文档库 最新最全的文档下载
当前位置:文档库 › 耦合电容

耦合电容

耦合电容
耦合电容

音频耦合电容对音质影响的定量分析

丁丁硬件视点 2009-04-23 11:11:41 作者:SystemMaster 来源: 文字大

小:[大][中][小]

为这次测试,收集了如下电容样本,标称容量都是0.1uF的。

图中1号是个陶瓷介质电容;2-6号是各种类型的薄膜电容,其中6号是西门子的,其余是杂牌,有国内也有国外的;7号是陶瓷密封油浸薄膜电容,耐压最高,是1000V。

有人会问,这么小容量的电容几乎不用到音频耦合回路里面呢!呵呵,这个问题当然是和后级电路的输入阻抗有关联。当后级输入阻抗大于47k欧时,0.1uF电容耦合对低频损失是可以接受的。测试电路很简单,如下图。

大家知道,很多音频的指标对音质有直接影响。不如说信噪比、动态、输出功率、谐波失真。。。等等,大家尽量发挥自己的想象力,这么简单的一个电路里面,电容究竟会对那个重要的指标有影响而改变音质呢?

当然,最容易影响的是频响。但是前面提到了,只要RC时间常数足够大,低频下降就可以忽略,所以这里不予以考察。这次重点放在THD即全谐波失真指标的测量和分析。

下面这个图标是R=2K时,7个电容对应的THD+噪声和信号频率的关系。

图中线是耦合电容短路(即信号直通)时的失真曲线,也是这个测量系统在这个条件下的测量极限。

实际上,看到这张曲线图是,我心里是吓了一跳的。特别是1#样本,在500Hz以下频率,失真居然会达到0.2%以上!这个量级对训练有素的耳朵来说是能够听出来的了。

眼尖的同学或者会看出来,由于电阻取的是2K,而电容只有区区0.1uF,所以这个电路是个

一阶高通滤波器。当频率很低时输出会衰减很多,而我们测的是(THD+噪声)/(信号+噪声),即这是信号变小了,比值自然会增大。也就是说,这个结果未必是真的谐波引起的。所以,我们有必要还是定量的看一下到底高通曲线是啥样子。如下图。

哈哈,500Hz对于平顶部分只下降了4dB。所以上面的担忧可以排除了。看来真的是有谐波失真发生哦,真郁闷!

不到黄河心不死!我要看谐波成分是啥样子。对了,做快速傅立叶分析。

做了1号和7号两个样本分别在1kHz和400Hz输入时的谐波成分分析,如下图。

1kHz输入时

400Hz输入时

果然,全部都是如假包换的谐波!接受这个现实的同时,就得回答一个问题了:电容是非线性元件吗?怎么会有这么大的非线性失真呢?

鉴于失真最厉害的是1号陶瓷电容,而陶瓷材料会有压电特性。是不是这些电容因为加上电压后有什么变化呢?于是给电容加上偏置电压,选了1号、4号和7号三个样本,测试结果如下图。

图表中可以看出,1号样品缺失电容量虽偏置电压变化而变化。偏压从0V变到15V时,容量居然从96.3nF变化到98.2nF,变化率达到1.97%!另外两个样品却没测出来类似的容量变化。

那么,1号样品的这个偏压-容量变化关系在这个耦合电路里会引起什么样的后果呢?

一般的来说,有交流信号通过电容时,电容会有一个阻碍作用,既是容抗。容抗X

c=1/(ωC)=1/(2πfC)。如果信号的频率f不变,当C变化时,Xc也是变化的。

我们再看前面的测试电路,实际是一个Xc和R的串联分压电路。Xc越大,输出越小。呵呵,问题原来在这里了!对于1#电容,当交流信号在过0点时,电容是一个容量。当信号不在0点时相当于对电容加了一个偏压;而在波峰或波谷时,偏压达到了最大。既是说,一个周期的信号通过电容时,电容的容量经历一个容量由小到大再由大到小的循环。输出信号Vo=

R/(Xc//R);当Xc变化时,Vo自然也就发生变化了。这就是的整个电路表现出了非线性特性!输入一个标准正弦波时,输出的却是幅度不按正弦规律变化的畸变波形,这样子谐波失真自然就产生了。

同样的,这个结论也能解释为何频率高时失真小而频率低时失真大。当信号频率高时,Xc 就小,基数小了,变数自然也就更加小,当Xc小到和R比可以忽略时,变数引起的畸变自然也无影无踪了。所以失真特性曲线上,不管那个电容对应的高频段,谐波失真都非常小,直到没有失真。

由于失真是由电容有偏压时引起容量变化而产生的,而偏压越大,电容变化也越大。那么当信号电压大时,输出信号的失真也会更大!实际的情况任何呢?看看下面的测试曲线,描述的是失真对输入信号强度的关系,信号频率是1kHz。

图中最下面那条线是电容短路时的测试结果,当作参考。注意到当输入信号大于100mV时,随着信号强度的增加,THD也越来越大。当输入信号达到10Vrms时,失真达到0.15%左右。

记得前面我们也测了4号和7号电容的偏压-容量特性,在电桥的分辨力范围几乎没看到有容量的变化。但是在失真曲线上看到的谐波失真却是不能忽略的。那这又是怎么回事呢?

为了找到这个回答这个疑问的蛛丝马迹,于是对7个电容做了比较全面的参数测量,结果如下表。

看数据我们可以发现,测试频率不同,同一电容的容量也会不同。为了方便比较,表格的右边专门算出了100Hz和10kHz测试频率时同一个电容器的电容量的比值。画成图表如下。

如果和失真曲线比照,会发现容量变化大的,失真也大。如图中1#最大,失真也最大;4#第二,对应失真图上400Hz-8kHz这段范围内失真表现都很突出;5#变化最小,失真也几乎是最贴近参考线。

同样的,我们也可以整理一下损耗(方位角正切)的数据,如下面图表。

1#、4#、5#的变化规律,同样是和失真特性相应证的。即损耗越大,引起的信号失真也大!

综上所述,电压效应(电压-容量变化关系)于对电压敏感的陶瓷电容是引起其产生谐波失真的主要因素。而对电压不敏感的薄膜类电容,介质损耗、等效串联电阻等因素同样能引起非线性失真,只是这时引起的失真数量级比较低,绝大多数场合是可以接受且人耳不能觉察的。

小结:该怎么决定音频电路中的耦合电容呢?

很显然,能不用电容耦合就不要用了,现在有源器件的性能已非老早工业时代的产品所能比拟,设计出纯DC放大电路已经不是什么特别难的课题了。哦,你不得不要选用电容做耦合,其实结论上面已经有了。第一不是万不得已,别选用瓷介电容;第二,要挑选Q值高、ESR小、介电损耗小的电容,同时注意高频性能要尽量的好。

最后,上一个钽电解电容和铝电解电容(4.7uF,R取600欧)的比较测试结果,当作是本文的结尾吧。

图中,绿线是钽电解,红线是铝电解,这样子的特性,明白了该选哪个做耦合电容了吧?

常见易购的音频耦合使用的电容介绍

小龙

经常有些初学的朋友们问,在哪用什么电容,这种电容怎么样这类的问题,回答得多了也就麻木了,烦了,索性整个贴子供初学者学习,所介绍的都是价格比较便宜的,适合初学者选用的电容。

WIMA威马

性能指标比较高的电容,适合用在整个系统都够高班的器材上,在一般普通的器材上表现较为浮燥,不推荐初学者使用。

RIFA420/426这系列电容对高频的听感有一定的衰减作用,在一般的器材上表现听感温暖厚实,高频圆润耐听。性能和指标也不错。很适合初学者使用。

西门子千层糕电容

声音表现一般,但性能指标极好,适合用于电源退耦。

西门子EPCOS系列

性能指标好,整体表现平衡,无音染。但初学者用它的话有可能会出现同WIMA出一样的效果。使用时需要注意用在性能指标比较好的器材和电路上。

ERO MKT

整体效果和RIFA420系列相当,非常适合初学者使用,用在哪都不会出很差的声。

美国电子俱乐部

听感表现平衡,稍显有失细腻,适合用在解码器,或放大器的输出耦合。也是比较实用的电容

西门子MKT

用得好的话,表现平衡大气,细腻。同样的性能指标比较好,损耗角小,用得不好的话听感会稍显得毛刺。

REL-CAP

这电容市面上很多,不知真假,但实测性能不错,价格也不高,听感也比较平衡,值得推荐。

索伦

听感表现平衡,稍显得有得有些粗,可用在放大器的输出或分频电路上。

常见的音频用电解电容系列

三洋Sanyo:固体电容SP,SG,SEP,SVP等;

日本化工NCC:AUDIO,ASF、AWF、给各个音响厂定制的系列;

美国化工UCC:U36D,URZA和其他延续思碧继续生产的电容系列;

红宝石Rubycon:BlackGate;

尼康nichicon:MUSE系列的FW,KW、FineGold,KZ,FA,FX,ES,KG等;

松下Matsushita:FM,FK,FC,FJ,Pureism,AUDIO,Master,MasterII,X-Pro;

伊娜ELNA:RJJ,RJH,FOR AUDIO,R2O,R2A,R3A,Starget,Cerafine,Silmic,SilmicII,给各个音响厂定制品;

欧美各国生产高品质音频用电容的厂家:法国SIC-SAFCO,瑞典RIFA,德国ROE,德国ERO,美国思碧(SP),法国L.M.T,法国S.L.C.E,荷兰飞利浦(BC),德国西门子,意大利AV,德国威马(WIMA),德国FRAKO,英国BHC,丹麦杰森JENSEN,美国MIT,美国REL-CAP,美国摩罗利(Mallory),美国伊利诺(IC),法国苏伦(SOLEN),瑞典EVOX,以色列威世(Vishay)。

SIC-SAFCO:

SIC-SAFCO是拥有84年厂史的法国电容厂,就是著名的特弗龙电容的生产厂。ALSIC系列电容是其生产的LL型长寿命低阻抗系列105度耐高温品种,来自法国的补品电解电容SIC-SAFCO,音色高贵。高速,高Ripple电流,低自感,极低内阻,超长寿命直逼rifa 124系列。低频下潜好,弹性十足,音色甜美温暖,声音秀气象二八少女一样纯情,分析力也相当高。用它来摩CD机解码,做退藕部分相当完全。其高压电容十分受胆友喜欢。

ROE:

德国ROE发烧极品电容。这个就是传说中ROE里声音最柔美的EB系列,轴向结构。大名鼎鼎的ROE电解电容是德国造的高级电解电容,广泛使用在很多价格不菲的高档音响中,金黄色的胶皮包装,令人不由得联想起泛着黄金般光泽的音质和音色。品质优异,性能稳定,而且寿命很长。耦合,退耦极品,声音中性偏温暖,速度快,分析力很高,音场开阔和思碧电容搭配使用可以说是天下无双。

RIFA:

瑞典生产的RIFA PEG124长寿命发烧电容,RIFA PEG124系列是RIFA电解电容中寿命最长的几个系列之一。使用寿命大于30年远超过著名的RIFA PEH169系列。轴向安装设计,大电流纯铜引脚。低内阻,低分布电感,高涟漪电流,低泄露,长寿命,耐高温125度。本品为全新品极为少见。

RIFA PEG124效果极佳。其效果主要表现在以下几个方面:

1.音色极为优美,各音域表现异常全面,几乎无懈可击。

2.速度非常快,决不拖泥带水,让你想起法拉利的赛车,该电容在小动态时优美动听,在大动态时从容不迫,轻而易举的完成爆棚,而且力度,音场让人都非常满意,你都想不明白这百万雄兵是从哪里冒出来瞬间又躲到了哪里。

3.细节非常丰富,表达非常细腻,在我用过的这些名牌电容中,这款电容是最具有胆味的产品,有网友说该电容是去除数码声的利器,对此我完全赞同。思碧的电容本身胆味不浓,但可以和其他的元件配合,将胆气烘托出来。但这款电容本身就具有浓郁的胆气。

该电容的好处不是用几句话就能说明的,我个人愿意用天下第一,无懈可击来对其做出评价。如果硬要找点其弱点的话,我觉得这款电容比较挑电和含银的线搭配效果最好,和铜线搭配效果就差些,之前的供电部分越好,电容的效果就发挥的越好。另外就是这款电容的体积较大,在石机上用还还说,但是用在胆机上就比较困难了。因为胆机滤波电容的直径一般35mm,但是rifa的胆机电容的直径太粗,很难安装。这款电容几乎不发热。此前我的CD机原配的电容为n ichicon(蓝精灵)电容,是muse系列,是一款音响专用电容,但是使用半个小时后,电容就非常热了,长期使用,烘得上盖板都温温的,但是,RIFA的多款电容无论怎么使用都没有一丝热量。

瑞典的RIFA电解电容,采用的厂家寥寥可数,因为RIFA电容实在太贵了,这麽贵的售价当然是有其道理的,不用说也知道,一定是性能以及品质都实在是好得没话说,要不然卖那麽贵有人买才怪。但偏偏音响圈中就有那种为诞求得最优秀、最高级的品质而不惜重金的狂热份子,当然它所制成的成品的价也就不会低到那里了。

例如Audio Nord有一款Dali Gravity後级定价是一台五百万日币(约40万人民币),另外丹麦的音响精品Gryp hon内部就用了不少的RIFA电容,尤其是DM-100以及REF-1等旗舰级的後级扩大机中的主滤波电容,那几个白色、大得有如罐头的电容器真是令人叹为观止。

RIFA电容内部的等效电感和等效电阻都非常的低,使RIFA电容的好处不止在於它的低频,而在於它的高频之靓。而且RIFA电容能处理提供的电流非常大,充放电的速度极快,从而它能应付强大的动态以及低频所需的大量电流。

RIFA电容还有一个最重要的特点:寿命特长,长到如果你四十岁存够了钱买得起一部用RIFA电容做滤波的音响,连续不停的开机使用,它大概可以陪你到一百岁!!

RIFA的涟波电流Irac 、等效串联电阻ESR 等效电感等指标达到了目前所有电容中的最高水平。RIFA电容内部的等效电感和等效电阻都非常的低,他所提供的电流非常大,充放电的速度极快,因此它能应付强大的动态以及低频所需的大电流。相对于功放在低频大动态时的表现就不言而喻了。更可贵的是他的高频之靓少有匹敌。RIFA电容的声音一身“富贵相”,相同容量的电容低频的下潜没有思碧深,量感上也没有思碧来的多,但是质感相当好,富有弹性,松而不肥、荡而不浑。中频段的形体质感饱满、坚实而不硬,高频段顺滑细腻、良好的空气感、丝丝入扣的分析力也是RIF A 的特点。被誉为“极品中之极品”当之无愧。RIFA电容特别适合数字电路的电源滤波中,可以降低数码味。笔者打磨CD机时,将其使用于数字部分的滤波电路,效果真的是非常好。这一点笔者感触很深。以笔者使用的经验看,RIFA电容不费吹灰之力日制“补品”电容,打得落花流水。它的表现已不局限于高、中、低三频的改善,无论速度、动态、质感、密度,是一种整体素质的提升。真是一分钱一分货,贵的有道理。

SPRAGUE:

思碧电容体积、重量较一般日产电容大许多,做工及品质都非常好,而且寿命很长。音乐感好,经和日本ELNA电解对比,低频下潜极好,有质有量,速度适中,声音厚实有层次,中频温暖,高频极其柔顺,如丝般光滑。有的人认为分析力稍有不足,一般配德国ROE电解或者瑞典RIFA做补充效果奇好!是补薄声机器的极品。

美国思碧生产的钽电解电容150D系列。银色外壳,喜欢古董机的烧友必备的极品。用作退耦特别是并接在胆机电压放大管阴极电阻上有奇效。经和日本ELNA电解对比,高频极其柔顺,如丝般光滑。电流小、稳定性好,但作耦合用时高频柔弱无力、缺乏穿透力,有特殊的温暖声音。不太适合作耦合用,通常用作退耦较好的效果。

思碧电容在标榜HI-END的扩大机里头,是出现率最高的一种,举凡Krell、Mark Levinson、Cello等著名厂机里,电源滤波一定是由它来坐镇,此外还有为数多得数不清的音响厂家亦采用SPRAGUE电容。SPRAGUE电容是美国制的高级电解电容,品其优异,性能稳定,而且寿命很长。在以前高级电解电容进口数量尚少的时候,SPRAGUE 电容是DIYer在湾里大发进口的废五金堆中搜寻的宝贝,专卖旧货的二手零件商,SPRAGUE电容也是极为抢手的热门货。即使从废五金堆中所掝到SPRAGUE电容都已经是有相当年纪的东西,但是用起来一样令人满意它的表现,这里也说明了SPRAGUE电容的使用寿命是如何的长了。SPRAGUE电容和ROE电解电容二者可说是欧美主力音响品牌中唯二的选择,说到SPRAGUE电容和ROE电容在HI-END音响器材中的代表性,可以Krell的扩大机来做为典范,Krell的功率扩大机主滤波电容是sprague电容,输入级电压放大和驱动级的电容器,便采用了ROE。

如今已经被日本化工Nippon Chemi-Con电容厂购并,早期素质还保持思碧一贯水准,近期产品有缩水迹象。所以原厂的古董思碧电容就成了DIYer淘宝的主要目标。

PHILIPS:

荷兰飞利浦(PHILIPS) 电容快速有力,声音清爽,音色细腻、通透、大气,有欧洲电容的贵气,低频下潜和密度感很好。

近年来PHILIPS电容在欧美高档器材中的出镜率频频上升,低档的ONIX,高档的Goldmund以及极品的JIADIS胆机都有他的一席之地。从他在一些名牌产品里面的上镜率上,有理由相信他的实力跟素质。在国内发烧友中以其蓝六角系列最为有名。

ELNA:

ELNA是日本几大电容生产商之一(Rubycon红宝石、nichicon蓝宝石(乐声)、ELNA伊娜、Nippon Chemicon日本化工、Sanyo三洋、Matsushita松下),有60多年的沧桑。而研究开发音频专用电容也有了25年的历史,可以说是日制音频电容的老大。跟欧美一些名牌电容的外包装所不同的是ELNA喜欢在不同型号之间,使用不同的彩色外壳封装,闪闪发

亮刹是好看。其补品电容有几种品种:SILMIC(II)棕神、CERAFINE(红袍)、DUOREX(紫袍)、LongLife(银字)、FOR A UDIO(黑底金字)。在很多中、高档器材上都可以觅见他的影踪。特别是在高档日产器材上,几乎是ELNA音响电容的天下,例如DENON的旗舰CD、顶班功放,SONY的顶级SACD、CD、功放,MARANTZ、金嗓子的顶班器材,欧洲的“音乐之旅”功放等等不一例举。

ELNA电容系列繁杂下面做个简单的介绍:其音频Leaded/Radial Type 引线脚系列分为:

按等级分:

最顶级为定制的改进型SILMIC(II)后面带α或者Super Gold或镀金脚。

RFS High Grade (SilmicII) Brown or Black:顶级音频电容(三次谐波失真<-120db)SILMIC的改进版,天然丝介质,棕壳金字SILMIC II。

ROS High Grade (Silmic) Brown:顶级音频电容(三次谐波失真<-120db)天然丝介质,棕壳金字SILMIC。

ROA High Grade (Cerafine) Red:高级音频电容渗陶瓷微粒(三次谐波失真<-120db),酒红壳金字Cerafine。ROD Standard (Starget) Red:标准音频电容,酒红壳白字STARGET。

ROB TONEREX Black:即原来的for audio和for HI FI系列,为ELNA的音频标准系列。

RA2 入门级的音频电解,棕身白字for audio,铜包铁脚。

小体积高等级系列:

R3A 5mm height Red:小型化高5mm标准音频电容(三次谐波失真<-120db),酒红壳。

R2A 7mm height Red:小型化高7mm标准音频电容(三次谐波失真<-120db),酒红壳。

R2O Miniaturized Standard Purple:小型化标准音频电容,紫壳白字,即旧版的DUOREXII系列。

ROB TONEREX Black:即原来的for audio系列,为ELNA的音频标准系列。

RA2:入门级的音频电解,棕身白字for audio,铜包铁脚。

长寿命小体积系列:

RA3:长寿命小体积改进型,铜包铁脚。

RA2:入门级的音频电解,棕身白字for audio,铜包铁脚。

环保化系列:

RFO:改进型,铜包铁脚,PURECAP系列。

RA2:入门级的音频电解,棕身白字for audio,铜包铁脚。

无极系列:

RBD:无极电容。

表贴系列:

RVW:耐105度高温音频系列。

RVO:表贴标准音频系列。

ELNA补品电容有几种品种:

Cerafine(红袍)和DUOREX(紫袍)音质表现:音色通透、速度均属中等

FOR AUDIO的音质表现:音质表现像青春少女一样、音色甜美

LongLife和SILMIC(棕神)的音质表现:快速有力,适合表现现代音乐

黑金刚(BlackGateF):音色醇厚,对增加器材的音乐表现力大有帮助,适用于耦合。

Cerafine(红袍)专为音响设计的电容,使用OFC无氧铜脚,极低的失真(三次谐波失真-120dB),很小的正切损耗,采用的在电解液中灌注陶瓷微粉的技术,粉末直径控制在0.1-0.15微米之间。据厂家声称,这种技术可有两大好处:一,增加对外界震动的阻尼作用其。二,灌人的陶瓷微粉在电容充放电的时候,会吸附电解液中的负离子而变成更具活性的离子团,阳极氧化膜表面形成一层薄膜,大大提高对信号的响应速度,使音质更为纯净透明,但它的代价就是体积大,价格较昂贵。声音:声音比较柔顺,温暖松软,高频比较华丽!

SILMIC(棕神) 专为音响设计的电容,使用OFC无氧铜脚,极低的失真(三次谐波失真-120dB),很小的正切损耗,天然丝纤维介质,高品质的声音,发挥丝质的柔顺自然性, 增加低频的厚实量感,减少高通部份有峰值Peak感觉的和中频部分的粗糙音质。声音:快速有力,适合表现现代音乐。低音有点薄,但不会感到少低频,声音感觉很顺畅,声场比较

大,中频柔顺甜美,高频纤细。

STARGET ROD剧场系列红身白字,比常见的for audio系列高一个级别,专为音响设计的电容,改进电解液配方,小体积,使用OFC无氧铜脚。已经停产。他的声底比较厚,低频速度可以厚度不错,中频厚甜美,高频较柔顺偏少雾气比较重,最好并小容量薄膜电容使用。

nichicon的音频电容:

nichicon的音频电容分几个大类,音频系列、无级系列、105度系列、超矮系列、MUSE系列和KG系列。其中MUSE 系列是较高级的音频系列,新产品的分类为两类即MUSE KZ(顶级) > MUSE FineGold(高级系列、金色旋律) 下面还分KW(高级标准系列) > FW(标准系列)。MUSE以停产的旧系列分为四类FA(高级系列) > FM > FS > FX(标准系列)。

Nichicon MUSE KZ是其MUSE系列中最高规格的音频专用耦合电容,黑底金字。适合做耦合、退耦和滤波电容用。完全不同于fine gold系列的声音。他的声音通透,低频速度不错,中频质感很强,高频较柔顺,正切损耗极小,基本是我听过的电容里最接近Black Gate的,价格缺便宜的多只有大概1/5左右,性价比非常高。

Nichicon MUSE fine gold(FG)是其MUSE系列中高规格的音频专用耦合电容,金皮黑字。适合做耦合电容用。他的声音通透清澈,声底干净利落,层次好,低频紧凑,高频有穿透力,唯中频稍淡一点。整体上偏向HIFI性,清爽有劲很现代的感觉。适合做AV系统,DVD,MD的耦合电容。

Gold Tune是其KG系列中高规格的音频专用电容,仅次于金脚系列,金字黑皮。适合做电源主滤波电容用。他的声音通透清澈,声底干净利落,层次好,低频紧凑,高频有穿透力,唯中频稍淡一点。整体上偏向HIFI性,清爽有劲很现代的感觉。

KG系列滤波用高级音频电解电容分为3个档次,Fine Tune,Gold Tune,Super Through。

Fine Tune:采用了改进配方电解液,提供最高性价比。

Gold Tune:中级产品,改进电极和其他很多地方。

Super Through:最高级别产品,镀金脚,提供最好的声音。

nichicon FW: 声音通透清澈,声底干净利落,层次好,低频紧凑,高频有穿透力,唯中频稍淡一点。整体上偏向HIFI 性,清爽有劲很现代的感觉。

Nichicon MUSE ES(BP)是其MUSE系列中最顶级的BP电容,绿皮黑字。适合做耦合电容用。他的声音通透清澈,声底干净利落,层次好,低频紧凑,高频有穿透力,唯中频稍淡一点。整体上偏向HIFI性,清爽有劲很现代的感觉。Nichicon MUSE FA是其老版MUSE系列里的最高规格的音频专用电容,绿底白字。适合做耦合、退耦和滤波电容用。该电容属于旧系列型号素质介于新系列的顶级KZ系列和中级的FineGold系列之间。他的声音通透,低频速度不错,中频亲切,高频清晰,全频比较平衡,正切损耗小。是一款比较现代中性的电容适合搭配各类器材。

松下:

日本松下Matsushita Electric 产FC 系列金字电解电容。高频清晰纤细、速度不错、中频比较暖、综合表现超过ELN A-RJH颇有SILMIC的风范,属于便宜大碗型,很受外国发烧友青睐。高压的用于音响方面有不俗表现,声音综合表现超过ELNA 系列是高性价比产品,松下电容是日系电容里比较特殊的一种,声音温暖,声底偏厚和常见的日系电容的音色不同。FC系列原是用于高频用途的低阻电容后经过外国发烧友挖掘用于音频用途有不俗表现属于高性价比系列。其金字的For audio和Master(大师)系列电容十分有名。Jureisrn PX 系列金字高级音频电解电容。日本原产,粗壮的无氧铜脚。Jureisrn 是和Master 齐名的松下高级音频电容定制品。用于音响有不俗表现,声音平衡、声底较厚,大气中带一点娇媚,柔和细腻,速度刚好,但瞬态和动态很利害,快上快落很准很乾但却又不会没了声尾和余韵,收放自如那种类型。比Master系列少一分娇媚多一分刚阳。感觉上像是金装ROE和MUSE的合体,音色偏暖。

松下公司大家都不陌生,他生产的电解电容素质也相当不俗。松下的金字音响专用电解,是我比较喜欢使用的电解电容,声音中性平和,中频自然亲切,高频的层次延伸有不错的表现,柔和细腻感有别于常见的其他日制品电解电容,音频系列最值得称赞的是损耗角tg值在100Hz和1KHz相差无几,具有优良的高频特性。尽管还不能跟RIFA等品牌叫板,但胜在便宜容易采购以及优良的性价比。

音频信号耦合电容

1. 因为空间的限制,板上无法放下电解电容,音频信号耦合电容能否用贴片的钽电容或瓷片电容替代?谢谢

可以用钽电容,效果好些.

除非是高输入阻抗的场效放大,瓷片电容容量不够,不能行,钽容可以。

不能用钽电容,效果差,用1uF的铝电解是最好的,如是无极性效果更好,钽电容的低音不饱满, 用无极电解电容, 可找几种牌子试下,不同牌子会有不同音色,试过才能定的. 用两个普通电解传一下,就是个无极性电解电容了.

我始終不明白不同的電容為甚麼會有不同的音色,大家可否(科學地)講解一下?

无极性电容是将两个有极性电容“背靠背”连接,即两个电容阴极相连,可用于交流信号传输场合。钽电解电容如果不是无极性的,不可用于交流信号传输场合。

音频耦合电容主要有无极性电解电容、无极性薄膜电容和无极性无机介质电容,分别对应着无极性铝/钽/铌电解电容、OS有极电解质电容,聚丙烯、聚酯、纸介复合膜、聚碳酸酯、聚四氟乙烯、聚砜薄膜电容器,瓷介、独石、玻璃釉、玻璃膜以及云母电容,其电容各有特色。

一般的,无论什么电容,想要在耦合信号上占有一席之地,必须满足以下几个条件:

1。寄生电感小

2。损耗角正切值小

3。高频特性好

4。容量足够

5。价格合适

6。可耐受一定纹波电流

这是音频信号高保_真传输的基本,因此,使用最多的当属无感聚丙烯薄膜电容、无感聚碳酸酯薄膜电容和无感聚四氟乙烯薄膜电容,在高频信号耦合上,一般采用云母电容,但价格昂贵,采购困难。

电容薄膜的电极镀层对音色有重大影响,主要是导电性能和对高频段损耗角正切值的影响,同时卷绕方式对电容的音色也有一定影响,这些影响是可闻的。

在满足上述六个条件的前提下,任何电容都会具有较好的音质,但是由于高频损耗不同,造成各种介质甚至各个厂家生产的电容有所差别。

钽电容虽指标一般较高,但用在音频,效果不佳。这就是几乎没有专业音响用它耦合的原因,音频专用的铝电解要比一般的钽电容好的多

CBB之类的电容有没有贴片型式的....

甚么是耦合耦合电容

耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。 退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的 影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。 退耦有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过 电源相互串扰的通路切断;2.大信号工作时,电路对电源需求加大,引起电源 波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;3.形成 悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹配。 1,耦合,有联系的意思。 2,耦合元件,尤其是指使输入输出产生联系的元件。 3,去耦合元件,指消除信号联系的元件。 4,去耦合电容简称去耦电容。 5,例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降 反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如 果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻 抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功 能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和 将噪声引导到地。 摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去 耦电容和旁路电容的使用都讲得不错。请参阅。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

耦合电容器全解

耦合电容器全解 类别:电力设备 规格:OWF 介绍:一、关于型号定义的举例来说 OWF-35/√3-0.0035HT O-------------耦合电容器 W-------------烷基苯浸渍 F-------------纸膜复合介质 35√3-------额定工作电压(KV) 0.0035----------标称电容量(uf) H-----------------防污型 T------------------座阻型 Z-----------------接线板型 二、概述: OWF系列耦合电容器主要用于工频交流输电线路的高频载波通信、测量、控制、保护以及抽取电能等装置中。 结构性能 OWF系列耦合电容器由芯组、瓷套、膨胀器等部件组成。芯组由若干个聚丙烯薄膜、电容器纸、铝箔卷制而成的芯子串联组成;外壳由瓷套及钢板制成的大盖、板底、密封耐油胶圈组成。 频率50Hz,电容器在1.2倍额定电压同时附加30~5000KHz通讯波条件下长期运行,并且在用于星形点有效接地系统时,可以在1.5Un下连续运行30S;用于带有自动切除对地故障的星形点非有效接地系统时,可在1.9Un下连续运行30S;用于无自动切除对地故障的星形点非有效接地系统时,可在1.9Un 下连续运行8h。 工作环境 (1)电容器为户外装置,使用于周围环境温度-50oC~+50oC。 (2)安装运行地区海拔高度不超过1000m。(高原地区可特殊设计) (3)安装运行地区风速不超过150km/h,地震裂度不超过8度。 安装说明 悬挂使用≤35kv普通型电容器。用于悬挂使用时,应利用上盖吊环螺钉进行悬挂,上盖为高压端,底板为低压端。 座立使用≤35kv普通型电容器。用于座立使用时,底部应配接合格的OZ-35绝缘支架;上盖为高压端,电容器底板为低压端。支架下铁板的四角圆孔为安装固定螺杆用。 220kv各型号电容器,均为两节110kv电容器串联而成,带铸铁底座一节为下节。将上节底板与下节上盖用螺栓紧固成一体即可。底座四角圆孔为固定用螺孔。多台使用时,应按本厂编号配对使用,不得混淆,以免影响电容器的技术指标。

耦合电容作用

请注意在开关电源的设计中,输入电容和输出电容常常包括两类电容,分别起不同的作用。一类起减小输入输出纹波的作用,一般容值较大,容值的选取与纹波的要求以及电源的开关频率和设计有关。另一类电容是高频耦和电容,一般容值较小,要求尽可能靠近芯片。其容值的选取与要滤除的可能干扰信号的频率和幅度有关。 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH 的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0 .1μF,100MHz取0.01μF。 去耦和旁路都可以看作滤波。正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。去耦电容一般都很大,对更高频率的噪声,基本无效。旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。电容一般都可以看成一个RLC串联模型。在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线。具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。 从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容" style="color: blue; text-decoration: underline" href="https://www.wendangku.net/doc/aa1900200.html,/word/112155.aspx">耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

耦合电容、滤波电容、去耦电容、旁路电容

耦合电容器主要的作用是隔离直流信号。电容的阻抗和信号的频率成反比,信号的频率越高,衰减越小。理论上,对于直流信号的阻抗是无穷大。很多场合需要放大的是交流信号,所以,会用耦合电容去掉信号中的直流部分。 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地 2.旁路电容和去耦电容的区别 去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量 。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用: 一是作为本集成电路的蓄能电容; 二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路; 三是防止电源携带的噪声对电路构成干扰。 在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。 去耦 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。

旁路电容和耦合电容详解讲解

关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰. 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定. 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别. 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF. 分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感. 分布电感是指在频率提高时,因导体自感而造成的阻抗增加.

耦合电容的选择

耦合电容的选择 笔者在制作电路时,使用耦合电容发现很多问题,下面跟大家分享我的经验,由于实际电路拍照比较困难,所以这里只能贴仿真图了,不过它跟实际差不多(在真实硬件上测过)。电路中常常要用到耦合电容,那么耦合电容应该选多大呢?? 耦合电容的选择必须电路中的输入信号电压大小、频率及负载电阻来选择,比如电压为5V 那么电容耐压就不能小于5V了,不过本文的重点是讨论容量大小的选择。 那么耦合电容的容量大小应如何选择呢??? 本质:耦合电容与下一级的输入电阻构成了RC高通滤波器,为了保成输入信号下限频率能通过这一“RC高通滤波器”,RC高通滤波器的下限频率不能高于输入信号的频率。 相当于选择适当的电容来设计一个高通滤波器,以保证输入信号通不衰减通过,所以电容C可用公式计算出来,下面会给出公式。 我们来看下面一个实验,电路图如下所示,输入信号为频率为1Hz,大小为10mv. 可见此输入信号有两个特点,频率很低,幅度又很小。 按照常识,电容容量越大,信号的频率就可以越低,现在的输入信号频率为1Hz,那么耦合电容的容量越大越好吗???请看下面的实验。 实验结果: 1.输入信号频率为1Hz,幅度10mV,负载电阻300K,耦合电容先0.4uF 测得输入输出波形如下图所示,黄色为输入,绿色为输出。 可见输入信号经过耦合电容后,幅度被严重衰减,由此可知耦合电容选择过小。 耦合电容选择0.1uF-0.5uF期间,输入信号衰减比较严重。 结论:如果电路要求信号耦合之后不能衰减,那么耦合电容就不能小于0.5uF

2.输入信号频率为1Hz,幅度10mV,负载电阻300K,耦合电容大于等于0.5uF 输出波形如下图所示,可见只要电容大于0.5uF,信号耦合之后就不会有幅度衰减。 那么是不是选择越大越好呢???请看实验3 3.输入信号频率为1Hz,幅度10mV,负载电阻300K,耦合电容为100uF 幅度不出现衰减,但电路反应变得非常缓慢,输入信号后等待10多秒才有输出信号。 刚输入信号的前段时间,电路竟然不工作了,这是为什么呢??? 主要是因为电容太大充电时间过长,至使输出信号出现延迟,特别是输入信号幅度很小的时个就要特别注意这个问题,否则电路会变得非常缓慢。 总结: 把耦合电容加到电路中之后,耦合电容与负载电阻构成了RC高通滤波器,所以我们可根据公式来计算出耦合电容的大小即: f=1/2πRC 式中π=3.14

耦合、旁路、滤波电容作用

电容耦合的作用是将交流信号从前一级传到下一级。当然,耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。 滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高, 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大, 会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地

耦合电容器

类别:电力设备 规格:OWF 介绍:三、型号定义举例 OWF-35/√3-0.0035HT O-------------耦合电容器 W ------------烷基苯浸渍 F ------------纸膜复合介质 35/√3 -----额定工作电压(KV) 0.0035-------标称电容量(uf) H-------------防污型 T--------------座阻型 Z--------------接线板型 一、概述 (1)用途 OWF系列耦合电容器用于高压输电线路载波通讯系统中的耦合设备,也用于电力系统测量控制、高频保护及抽取电能装置上作部件。 (2)结构组成和性能简介 OWF系列耦合电容器由芯组、瓷套、膨胀器等部件组成。芯组由若干个聚丙烯薄膜、电容器纸、铝箔卷制而成的芯子串联组成;外壳由瓷套及钢板制成的大盖、底板、密封耐油胶圈组成。 OWF系列耦合电容器在1.2倍额定电压(频率50Hz)同时附加30~500KHz载波条件下长期运行;并且在用于星形点有效接地系统时,可以在1.5Un下连续运行30S; 在用于带有自动切除对地故障的星形点非有效接地系统时,可以在1.9Un下连续运行30S;在用于带无自动切除对地故障的星形点非有效接地系统时,可以在1.9Un

下连续运行8H。 二、执行标准 (1)GB/T4705-92《耦合电容器及电容分压器》标准。 (2)IEC-385-90《耦合电容器及电容分压器》标准。 (3)GB4703-84《电容式电压互感器》标准。 四、工作条件 A.环境条件温度 最高气温:+50℃最低气温:-40℃最高日平均气温:+30℃最高年平均气温:+20℃ B.海拔高度:≤1500米 C.相对湿度:≤90% D.使用条件:户外式 E.风速:小于35m/s F.地震烈度:不超过8度 G.覆冰:重冰区,覆冰厚度10mm H.污秽等级为Ⅲ级 五、技术参数 (1)技术参数表 表1:OWF系列耦合电容器技术参数表1 序号型号规格额定电压(KV)标称电容量(uf)结构 特征 1 OWF-10-0.0045~0.01 10 0.0045~0.01 普通型 2 OWF-35/√3-0.0035 35/√ 3 0.0035 3 OWF-35/√3-0.005 35/√3 0.005 4 OWF-110/√3-0.0066 110/√3 0.0066

射频微波隔直耦合电容的选择

耦合电容的选取 耦合与隔直电容串联在电路中,耦合电容选择适当能将保证射频能量得到最大限度的传输。 一个实际电容能否满足电路耦合要求,取决于随频率变化的电容相关参数:串联谐振频率FSR 、并联谐振频率FPR 、纯阻抗、等效串联电阻ESR 、插入损耗IL 和品质因数Q 。 上图50Ω线路中的两个射频放大器由耦合电容Co 连接,Rs 为ESR ,Ls 为ESL ,Cp 为寄生并联电容,与并联谐振频率FPR 有关。 阻抗幅值:2C L 2)X -(X ESR Z +=,很大一部分取决于其纯电抗)X -(X L C ,设计者需要知道电容在整个频带上的阻抗幅值。 串联谐振频率:LsCo 21FSR π=,即自谐振频率,与本征容值Co 有关;此频率时,耦合电容阻抗的实部为ESR ,虚部为零。 ATC 耦合电容有关参数如下: 其中,瓷介质电容ATC100A101(100pF )的FSR=1GHz ,ESR=0.072Ω,其Z-F 曲线如下图所示:

频率低于FSR 时,电容纯阻抗表现为容性,阻抗幅值为C 1ω,为双曲线; 频率高于FSR 时,电容纯阻抗表现为感性,阻抗幅值为L ω,为直线; 测量电容的S21可发现: 在FSR 时,电容提供最低阻抗通道; 在FPR 时,电容阻抗猛然升高,引起极大损耗。 在耦合线路中,工作频率比FSR 稍高。只要此时电容的纯阻抗(感性)不高,就不影响电路性能。 并联谐振频率FPR ,决定电容的带内插损。在电容的FPR 处有明显衰减槽口,若FPR 落在工作频带内,则要考察衰减槽口深度,线路能否承受该损耗。通常十分之几dB 的插损是可接受的。 ATC100A101(100pF 片式电容,水平安装,电容极板平行于线路板)插损与频率关系如下图: 由上图可知,在200MHz~1.5GHz 之间,电容插损<0.1dB ;若将电容垂直安装,即电容极板垂直于线路板,就能压制1.6GHz 处的并联谐振窗口,电容的可用范围扩展到2.4GHz 左右。所以改变安装取向可扩展电容的适用频率范围,用于宽带耦合电路。 等效串联电阻ESR 和品质因数Q : ESR 是电容内所有串联损耗的总和,由介质损耗SD R 和金属损耗SM R 组成,一般为mΩ级。SM SD R R ESR += 介质损耗SD R ,由介质材料特性决定,每种介质材料都有自己的损耗系数,通常称损耗正切或耗散系数(DF )。损耗造成介质发热,极端情况下使元件失效。耗散系数(DF )是介质损耗很好的指示,通常在低频(1MHz )时测得,因为该损耗在低频时起主导作用。 金属损耗SM R ,由电容中所用金属材料的导电性决定,包括电极板、终端和阻挡层等,SM R 造成电容发热,极端情况下使元件失效。高频时,这些损耗包括“趋肤效应”,损耗程度和频率关系为f 。

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

AC耦合电容

辣么纠结,你的AC耦合电容放驱动端好还是接收端好呢? 经常有设计工程师纠结着,串行链路中的外接AC耦合电容放驱动端还是接收端好?接2个会有什么影响啊? 我们首先从ac耦合电容的作用切入。一般使用AC耦合电容是为了提供直流偏压。直流偏压就是滤除信号的直流分量,使信号关于0轴对称。 从这个作用看,其实理想电容应该可以放在通道的任何一个地方。做过仿真的工程师也发现仿真结果确实如此。 可是实际电路中的电容并非理想的,有寄生电感的存在,而且焊盘和换层过孔都是阻抗不连续点。那么非理想电容带到仿真里,电容的位置也没有影响吗?我们用2.5G信号来仿真,全通道长度5500mil,ac耦合电容分别距离驱动端和接收端500mil。 上图是电容靠近接收端,下图是靠近发送端,显然电容靠近接收端眼图质量更好。为什么呢?个人认为可以将非理想电容看成一个阻抗不连续点,如果靠近接收端放,相同的反射系数下,信号经过通道衰减之后再反射会比一开始就反射的能量小。所以大多数的串行链路都要求靠接收端放。

有人又问了,可是为什么PCIE是要求放发送端啊?其实仔细看PCIE规范是说如果是两块板连接时,要发在发送的那块板上。如果发送接收在同一块板上,那么就随意吧。 AC耦合电容还有另外一个作用,就是提供过电压保护。所以更多的要求是靠近连接器放置,USB, SATA都是这么要求的。 如果通道中接2个AC耦合电容又会怎样呢? 上图是一个电容,而下图接了两个。明显眼图margin变小了,这也是由于多了一个阻抗不连续点,引起了不必要的反射。 最后,总结一下ac耦合电容摆放注意事项: 1,按照design guideline要求放置 2,没有guideline,如果是IC到IC,请靠近接收端放置 3,如果是IC到连接器,请靠近连接器放置 4,尽可能选择小的封装尺寸,减小阻抗不连续 无法任性的AC耦合电容,选值要考量这么多因素…… 刚刚纠结完AC耦合电容的摆放位置,接着我们又遇到了选值的问题!显然,在选值问题上,AC耦合电容无论如何是任性不起来的。 我们知道,在串行信号中串个AC耦合电容,这个电容可以提供直流偏压和过电流保护,但也会给链路带了另一个问题PDJ(pattern-dependent jitter)。顾名思义,这和码型有关。我们的链路可以等效成高通RC电路,当出现连续的“1”或“0”时,会出现下图的直流压降,这不仅会影响眼高,还会造成PDJ。

电容计算公式

教你两条不变应万变得原理:?? 1.电容器的计算依据是高斯通量定理和电压环流定律;? 2.电感的计算依据是诺伊曼公式。? 要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。? 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中?电容的计算公式:? 平板C=Q/U=Q/Ed=εS/4πkd?1.?所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。??? 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc?容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。??? 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。?? 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。?2、电容器的计算公式:?C=Q\U? ?=S\4*? Q为电荷量?U为电势差?S为相对面积?D为距离?实际是圆周率?K为静电力常数??? 并联:C=C1+C2? ?????电路中各电容电压相等;总电荷量等于各电容电荷量之和。?串联:1/C=1/C1+1/C2? ?????电路中各电容电荷量相等;总电压等于各电容电压之和。? 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。??? 3、Q=UI=I2Xc=U2/Xc????这是单相电容的???????Xc=1/2*? 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是安??三角接法?? 答:C=KVar/(U×U×2×π×f×? ?=30/(450×450×2××50×≈472(μF)? 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系??再请问在计算中应注意什么?电容是如何阻直通交的呢?? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第?2?页?共?3?页? 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷?它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了?5、电容降压? 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。?? ?相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。?? ?????电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电

耦合电容应用原理

耦合电容器是用来在电力网络中传递信号的电容器。主要用于工频高压及超高压交流输电线路中,以实现载波、通讯、测量、控制、保护及抽取电能等目的。 耦合电容的作用是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止工频电流进入弱电系统,保证人身安全。带有电压抽取装置的耦合电容器除以上作用外,还可抽取工频电压供保护及重合闸使用,起到电压互感器的作用。 电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保护等的电压源的电压互感器,电容式电压互感器还可以将载波频率耦合到输电线用于长途通信、远方测量、选择性的线路高频保护、遥控、电传打字等。因此和常规的电磁式电压互感器相比,电容式电压互感器器除可防止因电压互感器铁芯饱和引起铁磁谐振外,在经济和安全上还有很多优越之处。 电容式电压互感器主要由电容分压器和中压变压器组成。电容分压器由瓷套和装在其中的若干串联电容器组成,瓷套内充满保持0.1MPa正压的绝缘油,并用钢制波纹管平衡不同环境以保持油压,电容分压可用作耦合电容器连接载波装置。中压变压器由装在密封油箱内的变压器,补偿电抗器和阻尼装置组成,油箱顶部的空间充氮。一次绕组分为主绕组和微调绕组,一次侧和一次绕组间串联一个低损耗电抗器。由于电容式电压互感器的非线性阻抗和固有的电容有时会在电容式电压互感器内引起铁磁谐振,因而用阻尼装置抑制谐振,阻尼装置由电阻和电抗器组成,跨接在二次绕组上,正常情况下阻尼装置有很高的阻抗,当铁磁谐振引起过电压,在中压变压器受到影响前,电抗器已经饱和了只剩电阻负载,使振荡能量很快被降低。 什么是耦合电容 耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。 耦合小知识:1 ,耦合,有联系的意思。2 ,耦合元件,尤其是指使输入输出产生联系的元件。3 ,去耦合元件,指消除信号联系的元件。 4 ,去耦合电容简称去耦电容。 5 ,例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。 退耦有三个目的:1. 将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断; 2. 大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/ 高电压增益级的影响; 3. 形成悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹配。 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

RLC串联谐振频率及其计算公式

RLC串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ? I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率:

(1) 公式: (2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L ?X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。 当f <fr 时,X L<X C,电路为电容性。 当f = 0 或f = ∞ 时, Z = ∞ ,电路为开路。 (5) 若将电源频率f 由小增大,则电路阻抗Z 的变化为先减后增。 9. 串联谐振电路之选择性如图(3)所示:

电容详细知识与解答

最新最全电容详细知识与解答 1 . 电压源正负端接了一个电容( 与电路并联) ,用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。 当用于电池电源时,具有交流通路的作用,这样就等于把电池的交流信号短路,避免了由于电池电压下降,电池内阻变大,电路产生寄生震荡。 2 . 比如说什么样的电路中串或者并个电容可以达到耦合的作用, 不放电容和放电容有什么区别? 在交流多级放大电路中, 因各级增益及功率不同. 各级的直流工作偏值就不同! 若级间直接藕合则会使各级工作偏值通混无法正常工作! 利用电容的通交隔直特性既解决了级间交流的耦合,又隔绝了级间偏值通混, 一举两得! 3 . 基本放大电路中的两个耦合电容,电容+ 极和直流+ 极相接,起到通交隔直的作用,接反的话会怎么样,会不会也起到通交隔直的作用,为什么要那接? 接反的话电解电容会漏电,改变了电路的直流工作点,使放大电路异常或不能工作 4 . 阻容耦合放大电路中,电容的作用是什么? 隔离直流信号,使得相邻放大电路的静态工作点相互独立,互不影响。 5 . 模拟电路放大器不用耦合电容行么,照样可以放大啊? 书上放大器在变压器副线圈和三极管之间加个耦合电容,解释是通交流阻直流,将前一级输出变成下一级输入,使前后级不影响,前一级是交流电,后一级也是交流电,怎么会相互影响啊,我实在想不通加个电容不是多此一举啊 你犯了个错误。前一级确实是交流电,但后一级是交流叠加直流。三极管是需要直流偏置的。如果没有电容隔直,则变压器的线圈会把三极管的直流偏置给旁路掉(因为电感是通直流的) 6 . 基本放大电路耦合电容,其中耦合电容可以用无极性的吗? 在基本放大电路中,耦合电容要视频率而定,当频率较高时,需用无极电容,特点是比较稳定,耐压可以做得比较高,体积相对小,但容量做不大。其最大的用途是可以通过交流电,隔断直流电,广泛用于高频交流通路、旁路、谐振等电路。

上拉电阻下拉电阻,耦合电容和退耦电容的总结

上拉电阻下拉电阻,耦合电容和退耦电容的总结 上拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理 对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素: 1.驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。 2.下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。 3.高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。 4.频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。下拉电阻的设定的原则和上拉电阻是一样的。 OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。 选上拉电阻时: 500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。 当输出高电平时,忽略管子的漏电流,两输入口需200uA 200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系列 设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)

相关文档