文档库 最新最全的文档下载
当前位置:文档库 › 钛渣冶炼中泡沫渣控制操作法——张超

钛渣冶炼中泡沫渣控制操作法——张超

钛渣冶炼中泡沫渣控制操作法——张超
钛渣冶炼中泡沫渣控制操作法——张超

先进操作法(密)

钛渣冶炼中泡沫渣控制操作法

张超

在钛渣冶炼中,会经常出现泡沫渣,泡沫渣是影响出炉渣产量的主要因素之一,也是目前钛渣冶炼的一大特性。我厂今年在钛渣生产上,由于受原料品位波动大和冶炼操作技术水平有限等因素的影响,泡沫渣问题尤为突出,造成产量明显下滑,本文分析了泡沫渣的原因,以及泡沫渣的利与弊,通过实际操作,总结经验,探索出减少泡沫渣的新方法。

一、为什么要治理泡沫渣,其危害有多大?

我厂在实际生产中,经常出现泡沫渣,造成电极位置高位运行,有时甚至被迫停电,无形中延长了冶炼周期,恶化生产指标。因此能否消除泡沫渣直接关系产量。故有必要对泡沫渣进行探讨。

利:开弧状态下的电弧,如果没有涨泡熔渣的包裹或料层的覆盖,电弧将成为完全裸露的状态,这不仅热效率低,也会损害炉衬和炉盖,炉子寿命缩短,而且泡沫渣可以提高输出功率。当电炉炉膛大,挂渣层较薄需要挂渣时,我们可以利用泡沫渣来挂渣。

弊:二次加料或料层产生塌陷,使炉料进入高炉熔渣中反应而生成的大量的CO气体经熔渣逸出,使熔渣沸腾和喷溅,熔渣的沸腾很容易造成二次燃烧室堵塞,造成炉压难以控制;并且熔渣的沸腾把电极淹没,使电炉的瞬间电流增大,造成短路,引起钛渣熔炼不稳定,会破坏电炉正常运行还造成无谓的浪费,涨出的液渣,在炉口四周冷凝,影响下料、加料;造成电流不稳,负荷不足。甚至被迫停电,从而使产量降低;热量大量丧失,造成热能的利用降低,有时甚至会烧坏设备和部件。在熔池很小,炉膛内形成了搭接料的这种情况下,泡沫渣的产生很容易造成塌料,大的塌料有可能把电极打断,造成电极事故的发生。长期的高位运行造成底部温度偏低,导致出渣见铁,铁口无铁。还会使炉膛不规则,下大上小,无法正常排气。同时,熔池液面过高,距炉顶过近,对炉衬和炉盖热辐射加剧,造成炉盖维护困难频繁渗水,

炉盖使用寿命缩短,也破坏了电极和炉盖的绝缘。

二、分析泡沫渣出现的原因:

由于电炉冶炼过程中频繁出现泡沫渣情况,泡沫渣的产生使得电极位置不易控制,物料受热不均匀,电炉有效输入功率降低,最终导致冶炼电耗增加,出炉渣产量及质量波动大等问题。首先我厂是间断方式进行冶炼,每次加料量都是分几批入炉的,形成了很大的料堆,由于多点布料还不成熟,所以当远离电弧高温区的料堆就只会熔融、烧结,炉料厚重,不易下滑。只有在时间和功耗够时,才会发生塌料。因此在冶炼过程中,先天不足就必须在操作上准确分析各种参数,结合实际制定冶炼计划。冶炼中频繁出现泡沫渣的现象,通过分析得到由以下几种因素共同作用所导致。

1、入炉原料性质变化所带来的影响。攀矿的粒度比云矿的较细,而细粒矿在冶炼过程中容易伴随反应所产生的气体,况且攀矿的透气性差,形成的大量气体不能及时外排,致使气泡沸腾上升,从而导致泡沫渣的产生;并且攀矿的中含CaO、MgO高,化学活性强,反应迅速,产生的大量气体不能及时的排除,造成底部大量气体将液面托高。

2、由于冶炼操作上调整不到位,在下层炉料化料效果不佳的情况下,功耗输送不够,未熔化生料与加入炉料在不同层面同时反应,导致大量气泡产生并迅速抬高液面,从而形成泡沫渣。

3、送电制度不合理,方法不当,电极长时间高位运行,使得炉膛比较小,炉膛内形成了“大三角”,在冶炼后期很容易造成频繁塌料,塌料引发泡沫渣的产生。

4、有一定数量的一级除尘灰和粒度极细的炉料共同反应,导致泡沫渣产生。

5、电极工作端长度不够,炉料底部传热时间和深度不够。

三、改进措施

1、如何防止起泡沫渣的方法:

【一看二取三配四加】

一看:就是看上一炉冶炼的情况,具体分析,制定措施;

二取:就是从取样中,去了解炉况,掌握本炉情况;

每批取样时,要认真观察化料情况,温度、渣的流动性、品位。样棒插不下去,则化料不好,要找出原因调整,不能匆匆就补料了。

三配: 根据实际情况合理调整配比,控制品位;

(1)配料系统是否正常,必须清楚称量皮带的配料精度。

(2)不要把料仓配满,以灵活机动的方式调整出现的泡沫渣.

(3)坚持钛渣品位由低到高的方式进行配料.

(4)重视延长埋弧期的时间,让炉底的温度得到提高。

(5)提高送电质量,即提高钛渣的电导性。

(1)四加::就是把握加料时机,控制冶炼进度;今后可以大力实施多点布

料中的相间加料制度,以减少料层的厚度。

2、控制泡沫渣的方法:

【一加二降三提四停】

一加:即从中心加入钛矿,以瞬间降温,降下电极位置。

二降:低电压小电流(档位12-16、电流35000A以下)

采用低电压小电流,减少炉内表层物料的热量的输入,使整个炉内物料达到热量上的平衡,以此来达到消除泡沫渣效果。在低电压小电流运行将近5分钟后,电极位置有下降的趋势或者维持在原有高度,此时缓慢降档,电极位置达到正常冶炼状态,再根据电炉冶炼情况来调整电流电压。

三提;若泡沫渣反复出现且位置较高,可提升电极至断弧。再配以一定的钛精矿加入,经炉门观察液面下降至合适位置后再送电。

四停:严重的泡沫渣要及时停电冷却,时间要给够。

四、改进后效果:

经过这几年钛渣冶炼的摸索,只要采取了以上措施,泡沫渣出现的几率大为减少,所带来的效果是很显著的。

1、改善了炉膛形状,增大了加料量,也提高了钛渣产量。

2、确保合适的电极位置,能够充分化好每批料,为生产的连续打下基础。

3、减少了泡沫渣的高位持续,提高了电极绝缘和延长了炉盖寿命.减少停炉时间,提高了设备作业率。

4、可以提高每批加料量也能及时补加料以缩短冶炼周期。

5、炉前电耗得到控制,真正的做到降本增效,节能减排的工作。

钛渣的冶炼原理

钛渣的冶炼原理 1.钛渣冶炼的原理及工艺流程 电炉熔炼钛渣的实质是钛铁矿与固体还原剂无烟煤(或石油焦或叫焦炭)等混合加入电炉中进行还原熔炼,矿中铁的氧化物被选择性地还原为金属铁,钛的氧化物被富集在炉渣中,经渣铁分离后,获得钛渣和副产品金属铁。钛精矿的主要组成是TiO2和FeO,其余为SiO2、CaO、MgO、Al2O3和V2O5 等,钛渣冶炼就是在高温强还原性条件下,使铁氧化物与碳组分反应,在熔融状态下形成钛渣和金属铁,由于比重和熔点差异实现钛渣与金属铁的有效分离。期间可能发生的化学反应如下: Fe2O3+C=2FeO+CO (1) FeO+C=Fe+CO (2) 以钛精矿为原料,敞口电炉冶炼钛渣的工艺流程如图1所示。 钛渣 图1、工艺流程图 2. 电炉冶炼的主要特征

钛渣是一种高熔点的炉渣,钛渣熔体具有强的腐蚀性、高导电性和其粘度在接近熔点温度时而剧增的特性,而且这些性能在熔炼过程中随其组成的变化而发生剧烈的变化。 2.1钛渣的高电导率和熔炼钛渣的开弧熔炼特征 2.1.1钛渣的高电导率 钛铁矿在熔化状态具有较大的电导率,在1500℃时为2.0~2.5ks/m,在1800℃为5.5~6.0ks/m,随着还原熔炼钛铁矿过程的进行,熔体组成发生变化,FeO含量减少,而TiO2和低价钛氧化物的含量增加,因此其电导率迅速上升,如加拿大索雷尔钛渣在1750℃电导率为15~20ks/m,而一般的炉渣在1750℃电导率为100s/m,可见钛渣的电导率比普通冶金炉渣的电导率高数十倍甚至几百倍,比普通离子型电解质(如Nacl液体在900℃时的电导率约为400s/m)的电导率都高很多,且温度变化对钛渣电导率影响不大,这些都说明钛渣具有电子型导电体的特征。 2.1.2熔炼钛渣电炉的开弧熔炼特征 钛渣的高电导率决定了熔炼钛渣电炉的开弧熔炼特征,即熔炼钛渣的热量来源主要依靠电极末端至熔池表面间的电弧热,这就是所谓的“开弧冶炼”,而在高电阻炉渣的情况下,电极埋入炉渣,熔炼过程的热量来源主要是渣阻热,即所谓的“埋弧熔炼”。在敞口电炉熔炼钛渣的初期具有短期的矿热炉埋弧冶炼的特征,随着熔炼过程的深入进行,开弧冶炼的电弧特征越来越明显。熔炼过程超过1小时后,电弧热所占比例可达90%,熔炼过程的后期电弧热所占比例可达97%。 2.2.钛渣熔点和粘度特性对熔炼过程的影响 2.2.1钛渣熔点对熔炼过程的影响 钛氧化物中的钛-氧键很牢固,它们的熔点很高。钛渣主要是由钛的氧化物组成,因此它的熔点很高,按其组成其熔点在1580~1700℃之间,钛渣的熔点随其中TiO2含量的增加而升高,熔炼钛渣要在高温下进行,这就要求热量必须高度集中在还原熔炼区。 2.2.2钛渣粘度对熔炼过程的影响 钛渣具有短渣的特性,在温度高于熔点处于完全熔化的钛渣熔体具有很低的粘度,但当渣温接近其熔点时,其粘点急剧增加。这是因为钛渣的结晶温度范围很窄,温度接近熔点时少量结晶固体析出悬浮在熔体中,使熔体变得十分粘稠,造成渣流动性变坏,出炉时困难。 2.3钛渣熔体的高化学活性对电炉的影响 钛渣的主要成分是TiO2 ,但还含相当数量的低价钛氧化物,因而具有极高的化学活性,几乎能与所有的金属和非金属材料发生作用。事实上钛渣熔体能很快的腐蚀普通的耐火材料,所以钛渣的还原熔炼是在炉衬上

含钛铁水脱硫及转炉冶炼实践

含钛铁水脱硫及转炉冶炼实践 用钛矿或钛球进行高炉护炉操作已是高炉操作者常用的护炉方法。其机理是当使用钛矿护炉时,Ti(C,N)将在高炉炉缸铁浴内形成并沉积于炉缸受侵蚀部位的工作面或砖缝之中,而Ti(C,N)的沉积或团聚物被认为起到了保护炉衬的作用。 2008年以后,鞍钢股份炼铁总厂开始使用钛球进行高炉护炉,由于最初无钛球护炉经验,铁水的钛含量显著升高且控制不稳定。在未加钛球前,铁水钛稳定控制在0.05%以下,使用钛球护炉后,铁水钛提高到0.12%~0.20%,最高时甚至超过0.20%。铁水钛含量升高,对炼钢工序的操作产生诸多不利影响,主要体现在:脱硫工序扒渣铁损增加,转炉冶炼工序熔剂消耗增加,溅渣护炉效果变差。因此,研究针对含钛铁水的冶炼技术,对降低冶炼成本、减轻或消除铁水钛含量升高对炼钢操作的影响具有重要意义。 铁水钛含量升高的不利影响 对铁水预处理脱硫工序的影响。在铁水预处理脱硫时,如果钛含量较高,镁钙复合喷吹的载气氮气与铁水中的碳、钛极易结合生成Ti(C,N),且易与CaO结合,恶化钙粉的脱硫效率,并使得脱后渣黏稠,增加喷吹粉剂消耗;同时由于渣黏稠,喷吹时进入渣中的铁液被包裹在渣中,造成扒渣工序铁损增加。

对转炉炼钢的影响。在转炉冶炼过程中,钛的氧化物与石灰中的CaO 结合使得白灰利用率降低,转炉势必增加渣料消耗,造成熔剂成本增加。同时渣量增加,直接导致转炉冶炼吹损增加,并且白灰利用率的降低增加了转炉脱磷负担,冶炼终点补吹次数增加,造成终渣FeO含量高,在增加铁损的同时恶化溅渣护炉效果。 含钛铁水脱硫工序冶炼实践 目前国内外针对含钛铁水脱硫的应对策略。德国等欧洲国家钢厂对采用加钒钛矿护炉的铁水,采取的办法是将冰晶石(K3AlF6)作为铁水熔剂制作成粉末与流化石灰粉混合后,通过脱硫喷枪喷入铁水中。由于冰晶石熔点仅为600℃ ,能显著降低脱硫渣的熔点。为防止氮化物的生成,可将脱硫载气氮气用氩气代替。 由于国内冰晶石资源贫乏,进口或国内人造冰晶石的价格过高,而鞍钢的氩气资源不足,因此须要研究新的方法以降低或彻底杜绝高钛铁水对铁水脱硫的影响。 渣铁分离剂的开发和使用。为了减少扒渣铁损,鞍钢开发了一种渣铁分离材料。该材料是通过添加适量的钠盐和钾盐来改善铁渣成分,可以通过喷枪喷入铁水中,也可在喷吹前加在铁水表面或折铁前加在铁水罐底,通过喷吹或折铁的动力学作用使其与铁水渣充分反应,生成低熔点物质,从而降低脱硫渣熔点,使得渣中的铁珠顺利下落至铁水融池,最后减少扒渣铁损。采用渣铁分离料后,铁水渣流动性提高,

铜冶炼水淬渣中铜的资源化利用研究

铜冶炼水淬渣中铜的资源化利用研究 本文采用湿法冶金技术对我国铜冶炼过程中产生的大量水淬渣进行铜的资 源化利用研究,研究采用氧化氨浸法对铜冶炼水淬渣中铜进行浸取,并考察浸取 时间、浸出温度、过硫酸铵用量、氨水浓度、渣样粒度大小、搅拌转速、液固比对铜浸出率的影响,得出铜浸出的最佳条件。浸出后的溶液与硫化铵反应,制取硫化铜,并研究硫化铵用量、反应温度、机械搅拌速度、反应时间对浸出液中铜回收率及硫化铜纯度的影响,得出影响浸出液中铜回收率及硫化铜纯度的最佳条件。 具体实验结果如下:(1)取10g渣样,当控制温度为50℃,浸取时间为120min,粒径大小为100目,转速为400r/min,(NH4)2S2O8用量为渣样的0.7倍,NH3·H2O 浓度为10mol/L时考察液固比(m/m)对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳液固比为4:1(m/m),此时,Cu浸出率为49.1%,Zn浸出率为 0.32%。 (2)取10g渣样,当控制液固比(m/m)为4:1,浸取时间为120min,粒径大小为100目,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察温度对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳温度为35℃,此时,Cu的浸出率为53.5%,Zn的浸出率为0.15%。 (3)取10g渣样,当控制液固比(m/m)为4:1,温度为35℃,粒径大小为100目,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察浸取时间对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳浸取时间为180min,此时,Cu的浸出率为58.3%,Zn的浸出率为0.23%。 (4)取10g渣样,当控制液固比(m/m)为4:1,温度为35℃,浸取时间为180min,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察粒径大

高钛渣生产新工艺

高钛渣生产新工艺 这种新技术的核心机理在于"超细粉"、"高活化"。在超细粉条件下,启动还原反应的温度可以显著降低,从而实现低温冶金。从热力学来说,粉体的表面能增加可以降低吸热反应的自由烩;从动力学来说,反应表面积的增加加快了反应速度。近期的工作表明,这种新工艺不仅能处理铁矿粉,同样可运用于处理钒钛磁铁矿和钛铁矿等矿种。 我国的钛蕴藏极其丰富,以Ti02计,达9.65亿吨,占世界总储量的38.85%,居首位。其中90%以上分布在攀枝花西部地区。攀西地区的钒钛磁铁矿是多金属共生的世界特大型矿床,其中含钛、钒、铬等多种金属。因资源复杂、品位较低、细颗粒选矿困难等原因,以钢铁为主业的现有生产系统对钛资源的利用率仅为14.5%。每年排放含Ti02约22%的高钛型高炉渣300万吨,经济损失巨大,资源浪费极其严重,并且对长江上游造成严重的环境污染,甚至威胁三峡库区的水质安全。因此,研发清洁高效的钛、钒多金属综合利用与生产的新技术、新方法,具有重大战略意义和迫切性。 传统的高钛渣生产采用电炉熔炼法。由于电炉熔炼法属于高温冶金,能耗高是其固有的特点,生产1吨高钛渣,大约需要3000kWh的电能,而实际上将铁从钛铁矿中还原出来所需的化学能量仅在500kWh左右,能量的有效利用率仅在17%左右,非常低。另外,电炉熔炼法使用冶金焦或石油焦作还原剂,会造成环境污染。

钢铁研究总院赵沛等人运用煤基低温冶金流程的原理,发现当钛精矿粉体的平 均粒度减小到10微米左右时,能使它的还原温度降低到600℃左右。实验证明,在600°C下恒温1小时,还原率可以达到95%以上。 低温快速还原生产高钛渣的具体流程为,将钛铁矿粉和煤粉分别在高效球磨机 中磨细成超细粉,然后将它们按一定比例混匀,造球后在加热设备中还原。还 原后的产品经冷却后磨碎通过磁选方式得到铁粉和高钛渣。 初步工作表明,这种新工艺的最大特点是降低冶炼能耗。由于冶炼温度低(600℃),物料(高钛渣)的物理热量仅相当于电炉熔炼法的1/4左右。其次,600℃左右时的化学反应较单一,化学反应耗热少,约为电炉熔炼法的60%左右。还有,在低温条件下,尾气冷却水带走的热量也仅相当于电炉熔炼法的1/4左右。因此,低温法冶炼高钛渣的能量相当于电炉熔炼法的1/3左右。这种新工 艺除了可以用电加热外,也可采用煤,这样可进一步降低生产成本。

铜冶炼炉渣混合浮选工艺研究及生产实践

铜冶炼炉渣混合浮选工艺研究及生产实践 张鑫,惠兴欢,朱江,杞学峰,王礼珊 (楚雄滇中有色金属有限责任公司,楚雄) 摘要:本文针对楚雄滇中有色金属公司铜冶炼过程产生的电炉渣、转炉渣进行了混合浮选研究。混合渣含铜,磨至细度为后进入浮选作业,通过二次粗选、二次扫选、粗精矿不磨三次精选的工艺流程,可获得铜精矿品位为,尾矿品位以下,回收率以上的工艺指标。在实际生产中,通过对工艺流程的改造,又进一步优化了浮选指标。 关键词:电炉渣;转炉渣;浮选 , , , , ( . ,,) :( ) . . ( ) . , ( ) . . : , , 引言 我国铜炉渣数量大,其中大量铜及相当数量的贵金属和稀有金属长期堆存,占用大量用地,严重污染环境。随着冶炼技术的发展,髙效率熔炼炉的应用,炉渣含金属量还有上升趋势。因此,开发利用铜炉渣资源具有重要意义和十分可观的经济效益。 近年来,国内外很多单位对铜渣的利用进行了不同规模的研究,主要集中在以下两方面:()提取有价金属[];()生产化工产品和制备建筑材料等[].尽管取得一定成绩,但是铜渣综合利用水平低,循环力度弱的状况仍未改变。铜渣的贫化方法有熔炼法和缓冷选矿法,选择何种方法,要根据渣中金属存在形态和经济效果的对比来决定。魏明安[]研究了转炉渣的特性和铜转炉渣选矿的一般特点。并在此基础上,针对国内某铜转炉渣中铜赋存状态复杂、嵌布粒度细及难磨等的特点,提出处理该转炉渣的适宜技术条件为阶段磨矿阶段选别,在浮选机充气量3.3L和高浓度浮选的条件下,取得了铜精矿铜品位、回收率为的实验室闭路试验指标。云南耿马铜渣由于其含铜品位低,回收利用难,研究结果表明,浮选可以很好地对其进行回收利用,浮选条件为:磨矿细度-0.074mm占、捕收剂用量为162g、活化剂硫化钠用量为3.4kg的条件下得到了品位、回收率的较好试验结果[]。宋温等[]针对某转炉冶炼厂的炉渣硬度大、难磨且氧化程度较高的情况,采用一粗一精二扫中矿循序返回的浮选流程。药剂采用丁黄药、松醇油。原矿品位为,得到了铜精矿品位,铜回收率的浮选指标。 采用选矿方法从炉渣中可以回收大部分铜,不但可获得一定的经济效益,而且还可实现铜资源最大限度的合理利用,这符合当前发展循环经济,建设节约型社会的基本国策。 铜渣的工艺矿物学研究 楚雄滇中有色金属有限责任公司冶炼厂采用的铜冶炼工艺为:富氧顶吹熔炼电炉沉降转炉吹炼,沉降电炉排出的渣含铜品位约~左右,转炉渣不返入电炉(品位约),转炉渣分解破碎后大部分进入艾萨熔炼系统,使得生产成本急剧增加,同时也会造成电炉渣含铜增加,每年损失大量铜金属,为此,需要对炉渣贫化进行专门研究。 铜渣的物理特性 楚雄滇中有色金属有限责任公司冶炼铜渣经缓冷后,外观呈黑色,松散容重2.4g,密度。性质比较稳定,嵌布粒度较细。铜渣含铁量很高,故它的质地致密、坚硬,莫氏硬度达到度,

钛渣生产流程

薛工: 现将几个问题的意见写给你,供参考 1.钛渣在钛产业链中的地位 1.1钛产业链目前的大致走向 钛精矿---硫酸法制钛白粉 钛精矿---酸溶性钛渣---硫酸法钛白 钛精矿---高钛渣---四氯化钛---氯化法钛白 钛精矿---高钛渣---四氯化钛---海绵钛---钛合金 钛精矿---钛铁 钛精矿---钢结碳氮化钛---超硬材料 用钛精矿直接生产钛白时,铁在酸溶时生成硫酸铁,为脱Fe,需加铁粉将其还原成硫酸亚铁,再冷冻结晶后,从钛酸液中沉淀出来。才能保证钛白质量。因这一路线的酸耗大,流程长,逐渐被钛渣制钛白粉代替。 用酸溶性钛渣生产钛白,因大部分铁已在冶炼中脱出,酸溶时耗酸少,并可减少硫酸铁还原和硫酸亚铁结晶工序,可降低成本,近年来发展很快。 酸溶钛渣和高钛渣的区别在于钛品位高低,钛渣的酸溶性好坏取决于物相,在以Ti3O5为基,溶解FeO、MgO等组成的黑钛石相酸溶性最好。因此酸溶性钛渣需保存一定的FeO量,MgO存在是有益的。TiO2的还原程度也不能高。通常用指标Ti2O3/ TiO2的比值衡量。而高钛渣是做四氯化钛的原料,TiO2与氯气反应,要求Mg,Ca,Fe含量少,钛高。对钛的价位没有特别要求。 2.两段法生产钛渣,因在固相还原时,铁的金属化率可控,TiO2的还原成低价钛

也可控。因此这种工艺生产的钛渣容易满足不同用户的要求。 3.由钛精矿富集成富钛料有人造金红石法,钛渣法等,钛渣的优点是钛和铁都能应用。特别是高铁,低钛原料,铁的回收是一个重要的利润来源。 将铁只作为渣铁回收是最差的方法,只有在设计对将铁的处理一并考虑,将熔分的铁水处理成带合金元素的金属料,是提高附加值的重要方法。 4.钛铁矿固相还原的原理 ①钛铁矿的组成TiO2●FeO ②在液态还原时其中的反应 FeO●TiO2→FeO+ TiO2 FeO→Fe TiO2→Ti3O5→Ti2O3→TiO→Ti→TiCN ③钛渣一段法生产时,铁与钛的还原都能进行,铁在低温下完成还原,但要保证渣的流动性,须提高炉温。钛还原成低价钛的趋势增加,当生成较多的TiCN时,渣稠,出渣就很困难了,操作时应采用低温,但难度较大。 ④合理的方法是将Fe还原过程放在固相完成。 ⑤钛精矿中除钛铁矿外同时还有磁铁矿等物相,固相还原时,铁还原遵循逐级还原原理。 Fe2O3→Fe3O4→FeO→Fe 而TiO2还原为却与液态还原不同,为非逐级还原。其过程为: TiO2→Ti3O5→TiCN ⑥可见,两段法生产钛渣时,质量比一段法易控,可使用较低的炉温,电耗低。

钛的冶炼

金属钛的冶炼 更新时间:2013/04/25 10:57:25 浏览次数: 2957 金属钛的冶炼: 钛在地壳中的含量十分丰富,按丰度值算占第九位。解放前,我国的钛锆铪冶炼工业是空白,虽然资源丰富,但未得到利用。解放后,开始建立我国的钛锆铪冶炼和加工工业,适应了我国尖端技术和相关工业部门对这些金属和化合物的需要。现在,我国的钛锆铪工业都在积极发展中。化学性质 钛位于元素周期表中第四周期第IV副族,原子序数为22。钛的化学性质相当活泼,可与很多元素反应或形成固溶体。主要物理性质,熔点;钛的熔点为1660℃。沸点钛的沸点为3302℃。超导性,耐蚀性:不锈钢;机械性质 纯钛的机械强度比铁大一倍,比铝大5倍。钛具有可塑性,钛合金在航天航空工业上的应用,钛具有质轻、强度高,耐热、耐低温性能。钛合金在化工、冶金上的应用:钛的耐蚀性能好,日常生活领域,钛和钛合金具有质轻、强度高、耐腐蚀并兼有外观漂亮等综合性能。人造关节,假肢。超导材料,钛镍合金具有形状记忆功能,在镍含量xNi为49.5%~51.5%的组成范围内,xNi每变化0.01,相变温度约变化10℃。钛镍合金还具有超弹性,它的耐磨性能也很优异。钛铁合金具有储氢功能,FeTi合金的吸放氢气可在接近常温﹑常压条件下进行,而且,储氢容量也很大。钛铌合金具有超导性,

钛在地壳中的丰度为0.56%,按元素丰度排列居第九位,仅次于氧、硅、铝、铁、钙、钠、钾和镁。钛属于典型的亲岩石元素,存在于所有的岩浆岩中。钛的分布极广,遍布于岩石、砂土、粘土、海水、动植物,甚至存在于月球和陨石中。钛的化学活性很强,所以自然界中没有钛的单质存在,总是和氧结合在一起。在矿物中,钛以氧化物(金红石)形式和钛酸盐形式存在,钛还经常与铁共生(钛铁矿)。金红 石是一种黄色至红棕色的矿物,其主要成分是TiO2,还含有一定量的铁、铌和钽。铁是由于它与钛铁矿共生的结果。由于Ti4+与Ni+、Ta5+ 离子的相似性,铌和钽常伴生在钛矿石中。93%~98%,钛铁矿理论分子式为FeTiO3,其中TiO2理论含量为52.63%。但钛铁矿的实际组成是与其成矿原因和经历的自然条件有关。可以把自然界的钛铁矿看成是FeO-TiO2和其他杂质氧化物组成的固溶体。40%~60%。

中和渣资源化利用研究进展

Sustainable Development 可持续发展, 2020, 10(4), 501-506 Published Online September 2020 in Hans. https://www.wendangku.net/doc/ac10552588.html,/journal/sd https://https://www.wendangku.net/doc/ac10552588.html,/10.12677/sd.2020.104063 中和渣资源化利用研究进展 张艺婷1,2,尹少华1,2*,李浩宇1,2,朱镕1,2,张利波1,2* 1昆明理工大学冶金与能源工程学院,云南昆明 2昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,云南昆明 收稿日期:2020年5月31日;录用日期:2020年8月17日;发布日期:2020年8月24日 摘要 中和渣通常含有锌、铜、镍、钴、锗等有价元素,是综合回收重要的二次资源。目前国内中和渣处理方法大致有三类:1) 通过火法处理回收有价元素;2) 通过湿法处理回收有价元素;3) 替代水泥在建筑领域或作为辅剂进行直接利用。本文总结归纳了以中和渣为研究对象,针对不同有价金属综合回收的工艺流程及过程参数等,为冶金企业的工艺选择提供参考依据。 关键词 中和渣,二次资源,有价元素,资源化利用 Research Progress on Resource Utilization of Neutralization Slag Yiting Zhang1,2, Shaohua Yin1,2*, Haoyu Li1,2, Rong Zhu1,2, Libo Zhang1,2* 1Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming Yunnan 2State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming Yunnan Received: May 31st, 2020; accepted: Aug. 17th, 2020; published: Aug. 24th, 2020 Abstract Neutralization slag usually contains some valuable elements, such as zinc, copper, nickel, cobalt and germanium, and it is an important secondary resource for comprehensive recovery. At present, *通讯作者。

钛渣冶炼炉新工艺介绍

关于钛渣冶炼炉的新工艺介绍 前言 本方案瞄准国际先进技术,借鉴国内引进的成败实例,结合我团队自主研发并已成熟应用的成果而制定。 本方案所采用的各种“非常规”措施,最终将体现为: 1.节能,比常规交流电炉耗电低25%~35%,真正实现低成本运行; 2.生产环境优良,低噪音、全密闭,突显“人性化”,尾气排放可满足新国标;由于工艺上的改革,使除尘器过滤面积、烟管面积、风机及功率,与传统工艺的除尘器相比,≦1/8,并且通过新工艺,使被过滤的烟气温度有效、可靠地控制在200℃以下,促使滤袋寿命成倍地延长。 3.生产过程简化,实行计算机控制,在原编制上可大幅削减冶炼工人; 4.电炉设计上,倾向于多功能——满足冶炼多种产品(随意可调的宽幅电压); 5.产品生产的质量特别稳定、易控。 6.电炉本体故障率特低,平时只需巡视和加注润滑等基本保养。 本方案其它特点: 1.独创的底电极结构,从根本上杜绝了铜质针刺因高温频繁烧蚀的断电事故,彻底保障了导电可靠性。 2.电炉功率因数高(只考虑动力补偿);同时,在电气设计上已消除了谐波危害。 3.采用可控硅整流方式,能很方便地化解凝炉(非正常停电)、因SiC沉积造成的炉底上涨现象。 4.原料连续入炉、大容量电炉可实现产品连续出炉。 5.利用电炉产生的高温烟气烘干原料及煤气回收发电技术。烟气进入原料干燥装置降温后,再进除尘器除尘,由煤气风机送至煤气发电车间,全程安全可控。 根据国家对铁合金、电石等冶炼行业的准入限制,为适应国家可能出台的新政策,综合考虑钛渣炉性价比,建议钛渣炉的单台容量≧2万kVA。 工信部规定,容量在6300KVA以下的交流矿热炉逐步淘汰,新上的交流矿热炉容量必须≥25000KVA,直流炉容量≥12500KVA。内蒙、贵州及四川攀枝花等地已经在落实。 一台2万KVA空心电极直流密闭炉,可年产主产品钛渣67000吨左右,副产品半钢5000吨左右。与传统冶炼方式相比,生产一吨主产品可节省电能1200~1800度。 建造一台生产钛渣的2万KVA空心电极直流密闭炉,约需人民币6000~7000万元。投产后1~2年即可收回投资。 直流密闭炉节能效果显著,为国内首创。建设单位可以向国家工信部申报节能减排项目,寻求国家奖励或资助。贵州兴义某企业计划新建4台30000万KVA半密闭直流铁合金炉,已获得当地政府3亿元的贴息贷款扶植。内蒙古卓资县一铁合金企业新建一台16500KVA全密闭直流铁合金炉,已获得当地政府4百万元资助,正在向工信部申请立项。 目前,发达国家中的钛渣炉,容量都比较大,多采用全封闭,湿法除尘和回收煤气,并向干法除尘转变。这些大型电炉采用计算机进行控制,从原料准备到产品出炉全过程自动化,生产效率高,产品质量稳定,环保设施完善,有利于资源的综合利用,也是中国钛渣生产发展的方向。国内某企业从南非引进的3万kVA全密闭直流高钛渣炉,已经将高钛渣的吨产电耗从国内普遍的3500kwh/t~4500 kwh/t降至2600kwh/t~ 2800kwh/t,大大降低了生产成本(注:由于该企业对引进技术吸收消化严重不足,加之过份神秘化的保密隔绝,导致试生

一种锰铝钛铁合金生产工艺的介绍

一种锰铝钛铁合金生产工艺的介绍 作者: 所属系别:锰 关键字:锰 发布日期: 2010年01月11日 17:56 编者按: 本发明涉及一种用准沸腾钢工艺冶炼焊条钢的脱氧及合金化添加剂,特别是锰铝钛铁合金。 目前,用准沸腾钢工艺冶炼焊条钢的脱氧及合金化添加剂主要为锰铝铁合金,如中国专利92107299公开的“铝锰铁复合脱氧剂”,其组分为(重量百分比):铝20—26%,锰30—35%,铁38—48%,余量为杂质。用铝锰铁合金生产的焊条在使用时有时出现焊缝开裂现象,其原因之一是由于焊缝金属中氢、氮的溶解析出所致,特别是当钢中同时含有游离的氢、氮时,会显著增加焊缝金属的冷脆倾向。虽然可以通过对钢材的预热及严格烘烤部分消除氢的不利影响,但是氮的有害作用则难以消除。 本发明目的是提供一种锰铝钛铁合金,作为脱氧和合金化添加剂,消除氮、氢的影响,减少生产的焊条在使用时出现焊缝开裂现明,解决现有技术存在的上述问题。 本发明目的是通过如下技术方案实现的。 锰铝钛铁合金各组分的重量百分比为:锰30—40%,铝15—28%,钛1.0—4.0%,铁23—43%,其余为杂质,杂质中包括碳、硅、磷、硫等。 本发明较佳的成分范围是:锰36—40%,铝15—19%,钛1.5—3.0%,铁28—38%,其余为杂质,杂质中包括碳、硅、磷、硫等。本发明最佳的成分范围是:锰36%,铝19%,钛2.0%,铁38%,其余为杂质,杂质中包括碳、硅、磷、硫等。

采用本发明锰铝钛铁合金作为冶炼焊条钢的脱氧及合金化添加剂除具有普通锰铝铁合金的脱氧及合金化作用外,还具有如下特点: 1.由于含钛而形成的三元复合脱氧交互作用进一步提高了金属的脱氧能力。 2.由于钛和氮的亲和力高于铝与氮的亲和力(TiN和AlN二才在1500℃的生成自由能差为-10101.2J/.atom),当钢中二者含量相同时优先生成TiN。 3.由于钛和氧结合生成TiO2的能力远小于铝和氧生成Al2O3能力(二者在1600℃生成自由能之差为-205540.5J/g.atom),因此在同等条件下铝优先与氧结合形成Al2O3,Ti则残留在钢中。 4.焊条中的碳、硅、铝等的含量应尽可能低,而含Ti为0.02%时对焊条钢电阻率的不利影响要比上述元素低得多。 5.由于焊条钢中含有0.006%氮时,它与0.02%的钛达到最佳配比1.15≤Ti/N≤3.4,从而显著改善焊缝性能,这是因为钛固定了含缝金属中的氮形成的TiN,致使由氢、氮引起的冷脆性得到抑制,而TiN粒子对氢捕获有陷阱作用,亦使氢的不利作用难以发挥,TiN粒子的细化晶粒作用,使解里断裂单元得到细化,从而提高缩性和改善焊缝韧性,减少焊缝开裂。 以下结合实施对本发明作进一步叙述: 附表为本发明实施例中各组分的含量(重量百分比) 该合金由中频感应炉冶炼,所用原料为复合国家标准。有确定化学成分的锰铁、钛铁和纯铝,所用废钢为含碳量在0.3%以下的低碳钢,按各元素的吸收率严格计算各元素的加入量。开炉前,向炉辟加入少许覆盖剂,然后加入20%铝,同时加入废钢,废钢开始深溶

铜冶炼行业现行政策条件 2020版

铜的冶炼仍以火法冶炼为主,我国铜产量约占世界铜总产量的85%。为进一步加快铜产业转型升级,促进铜冶炼行业技术进步,提升资源综合利用率和节能环保水平,推动铜冶炼行业高质量发展,根据国家有关法律法规和产业政策,经商有关部门,工业和信息化部制定了《铜冶炼行业规范条件》,下面我们一起来看一下2019年铜冶炼行业规范条件主要有哪些内容。 2019年铜冶炼行业规范条件 为推进铜冶炼行业供给侧结构性改革,促进行业技术进步,推动铜冶炼行业高质量发展,制定本规范条件。 本规范条件适用于已建成投产利用铜精矿和含铜二次资源的铜冶炼企业(不包含单独含铜危险废物处置企业),是促进行业技术进步和规范发展的引导性文件,不具有行政审批的前置性和强制性。 一、企业布局 (一)铜冶炼项目须符合国家及地方产业政策、土地利用总体规划、主体功能区规划、环保及节能法律法规和政策、安全生产法律法规和政策、行业发展规划等要求。 二、质量、工艺和装备 (二)铜冶炼企业应建立、实施并保持满足GB/T19001要求的质量管理体系,并鼓励通过质量管理体系第三方认证。阳极铜符合行业标准(YS/T1083),阴极铜符合国家标准(GB/T467),其他产品质量符合国家或行业相应标准。

(三)利用铜精矿的铜冶炼企业,应采用生产效率高、工艺先进、能耗低、环保达标、资源综合利用效果好、安全可靠的闪速熔炼和富氧强化熔池熔炼等先进工艺(如旋浮铜熔炼、合成炉熔炼、富氧底吹、富氧侧吹、富氧顶吹、白银炉熔炼等工艺),不得采用国家明令禁止或淘汰的设备、工艺。鼓励有条件的企业对现有传统转炉吹炼工艺进行升级改造,提升无组织烟气排放管控水平。须配置烟气制酸、资源综合利用、节能等设施。烟气制酸须采用稀酸洗涤净化、双转双吸等先进工艺,烟气净化严禁采用水洗或热浓酸洗涤工艺,硫酸尾气需设治理设施。配备的冶炼尾气余热回收、收尘工艺及设备须满足国家《节约能源法》《清洁生产促进法》《环境保护法》等要求。 (四)利用含铜二次资源的铜冶炼企业,须采用先进的节能环保、清洁生产工艺和设备。企业应强化含铜二次资源的预处理,最大限度进行除杂、分类。禁止采用化学法以及无烟气治理设施的焚烧工艺和装备。冶炼工艺须采用NGL炉、旋转顶吹炉、倾动式精炼炉、富氧顶吹炉、富氧底吹炉、100吨以上改进型阳极炉(反射炉)等生产效率高、能耗低、资源综合利用效果好、环保达标、安全可靠的先进生产工艺及装备。同时,应根据原料状况配套二噁英排放控制设施或净化设施,须使用预热空气和余热锅炉等设备。禁止使用直接燃煤的反射炉熔炼含铜二次资源。禁止使用无烟气治理措施的冶炼工艺及设备。 (五)鼓励有条件的企业开展智能工厂建设。建立铜冶炼大数据平台,广泛应用自动化智能装备,逐步建立企业资源计划系统(ERP)、数据采集与监视控制系统(SCADA)、制造执行系统(MES)、产品数据管理系统

《铜冶炼炉渣回收铜》国家标准

《铜冶炼炉渣回收铜》国家标准 编制说明 铜陵有色金属集团控股有限公司 2010年8月

《铜冶炼炉渣回收铜》国家标准编制说明 1、任务来源 根据中色协综字[2010]015号文件,关于下达2009年第二批有色金属国家、行业标准制(修)订项目计划通知,《铜冶炼炉渣回收铜》由铜陵有色金属集团控股有限公司负责起草,参加起草单位大冶有色金属集团控股有限公司。负责起草单位接到通知后立即成立标准编制小组。经过半年的相关准备,制定出本讨论稿。 2、铜冶炼炉渣回收铜产品简介 目前国内铜冶炼所采用的主要是熔炼和吹炼二道炼铜工艺,以往第一道工艺所产生的熔炼渣由于含铜量较低基本上作为废料丢弃,也有部分作为建筑行业添加剂销售。第二道工艺所产生的吹炼渣由于含铜量相对较高,有的厂家返回上道工序使用,有的采用选矿富集再利用。 由于近年来铜价较高,不少厂家对含铜量较低熔炼渣在投入和产出比进行了测算;同时,随着选矿回收技术的提高,各冶炼厂纷纷上马选矿厂回收熔炼渣中铜金属。 无论是熔炼渣还是吹炼渣所回收的铜,与井下和地表开采的铜矿物所选的铜精矿相比除含硫品位较低和粒度较细外,其性质基本相同,各冶炼厂都是把该产品与铜精矿配料使用。 3、标准编制前期工作 在编制标准期间,首先,进行了相关信息和资料的搜集。标准编制小组于今年6月至7月,先后前往云南铜业公司、大冶有色金属控

股公司、江西铜业公司、金川有色金属公司、中条山有色金属集团公司、祥光铜业公司、铜陵有色稀贵金属公司、铜陵有色金口岭矿业公司、铜陵有色天马山矿业公司进行实地考察调研,收集了大量的相关数据和资料,并取样进行了分析。 通过调研,基本掌握国内铜冶炼炉渣回收铜的生产和需求厂家的情况,覆盖面达到90%以上,应当说具有广泛的代表性。具体收集和分析的相关数据见附表。 4、标准编制原则 4.1本标准格式按照GB/T1.1-2009最新版本要求编写。 4.2本标准参考YS/T 318-2007《铜精矿》标准进行编写。 4.3本标准编制遵循“先进性、实用性、统一性、规范性”的原则,使标准制定具有可操作性。 4.4本标准充分考虑了使用单位的意见和建议。 5、标准中主要内容确定 5.1关于标准名称 标准的名称有三个可采用:“铜冶炼炉渣回收铜”、“铜冶炼炉渣回收铜精矿”、“铜冶炼炉渣渣精矿”,我们建议采用“铜冶炼炉渣回收铜”作为该产品的标准名称。该产品名称确定是为了区别于井下或地表开采铜矿物所选的铜精矿,来源于铜冶炼中。 5.2关于产品分类 根据调研所收集和取样分析的资料,按照精矿含铜品位高低不同确定为三个品级,三级品含铜品位不小于15%,一级品含铜品位不小

高钛渣生产工艺规程

高钛渣生产工艺技术规程

高钛渣生产工艺技术规程 一、总则 为了更好的落实公司对高钛渣生产、质量方针,以及更好的完成公司下达的生产计划,做到文明生产和安全生产,提高公司的经济效益和社会效益,特制定本公司的高钛渣生产工艺技术规程。 二、高钛渣生产工艺流程图(见下页) 三、生产工艺规程 1、原料 1.1严格按照配料单配料 1.2所有原材料分别准确检斤,按照配料单的比例均匀混合。 1.3混合好的原材料,按照指定的位置进行堆放,严禁与其它炉料混合 1.4如果有偏加料的炉料,指定专门的堆放位置,供冶炼偏加使用。 1.5所有原料都不得混入其它杂质,必要时,采取相关的措施。 1.5运行混料设备时,要进行工作前的相关检查,只有设备

高钛渣生产工艺流程图

工作状态良好,方可启动混料操作。 1.6所有的炉料,堆放要整齐规整,地面保持清洁,防止杂质的进入。 1.7如有配料发生变化,要及时通知冶炼车间,并告知不同料比的混合炉料的堆放地址,防止冶炼上错料 1.8所有人员,进入操作现场,都必须佩戴好劳保用品,防止不安全因素的产生。 1.9生产工具,在操作完成后,必须撤离现场,按照指定的位置整齐摆放。 2、冶炼 2.1原料主要成分: 2.2基本化学反应方程式 TeTiO3+C==TiO2+Fe+CO

2.3化学反应条件 开始反应温度1116K,所以,为了达到铁还原率95%以上,要远远高于这个温度,也就是说,冶炼要达到熔分效果,冶炼温度要达到16000C以上。 2.4高钛渣的冶炼,是阶段性连续式冶炼,也是间歇式冶炼方式,即一次性加料到出炉,再进行下一炉的冶炼。 2.5冶炼设备 矿热熔炼电炉,也就是矿石还原加热电炉。大体上分为炉体、电极、电极把持器系统、排烟系统、出铁系统,短网、变压器等。 2.6热量来源 总体上就是电阻热和电弧热两种,不同时期的热量来源是不同的,所占的比例相互变化也不同。 2.6生产工艺 2.6.1入炉原材料为原料车间按照配料通知单混合好的原料,均匀加入炉内,料面为电极根部凸起200左右,料面呈馒头状微微凸起。进入冶炼工序。 2.6.2矿热炉是高钛渣生产的主要生产设备,主要的化学反应都在这里完成。 2.6.3冶炼的是间歇式的,一次投料,一次出炉, 2.6.4随着送电的时间加长,炉料逐渐熔化,熔池也加大,此时的化学反应也在逐步进行。

钛铁冶炼工艺

钛铁冶炼工艺 一、钛铁简介 钛铁合金是中间合金的一种,根据含钛量的不同可分为三种:含钛量为25%~35%的是低钛铁,含钛量为35%~45%的是中钛铁,含钛量为65%~75%的是高钛铁。 二、钛铁用途 钛铁合金具有改善结晶组织、提高钢的强度、固定间隙元素、储氢的功能。 三、钛铁冶炼工艺 钛铁冶炼的主要方法有重熔法、金属热还原法、电解法。 1、重熔法 重熔法是目前制备高钛铁的主要方法,它是以废钛材或海绵钛为原料加铁重熔,主要使用感应炉和电炉。

钛氧化物还原反应△F0一T关系图 特点:采用适量的脱氧剂和碱性四元熔渣操作,工艺技术可行,且得到的高钛铁合金产品化学成分稳定,杂质含量低,但是其成本过高,而且受市场价格影响很大。 2、金属热还原法 (1)铝热法 根据自由焓图可知,只有以生成的氧化物比钛的氧化物更稳定的金属还原剂才能生产出钛及其合金来。金属热还原法可在常压下进行,也可在真空下进行。该法具有原料广、生产成本低等有点,国内外对该方法进行了大量的研究,又由热力学 计算可知,金属铝、镁、钙、钡、钠、锂都是二氧化钛理想的

还原剂,考虑到还原剂成本的问题,主要采用铝为还原剂。 理论上,在高温范围内,铝能将TiO2还原成金属钛。实际上TiO2还原过程非常复杂。一部分TiO2被还原成金属钛,另一部分TiO2被还原成TiO,还生产一些其它的氧化物,使得用铝热法在生产钛铁的过程中,氧的残留量,过高的问题。因而严重影响产品的回收率及纯度。分析其热力学过程的出,提高钛的回收率,和降低氧含量主要有俩个方向,一是增加铝的含量。二是降低氧化铝的活度。 (2)复合还原剂法 为了得到低成本低氧的高钛铁,有研究人员采用复合还原剂来制备高钛铁。复合还原剂主要有AI-Mg,AI-Ca,AI-Mg-Ca等,采用复合还原剂有如下好处:Mg,Ca都属于强还原剂,同时其生成物MgO,CaO都属于强碱性氧化物,较易与氧化铝结合,降低了氧化铝的活性,可以保证TiO2被充分还原。 3、电解法 电解法是通过熔盐电解制备钛铁合金,是将钛的氧化物与铁及氧化物混合烧结制电极,在熔盐中进行电解还原制备合金。 综上所述

钛渣冶炼炉新工艺介绍

关于钛渣冶炼炉的新工艺介绍 目前,发达国家中的钛渣炉,容量都比较大,多采用全封闭,湿法除尘和回收煤气,并向干法除尘转变。这些大型电炉采用计算机进行控制,从原料准备到产品出炉全过程自动化,生产效率高,产品质量稳定,环保设施完善,有利于资源的综合利用,也是中国钛渣生产发展的方向。国某企业从南非引进的3万kVA全密闭直流高钛渣炉,已经将高钛渣的吨产电耗

从国普遍的3500kwh/t~4500 kwh/t降至2600kwh/t~2800kwh/t,大大降低了生产成本(注:由于该企业对引进技术吸收消化严重不足,加之过份神秘化的隔绝,导致试生产周期特长,生产时断时续。不久前,此高钛渣炉炉底熔穿目前正停产维修。该企业的负责人在接待国家工信部考察人员时介绍说:技术指标是非常先进的,政治上丰收,经济效益趋于零)。 国钛渣冶炼通常采用三相交流敞口电炉或半密闭电炉,一次性加料生产工艺,污染严重、热辐射高、操作环境恶劣。炉膛热量直接从炉口或烟道散出,电炉热损失大,容易造成除尘器布袋的烧蚀。 三相交流电炉的三根电极之间的电流为平面流动形式,由于炉料的导电性,而不能选用较高的二次电压,否则会出现电极不能深插,炉底温度低的现象,使得SiC沉积造成炉底上涨。 交流电炉炉膛的深、径比小,每次排渣或出铁水后,炉温度下降快,当下一炉的生料加入后,需要焙烧一段时间以提高炉温,增大了耗电量。 综合上述几个原因,使得国钛渣、工业硅、铁合金及电石等冶炼成本居高不下,市场竞争力低。 目前世界上最为先进的冶炼方法,是密闭直流电炉空心电极连续加料冶炼方式。 密闭直流电炉空心电极粉料连续入炉冶炼工艺具有如下优点: ⑴炉膛密闭,无外部空气进入,烟气量小,除尘设备负担小。 ⑵密闭电炉无外部空气进入,冶炼操作在密闭的高还原性气氛下进行,降低了电极的高温氧化和还原剂的氧化烧损。可以节省电极消耗达50%以上。 ⑶富含一氧化碳的高温烟气,显热直接用来干燥矿粉,降低矿粉中的水分,充分利用烟气的热量,比半密闭/敞口炉的潮矿入炉减少了电能消耗。降温除尘后的一氧化碳气体可以用来驱动燃气发电机发电,能源得到综合利用。 ⑷粉料连续入炉,原料和还原剂均为粉末,物料反应的表面积增大。物料直接进入熔池,在液态下进行还原反应,还原反应充分、速度快——“瞬间还原”。 ⑸粉料连续入炉,省去繁重的捣炉作业,减轻了劳动强度,改善了工作环境。 ⑹直流电炉炉膛的深/径比大于交流电炉的深/径比,即相同容量直流电炉的炉膛比交流电炉深,直径比交流电炉小,热量集中,热损失小。 ⑺直流电炉炉膛深/径比大,炉膛表面积小,比交流电炉节省炉衬材料。 ⑻直流电炉炉底作为导电电极,使电弧引向炉底,直流电流对熔池具有上下运动的电磁搅拌作用,使熔池上下层温度均匀,大大改善金属氧化物高温还原反应的热力学和动力学条件,消除了炉底上涨的可能。 ⑼直流电炉的顶电极位于炉膛中心,产生的电弧对炉衬的高温辐射烧损小,故炉衬材料的消耗降低,使用寿命延长。 ⑽直流电炉二次侧短网和熔池无感抗影响,且无电流集肤效应和邻近效应,电网供给

钛铁矿富集方法评述

第5期1998年10月  矿产综合利用 Multipurpose Utilization of Mineral Resources  No.5 Oct.1998钛铁矿富集方法评述 邱冠周 郭宇峰 中南工业大学,湖南 长沙 410083 [摘要]系统介绍了钛铁矿的各种富集方法,阐明了各种富集方法的相对优缺点及应用前景,并对我国钛铁矿富集技术的发展提出了建议。 关键词:钛铁矿 富集方法 评述 分类号:T D951 文献标识码:A 论文编号:1000-6532(1998)05-0029-33 钛铁矿至少占世界钛原料来源的85%,是一种重要的矿藏资源[1]。随着天然金红石的短缺和价格上涨,供应稳定、价格低廉的钛铁矿正在成为钛的一种重要的生产原料。由于钛铁矿含T iO2的理论量为52.63%,T iO2品位低,一般还含有其他杂质。因而钛铁矿的富集在矿物加工和提取冶金领域方面受到了极大的重视,澳大利亚、美国、加拿大和日本等国从50年代都开始了富集钛铁矿的研究, 60年代以来,多种方法应运而生,并竞相发展,这些方法从冶金角度大致可以分为火法和湿法两大类,每种方法都各有其特点。正确和全面掌握国际动态,从各种方法中取长补短,紧密结合我国实际情况,因地制宜地、创 [5] Beeby Julie P.Recov er y o f g old fr om g old- bear ing o res by ex posing t o micro w ave ener g y fo llo wed by lcaching C.A.118,25417 [6] S.Ko cakusak at al.M icro wav e pr ccessing of bo ric acid t o pro duce g ranular bo ro n ox ide, Pr og ress in M ineral Pr ocessing T echno lo gy. 1994,487—490 Application and Prospects of Microwave Energy in Mining and Metallurgical Engineering ZHANG Xing ren (Institute of M ultipupose Utilization of M ineral Reso urces,M GMR, Cheng du,Sichuan,China) Abstract: Fundament of mierow ave energ y and its major adv antages were descr ibed briefly.T he interaction betw een m icrow ave and minerals w as analy zed.Som e potential appli-cations and pr ospects o f m icrow ave energ y in mining and m etallurgical eng ineering(especial-ly in ex tractive metallurgy)have been discussed. Key words: M icrow ave energy;Mining and metallurg ical engineering;Application 收稿日期:1998-04-13。 ? 29 ?

相关文档