

cos ∠MNQ =MN 2NQ =BD 4NQ =10

5

.

故二面角A - NP - M 的余弦值是

105

. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ?平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.

如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .

则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,

所以M ? ????-1

2

,0,32,N ? ????12,0,32,P (1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =?

?

???0,32,-32.

设平面ABC 的一个法向量n 1=(x 1,y 1,z 1), 由???

??n1⊥AB,n1⊥BC,

得???

??n1·AB=0,

n1·BC=0,

??

?(x1,y1,z1)·(1,0,-3)=0,

(x1,y1,z1)·(-1,3,0)=0,

从而???x1-3z1=0,-x1+3y1=0.

取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,

?

????n2⊥MN,n2⊥NP,得?????n2·MN=0,n2·NP=0, 即?????(x2,y2,z2)·(1,0,0)=0,(x2,y2,z2)·? ????0,32,-32=0, 从而?????x2=0,32

y2-3

2z2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). 设二面角A - NP - M 的大小为θ,则cos θ=??????n1·n2|n1|·|n2|=??????(3,1,1)·(0,1,1)5×2=105

. 故二面角A -NP -M 的余弦值是

10

5

. 17.、[2014·天津卷] 如图1-4所示,在四棱锥P - ABCD 中,PA ⊥底面ABCD, AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.

(1)证明:BE ⊥DC ;

(2)求直线BE 与平面PBD 所成角的正弦值;

(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F - AB - P 的余弦值.

图1-4

17.解:方法一:依题意,以点A 为原点建立空间直角坐标系(如图所示),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).C 由.

(1)证明:向量BE =(0,1,1),DC 故BE ·DC =0, 所以BE ⊥DC .

(2)向量BD =(-1,2,0),PB =(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量,

则?????n·BD=0,n·PB=0,即?

????-x +2y =0,x -2z =0. 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有

cos 〈n ,BE 〉=

n·BE |n|·|BE|=26×2=3

3

所以直线BE 与平面PBD 所成角的正弦值为3

3

.

(3) 向量BC =(1,2,0),CP =(-2,-2,2),AC =(2,2,0),AB =(1,0,0).由点F 在棱PC 上,

设CF =λCP →

,0≤λ≤1.

故BF =BC +CF =BC +λCP →

=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF ·AC =0,因此2(1-2λ)+2(2

-2λ)=0,解得λ=34,即BF =? ????-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则?

????n1·AB=0,n1·BF=0,即

????

?x =0,

-12x +12y +3

2

z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则

cos 〈,〉=

n1·n2|n1|·|n2|=-310×1

=-310

10.

易知二面角F - AB - P 是锐角,所以其余弦值为

310

10

. 方法二:(1)证明:如图所示,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥

DC ,且EM =1

2

DC .又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .

因为PA ⊥底面ABCD ,故PA ⊥CD ,而CD ⊥DA ,从而CD ⊥平面PAD .因为AM ?平面PAD ,所以CD ⊥AM .又BE ∥AM ,所以BE ⊥CD .

(2)连接BM ,由(1)有CD ⊥平面PAD PD ⊥EM .又因为AD =AP ,M 为PD 的中点,所以PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以直线BE 在平面PBD 内的

射影为直线BM .而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.

依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE =2.故在直角三角形BEM 中,tan ∠EBM =

EM BE =AB BE =12

,因此sin ∠EBM =33, 所以直线BE 与平面PBD 所成角的正弦值为

3

3

. (3)如图所示,在△PAC 中,过点F 作FH ∥PA 交AC 于点H .因为PA ⊥底面ABCD ,所以FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH .在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥PA ,AB ⊥AD ,得AB ⊥平面PAD ,故AB ⊥AG ,所以∠PAG 为二面角F - AB - P 的平面角.

在△PAG 中,PA =2,PG =14PD =22,∠APG =45°.由余弦定理可得AG =102,cos ∠PAG =310

10,所以

二面角F - AB - P 的余弦值为310

10

.

20.、[2014·浙江卷] 如图1-5ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC =2.

(1)证明:DE ⊥平面ACD ;

(2)求二面角B - AD - E 的大小.

20.解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,

得AB 2=AC 2+BC 2

,即AC ⊥BC .

又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . (2)方法一:

过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG .由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.

在直角梯形BCDE 中,由CD 2=BC 2+BD 2

, 得BD ⊥BC .

在Rt △ACD 中,由DC =2,AC =2,得AD =6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.

在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =

2 33,AF =23AD .从而GF =23ED =2

3. 在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =2

3

.

在△BFG 中,cos ∠BFG =GF2+BF2-BG22BF·GF =3

2

.

所以,∠BFG =π6,即二面角B - AD - E 的大小是π

6

.

方法二:

以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D - xyz ,如图所示.

由题意知各点坐标如下:

D (0,0,0),

E (1,0,0),C (0,2,0), A (0,2,2),B (1,1,0).

设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2).

可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →

=(1,1,0).

由???m·AD=0,m ·AE →

=0,即???-2y1-2z1=0,x1-2y1-2z1=0,

可取m =(0,1,-2).

由?????n ·AD →=0,n ·DB →=0,

即???-2y2-2z2=0,x2+y2=0,

可取n =(1,-1,2). 于是|cos 〈m ,n 〉|=

|m·n||m|·|n|=33×2=3

2

.

由题意可知,所求二面角是锐角, 故二面角B - AD - E 的大小是π

6

.

19.,[2014·重庆卷]如图1-3所示,四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,

AB =2,∠BAD =π3,M 为BC 上一点,且BM =1

2

,MP ⊥AP .

(1)求PO 的长;

(2)求二面角A -PM -C 的正弦值.

19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →

的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .

因为∠BAD =π3

所以OA =AB ·cos π6=3,OB =AB ·sin π6

=1,

所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →

=(-3,-1,0).

由BM =12

,BC =2知,BM →=14BC →=? ?

?

??

-34,-14,0, 从而OM →=OB →+BM →=?

?

?

??

34,34,0, 即M ? ??

??-

34,34,0. 设P (0,0,a ),a >0,则AP →

=(-3,0,a ),MP →=?

????34

,-34,a .因为MP ⊥AP ,所以MP →·AP →

=0,即-

34+a 2=0,所以a =32或a =-32(舍去),即PO =32

. (2)由(1)知,AP →=? ????-3,0,32,MP →=? ????34,-34,32,CP →=?

????3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).

由n 1·AP →=0, n 1·MP →

=0,得

?????-3x1+3

2z1=0,

34x1-34y1+3

2

z1=0,故可取n 1=? ????

1,533,2.

由n 2·MP →=0,n 2·CP →

=0,得

?

????34x2-34y2+3

2

z2=0,3x2+3

2

z2=0,

故可取n 2=(1,-3,-2).

从而法向量n 1,n 2的夹角的余弦值为

cos 〈n 1,n 2〉=n1·n2|n1|·|n2|=-15

5

故所求二面角A -PM -C 的正弦值为10

5

.

G3 平面的基本性质、空间两条直线

4.[2014·辽宁卷] 已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ?α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α

4.B [解析] B [解析] 由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ?α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ?α,故C 错误.若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与a 相交,故D 错误.

17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.

(1)求证:AB ⊥CD ;

(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

17.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ?平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .

又CD ?平面BCD ,∴AB ⊥CD .

(2)过点B 在平面BCD 内作BE ⊥BD .

由(1)知AB ⊥平面BCD ,BE ?平面BCD ,,AB ⊥BD .

以B 为坐标原点,分别以BE →,BD →,BA →

的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).

依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ?

??

??0,12,12.

则BC →=(1,1,0),BM →=?

??

??0,12,12,AD →

=(0,1,-1).

设平面MBC 的法向量n =(x 0,y 0,z 0),

则?????n ·BC →

=0,n ·BM →=0,即?????x0+y0=0,12

y0+1

2z0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,

则sin θ=||

cos 〈n ,AD →〉=|n ·AD →||n|·|AD →|

=6

3

. 即直线AD 与平面MBC 所成角的正弦值为6

3

.

11.[2014·新课标全国卷Ⅱ] 直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

立体几何练习题及答案

… 数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为 A 1 B 和上 的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 ] 3.,,是从P 引出的三条射线,每两条的夹角都是60o,则直线 与平面所成的角的余弦值为( ) A .12 B 。 3 C 。 3 D 。 6 4.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是 A .15 B 。13 C 。12 D 。 3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、 F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A . 5 10 B .32 C . 5 5 D . 5 15

6.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( ) A . 4 3 B . 2 3 C . 4 33 D .3 : 7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为 ( ) o B. 90o o D. 75o 8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对 角线中,与截面A 1成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则 〈CM ,1D N 〉的值为. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面的距离是 . 11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 . 12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则 直线与平面B 1所成角的正弦值为 . : 13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面, 且2,设平面α过且与平行,则与平面α间的距离 A B | D C

立体几何题型的解题技巧适合总结提高用

第六讲 立体几何新题型的解题技巧 考点1 点到平面的距离 例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 考点2 异面直线的距离 例3已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 考点3 直线到平面的距离 例4.如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 考点4 异面直线所成的角 例5(2007年北京卷文) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小. 例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角. 考点5 直线和平面所成的角 例7.(2007年全国卷Ⅰ理) B A C D O G H 1 A 1 C 1D 1 B 1O Q B C P A D O M A B C D 1 A 1 C 1 B O C A D B E

小学六年级总复习之立体几何

一、习题精选。 1、一堆小麦堆成圆锥形,底面周长是18. 84米,高1.8米,这堆小麦的体积是()。 2、用边长为1分米的小正方体,拼成一个较大的正方体,至少需要()个这样的小正方体,把这些小正方体排成一行,它的长度是()分米。 3、一个圆柱体比和它等底等高的圆锥体体积大18立方厘米,那么圆柱体和圆锥体体积的和是()。 4、一根长3米,底面半径5厘米的圆柱形木料锯成两段,表面积增加()平方厘米或()平方厘米。 5、一个长方形长15厘米,宽10厘米,以长边为轴旋转一周,会得到一个圆柱形,它的表面积是()平方厘米,体积是()立方厘米。 6、一个用立方块搭成的立体图形,淘气从前面看到的图形是,从上面看是,那么搭成这样一个立体图形最少要()个小立方块。 7、一个半圆的周长是12.56厘米,将这个半圆扩大2倍,它的面积是()平方厘米。 8、把一个棱长是0.5米的正方体钢坯,锻成横截面面积是10平方分米的长方体钢材。锻成的钢材长度为()。 9、把一个高为18厘米的圆锥形容器盛满水,将这些水全部倒入和这个圆锥形容器等底的圆柱形容器里,水的高度是()厘米。 二、判断题 1、圆柱的体积相当于圆锥体积的3倍。() 2、一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比2:1. () 3、一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米() 4、正方体的棱长缩小一半后,体积比原来少一半。() 5、一个长方体和一个圆柱,它们的体积和高都相等,那么,它们的底面积也相等。() 三、选择题。 1、甲圆柱形容器底面半径是乙圆柱形容器底面半径的2倍(容器直立放置)。现以相同的流量同时向这两个容器内注入水,经过一定的时间,甲、乙两个容器内水面的高度的比是?(容器内的水都未加满) () A.1∶2 B.2∶1 C.4∶1 D.1∶4 2、.如果一个长方体的长、宽、高都扩大3倍,则它的体积扩大( )倍。 A.3 B.9 C.27 3、一个长方体油箱,里面长60厘米,宽50厘米,高40厘米,这个油箱可以装油() A.120升 B. 12升 C. 1.2升

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

最新高中立体几何题型分类训练(附详细答案)(1)

立体几何题型分类解答 第一节空间简单几何体的结构与三视图、直观图 及其表面积和体积 一、选择题 1.(2009年绵阳月考)下列三视图所对应的直观图是( ) 2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( ) A.①②B.①③C.①④D.②④ 3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( ) ①长方体②圆锥③三棱锥④圆柱 A.④③② B.②①③ C.①②③ D.③②④ 4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( ) A.9与13 B.7与10 C.10与16 D.10与15 5.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+23 3 二、填空题 6.在下列图的几何体中,有________个是柱体. 7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________. 8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题 9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积. 参考答案 1.C 2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.

六年级立体几何

六年级第三讲——立体几何 A卷 1. 圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。(结果用π表示) 2. 如图,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米。那么,圆锥体积与圆柱体积的比是多少? 3. 如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器。这个容器的体积是多少立方厘米? 4. 如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?

5. 有大、中、小3个正方形水池,它们的内边长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米? 6. 有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少? 7. 把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?

8. 把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方厘米? 9.有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体? 10.一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高是以厘米为单位的数且都是质数。这个长方体的体积和表面积各是多少?

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何专题训练

专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4分×10=40分) 1.直线12,l l 和α,12//l l ,a 与1l 平行,则a 与2l 的关系是 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段AB 的长等于它在平面内射影长的3倍,则这条斜线与平面所成角的余弦值为 A .1 3 B . 3 C .2 D .23 3.在正方体ABCD-A 1B 1C 1D 1中,B 1C 与平面DD 1B 1B 所成的角的大小为 A .15o B .30o C .45o D .60o 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为300,若在斜坡平面上沿着一条与斜坡底线成450角的直线前进1公里,则升高了 A .米 B . 米 C .米 D . 500米 6.已知三条直线,,a b l 及平面,αβ,则下列命题中正确的是 A .,//,//b a b a αα?若则 B .若,a b αα⊥⊥,则//a b C . 若,a b ααβ?=I ,则//a b D .若,,,,a b l a l b αα??⊥⊥则l α⊥ 7.已知P 是△EFG 所在平面外一点,且PE=PG ,则点P 在平面EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边EG 的垂直平分线上 C .边EG 的中线上 D .边EG 的高上 8 .若一正四面体的体积是3,则该四面体的棱长是 A . 6cm B . C .12cm D .9.P 是△ABC 所在平面α外一点,PA ,PB ,PC 与α所成的角都相等,且PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 10.如图,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF//AB ,EF= 32 ,C D E F

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

立体几何练习题

数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上 的点,A 1M =AN = 2a 3 ,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 3.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60o,则直线PC 与平面PAB 所成的角的余弦值为( ) A . 12 B C D 4.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的余弦值是 A . 15 B 。13 C 。 12 D 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、 AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( ) A .510 B .3 2 C .55 D .515 6.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为( ) A . 4 3 B . 2 3 C . 4 3 3 D .3 7.在正三棱柱ABC-A 1B 1C 1中,若AB=2BB 1,则AB 1与C 1B 所成的角的大小为 ( ) A.60o B. 90o C.105o D. 75o 8.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面 A 1ECF 成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则 sin 〈CM ,1D N 〉的值为_________. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面ABCD 的距离是 . A B M D C

立体几何几种常见题型

立体几何几种常见题型 一、求体积,距离型 1.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面 中心, A 1O ⊥平面ABCD , 1AB AA == 1 A (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. 1 2.(2013 年高考福建卷(文)如图,在四棱锥 P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=. (1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证 ://DM PBC 面; (3)求三棱锥 D PBC -的体积. D PBC V -=

3.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠B AC=90°,AB=AC=错误!未找 到引用源。,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动. (I) 证明:AD⊥C 1E; (II) 当异面直线AC,C 1E 所成的角为60°时,求三菱子C 1-A 2B 1E 的体积. 3 2 4.(2013 年高考课标Ⅰ卷(文))如图,三棱柱 111 ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1 AB AC ⊥; (Ⅱ)若2AB CB == ,1AC =求三棱柱111ABC A B C -的体积.3 C 1 B 1 A A 1 B C

2014年六年级数学思维训练:立体几何

2014年六年级数学思维训练:立体几何 一、兴趣篇 1.一个长方体的长、宽、高分别为3厘米、2厘米、1厘米.若它的棱长总和等于另一个正方体的棱长总和,则长方体与正方体的表面积之比是多少?长方体体积比正方体体积少多少立方厘米? 2.如图,将长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?如果四角去掉边长为3 厘米的正方形呢? 3.用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是多少平方厘米? 4.(1)如图1,将一个棱长为6的正方体从某个角切掉一个长、宽、高分别为4、3、5的长方体,剩余部分的表面积是多少? (2)如图2,将一个棱长为5的正方体,从左上方切去一个长、宽、高分别为5、4、3的长方体,它的表面积减少了百分之几? 5.(2013?北京模拟)如图是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一 个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为厘米的小洞;第三个小洞的挖法与前两个相同,边长为厘米.那么最后得到的立体图形的表面积是多少平方厘米?

6.(2012?北京模拟)(1)如图,将4块棱长为1的正方体木块排成一排,拼成一个长方体.那么拼合后这个长方体的表面积,比原来4个正方体的表面积之和少了多少? (2)一个正方体形状的木块,棱长为1,如图所示,将其切成两个长方体,这两部分的表面积总和是多少?如果在此基础上再切4刀,将其切成大大小小共18块长方体.这18块长方体表面积总和又是多少? 7.这里有一个圆柱和一个圆锥(如图),它们的高和底面直径都标在图上,单位是厘米.请回答:圆锥体积与圆柱体积的比是多少? 8.如图,一块三层蛋糕,由三个高都为1分米,底面半径分别为1.5分米、1分米和0.5分米的圆柱体组成.请问: (1)这个蛋糕的表面积是多少平方分米?(л取3.14) (2)如果沿经过中轴线AB的平面切一刀,将该蛋糕分成完全相同的两部分,那表面积之和又是多少? 9.有大、中、小三个立方体水池,它们的内部棱长分别是6米、3米、2米,三个池子都装了半池水.现将两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面会升高多少厘米?(结果精确到小数点后两位) 10.有一个高24厘米,底面半径为10厘米的圆柱形容器,里面装了一半水,现有一根长30厘米,底面半径为2厘米的圆柱体木棒.将木棒竖直放入容器中,使棒的底面与容器的底面接触,这时水面升高了多少厘米? 二、拓展篇

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

立体几何、解析几何综合10题(含答案)

城北中学高二上期第八周20班周末双休数学练笔 题目及参考答案 1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为14 5 ,求双曲线方程. 解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =4 5 , 所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 2 12 =1. 2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为 CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ; (1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF , 又BC ∩BF =B ,∴AE ⊥平面BCE . (2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD . 3、设椭圆的中心在原点,焦点在x 轴上,离心率e = 3 2 .已知点P ????0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程. 解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =3 2 得a =2b . |PM |2=x 2+????y -322=-3????y +1 22+4b 2+3(-b ≤y ≤b ), 若b <1 2,则当y =-b 时,|PM |2最大,即????b +322=7, 则b =7-32>1 2 ,故舍去. 若b ≥12时,则当y =-1 2时,|PM |2最大,即4b 2+3=7, 解得b 2=1. ∴所求方程为x 24 +y 2 =1. 4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB

立体几何综合训练

立体几何综合性训练 一、单选题 1.下列说法中不正确...的是( ) A .圆柱的侧面展开图是一个矩形 B .直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥 C .圆锥中过轴的截面是一个等腰三角形 D .圆台中平行于底面的截面是圆面 2.下列命题中错误的是:( ) A .如果α⊥β,那么α内一定存在直线平行于平面β; B .如果α⊥β,那么α内所有直线都垂直于平面β; C .如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D .如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ. 3.已知,m n 是两条不同的直线,,αβ是两个不同的平面.在下列条件中,可得出αβ⊥的是( ) A .,,//m n m n αβ⊥⊥ B .//,//,m n m n αβ⊥ C .,//,//m n m n αβ⊥ D .//,,m n m n αβ⊥⊥ 4.一个几何体的三视图如图所示,则该几何体的体积为( ) A . 10 3 B .3 C .8 3 D .73 5.用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形 D .正六边形 6.如图,长方体1111ABCD A B C D -中,12AA AB ==,1AD =,点,,E F G 分别是1DD , AB ,1CC 的中点,则异面直线1A E 与GF 所成的角是 A .90o B .60o C .45o D .30o 7.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则与平面ABCD 平行的直线MN 有( )条

文科立体几何考试大题题型分类

高考文科数学立体几何大题题型 基本平行、垂直证明 1. ( 2013年高考北京卷(文))如图,在四棱锥P-ABCD 中,AB//CD , AB _ AD , CD =2AB ,平面 PAD _ 底面 ABCD , F 分别是CD 和PC 的中点,求证: (1) PA_ 底面 ABCD ;(2) BE//平面 PAD ;(3)平面 BEF _ 平面 PA_ AD PCD ABCD 且PA 垂直于这个平面的交线 AD 所以PA 垂直底面ABCD. (II) 所以 所以 所以 所以 (III) 所以 所以 所以 因为AB// CD,CD=2AB,E 为CD 的中点 AB// DE,且 AB=DE ABED 为平行四边形, BE// AD,又因为BE 二平面PAD,AD 二平面PAD BE//平面 PAD. 因为AB 丄AD,而且ABED 为平行四边形 BE! CD,ADL CD,由(I)知 PA 丄底面 ABCD, PAL CD,所以CDL 平面PAD CDL PD,因为E 和F 分别是 CD 和PC 的中点 CDL 平面 BEF,所以平面 BEF 丄平面 PCD. 卷(文))女口图,四 ABCD 2

中,AB _ AC, AB _ PA, AB// CD, AB =2CD , E.F.G.M , N 分别为PB, AB.BC.PD.PC 的中点

(I )求证:CE //平面PAD . ( n )求证:平面EFG _平面EMN K 【答 案】

体积 3. (2013年高考安徽(文))如图,四棱锥P-ABCD的底面ABCD是边长为 形,BAD =60 .已知PB =PD =2,PA =.2的菱

相关文档
相关文档 最新文档