文档库 最新最全的文档下载
当前位置:文档库 › 3直角三角形的存在性问题解题策略

3直角三角形的存在性问题解题策略

巧构一线三直角解题

巧构一线三直角解题 发表时间:2017-02-14T14:06:18.193Z 来源:《中小学教育》2017年2月第269期作者:鲍玉秀张刚 [导读] 教师在教学时要注意给学生创造机会,让学生学会找基本图形。 山东省淄博市周村区北郊中学255000;山东省淄博市修文外国语学校255000 教师在教学时要注意给学生创造机会,让学生学会找基本图形。通过基本图形的积累,学生在分析题目时,就能唤醒利用这些基本图形,并能直接解题。几何命题的证明方法很多,只要找到规律、找到模型,我们就可以“以不变应万变”,任何问题就能迎刃而解。所以说,模型建立是学好数学的秘密武器。 基本图形:如图1,B、D、C在一条直线上,∠B=∠ADE=∠C=90°。我们称这一图形为“一线三直角”模型,则△ABD∽△DCE(或 △ABD≌△DCE)。 点评:我们在教学中经常遇到此图形,只要见到一直角在一条直线上,我们可以构造两侧的直角三角形,利用相似三角形可以解决一类相关问题。当出现了有相等边的条件之后,相似就转化为全等了。综合性题目往往就会把相似和全等的转化作为出题的一种形式。本文将重点对这一基本图形进行探讨。 一、在旋转中出现一线三直角基本图形(全等) 如图,将AO绕点O按逆时针方向旋转90°,得到A’O。若点A的坐标为(a,b),则点A’的坐标为( )。 解析:过A点作AB⊥x轴,垂足为E,过A’作A’E’⊥x轴,则△A’OE≌△OAE,所以A’E’=OE=a,AE=OE’=b,所以A’的坐标为(-b,a)。 点评:教师在平时教学中就要注意基本图形的构造,为以后学习打下良好的基础。 变式:直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为2。把一块含有45°角的直角三角形如图放置,顶点A、B、C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()。 分析:∠AEC=90°,并在直线l3,此时我们可以构造一线三直角数学模型,△ADE与△BEC全等,所以DB=CE=3。 二、在折叠中构造一线三直角 如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在A’的位置。若OB= 5,tan∠BOC= ,则点A’的坐标是多少? 解析:因为OB= 5,tan∠BOC= ,OA=1,AB=2,△A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1), DE=AB,2a+ (a+1)=2,解得a= ,所以A’的坐标(- ,)。 点评:此题是以矩形折叠为载体,如果利用常规方法勾股定理及全等计算很麻烦。如果构造一线三直角是非常简单的,过A’做AB的平行线,与BC、AO的延长线交于E、D, △A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1),DE=AB,2a+ (a+1)=2,计算量相当简单。 三、画斜为直,找直线构造一线三直角 如图,在平面直角坐标系xoy中,点A的坐标是(-7,1),∠AOB=135°,OB=5。(1)求△AOB的面积。(2)求点B的坐标。 解析:设B(x,y),过B点作BF⊥x轴,过D点作x轴的平行线,与y轴交于G点,过A点作AC⊥CD。因为∠AOB=135°,AO=5 2,所以∠AOD=45°,AD=OD=5,所以△BOF≌△DOG≌△DCA,所以AD=OD=BO,AC=DG=OF,CD=OG=BF,所以△AOB的面积= ×5×5= ,所以x+y=7,1+y=x,所以x=4,y=3。 点评:这是一道一题多解的题,将∠AOB=135°转化为∠AOD=45°,构造等腰直角三角形,再构造模型一线三直角(全等)。 四、在圆中构造一线三直角 如图,在平面直角坐标系中,⊙P与x轴相切于点C,与y轴分别交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F。若点F的坐标为(0,1),点D的坐标为(6,-1)。(1)求证:DC=FC。(2)求直线AD的解析式。 解析:(1)由△OFC≌△GDC得到OC=CG,过点作DG⊥x轴,连接AC,因为AD为直径,所以∠AGD=90°,△OAG∽△CGD,所以DG∶GC=OG∶OA,所以1∶3=3∶OA,所以OA=9。 点评:从圆中找直角,利用直径得圆周角等于90°,问题便可迎刃而解。 基本图形的教学是初中几何教学的重点,也是难点,教师在平时教学中要注重基本图形的研究,要有足够的耐心等学生慢慢积累。学生的学习达到一定程度就会从复杂的图形中提炼出基本图形,才会出现解决问题时的灵感。

开放性问题的求解策略与教学特征-最新文档

开放性问题的求解策略与教学特征 近几年高考试题中,出现了不少立意深刻,背景新颖的开放性问题,即条件不完备,结论不确定,解题依据和方法往往不惟一,需要解题者积极探索方可解决的问题.这些问题既有利于考查学生的创新能力,也有利于发掘学生的最大潜能.在数学课堂教学中,积极开展开放式教学,对提高学生创造性地发现、提出、分析、解决问题是很有益的. 1开放性问题的特点 1.1问题内容的新颖性:这类问题背景新颖、解法灵活、综合性强,无现成模式可套用. 1.2问题形式的生动性:这类问题有的追溯多种条件,有的探求多种结论,有的找寻多种解法,有的由变求不变或由变求变,有的以动求静或以动带动,很能体现现代数学气息. 1.3问题解决的发散性:这类问题往往需要运用观察、类比、猜测、归纳、推断等多种探索活动寻求解题策略,具有广阔的思维空间. 1.4问题功能的创造性:这类问题有时只给出一种情境,题目的条件和结论要求解题者在情境中自行寻找和设定,解题的模式和方法也是多种多样的,给解题者发挥创新精神、培养创新能力提供了良好的契机. 2开放性问题的分类及求解策略 解答开放性问题,要能正确辨别题型,分析命题的结构特征,遵循解题的层次要求.开放性问题从知识面看具有综合性和渗透性,从思维方法看,具有灵活性和多向性. 2.1条件开放型问题 对于只给出问题的结论,需解题者完备条件或探求出使结论成立的充分条件的一类问题,称之为条件开放型问题,这是一类变换思维方向,开拓逆向思维能力的题型.此类题的解题策略有两种:第一,模仿分析法,将题设和结论视为已知条件,分别进行演绎,再有机地结合起来,导出所需寻求条件;第二,

设出题目中指定的探索条件,将此假设作为已知,结合题设条件列出满足结论的等量或不等量关系.通过解方程或不等式,求出所需寻找的条件. 例1△ABC中,B(0,6),C(0,-6).当直线AB、AC的斜率之积满足什么条件时,A点的轨迹是双曲线的一部分?分析如果我们想方设法探求两斜率之积需要满足怎样的条件,或者探求使A点轨迹为双曲线的一部分的充要条件,则由于目标太泛,难以得答案.其实,如果换一个角度,假设斜率已知,则问题就等价于“已知斜率之积,求点A的轨迹方程”的问题了. 2.2结论开放型问题 对于只给出条件,没有指出明确的结论或结论不确定,需要解题者探索出结论的一类问题,称之为结论开放型问题.它要求学生充分利用已知条件或图形特征进行大胆猜想透彻分析,从而发现规律,获取结论.此类题着重培养学生分析、归纳综合、推理等诸多能力. 解此类题的策略是:有时可以根据定义和定理,由条件直接进行演绎推理得到结论;有时可以通过具体到抽象特殊到一般的归纳得到结论,再加以证明;有时结论需在两种可能中选取,可采取反证法的思想来确定;有时还可用分类讨论法、数形结合法等.对于没有确定的结论,应由浅入深,多角度进行探讨,力求得到比较有意义的结论. 2.4信息迁移型问题 以已有知识为基础,并在此基础上进一步引申;或定义新的情景,给出一定容量的新信息,要求依据新信息进行解题的开放题. 解此类问题的策略是:只需在理解新信息本质的基础上,掌握语言的翻译,新旧知识的转化,便可使问题顺利地解决.常用方法有:直接推导、以旧带新、特例和一般、类比和转化等方法. 2.6存在开放型问题 此类题是指在一定条件下,判断某种数学对象是否存在,或证明一定存在,或一定不存在.它是一类综合性强覆盖面广,已知条件更加隐蔽的题型,要求学生充分根据题设条件,把握特征,对是否存在作出准确的判断和推断.

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

概率、统计综合问题的三种常用求解策略

概率、统计综合问题的三种常用求解策略 公式法 在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2 个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是23. (1)记教师甲在每场的6次投球中投进球的个数为X ,求X 的分布列; (2)求教师甲在一场比赛中获奖的概率. 【解】 (1)X 的所有可能取值为0,1,2,3,4,5,6. 依条件可知,X ~B (6,2 3 ), P (X =k )=C k 6·(23)k ·(13)6-k (k =0,1,2,3,4,5,6). 所以X 的分布列为 (2)设教师甲在一场比赛中获奖为事件A , 则P (A )=C 24·(13)2·(23)4+C 14·13·(23)5 +(23)6=3281,即教师甲在一场比赛中获奖的概率为3281 . 对于此类问题求解,若随机变量X 服从二项分布B (n ,p ),则其概率、均值与方差可直接利 用公式P (X =k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ),E (X )=np ,D (X )=np (1-p )求得. 间接法 随机观测生产某种零件的某工厂20名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根据上述数据得到样本的频率分布表如下:

(1)确定样本频率分布表中m n (2)根据上述频率分布表,画出样本频率分布直方图; (3)根据样本频率分布直方图,求在该厂任取3人,至少有1人的日加工零件数落在区间(30,35]内的概率. 【解】 (1)由已知数据,得区间(40,45]内的频数m =6,区间(45,50]内的频数n =3,故f m =620=0.3,f n =3 20 =0.15. (2)由频率分布表,画出频率分布直方图如下图: (3)根据样本频率分布直方图,每人的日加工零件数落在区间(30,35]内的频率为0.2,设所取的3人中,日加工零件数落在区间(30,35]内的人数为ξ,则ξ~B (3,0.2), 故P (ξ≥1)=1-P (ξ=0)=1-(1-0.2)3=0.488. 因此至少有1人的日加工零件数落在区间(30,35]内的概率为0.488. 当复杂事件正面情况比较多,反面情况较少时,可利用其对立事件进行求解,即“正难则反”.对于“至少”“至多”等问题往往用这种方法求解. 对称法 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

直角三角形存在性

直角三角形的存在性问题代数法 1.写出三边的平方 2.分类列方程 3.解方程 几何法 1.分类 2.画图——“两线一圆” 3.计算

例1.如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3). (1)求抛物线的解析式; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

例 2.如图,在直角坐标系中,R t△O A B的直角顶点A在x轴上,O A=4,A B=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O 移动;同时点N从点O出发,以每秒 1.25个单位长度的速度,沿O B 向终点B移动.当两个动点运动了x秒(0

例 3.(2015·益阳中考)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′. (1)求m的值及抛物线E2所表示的二次函数的表达式. (2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由. (3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接O P并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.

开放性问题[整理]

探索型问题一(开放性问题) 【考点透视】 习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型. 开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答. 开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题 解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使 题目结论成立. 这两种情况所需补充的条件往往不惟一. 例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC ∽△BCD ,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可). (2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC ≌△FED (只需填写一 个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC ;或∠A=∠DBC ; 或BC ∶CD=AC ∶BC ;或BC 2 =AC ?CD 中的某一个) (2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可. 例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =?? =?和2, 4x y =-??=-? ,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题) 分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系. 解:2,8. y x xy =?? =? 说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一). B A C D 图7.1 A B C D E F 图7.2

直角三角形典型例题总结

勾股定理与勾股定理逆定理典型例题 类型一、勾股定理的构造应用 例1、如图,已知:在中,,,. 求:BC 的长. 思路点拨:由条件,想到构造含角的直角三角形 总结反思: 举一反三【变式1】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 【变式2】

类型二:方程的思想方法 例1、如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 思路点拨:由,再找出、的关系即可求出和的值 总结升华: 举一反三: 【变式1】如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2, 求CD 的长度。 【变式2 】C A

类型三:转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。 思路点拨:现已知BE 、CF ,要求EF ,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD . 总结升华: 【变式1】如图,已知:,,于P . 求证:. 【变式2】如图,ADC ?和BCE ?都是等边三角形, 30=∠ABC , 求证:2 22BC AB BD +=

3. 类型五:利用勾理作长为 的线段 例1. 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为和1的直角三角形斜边长就是,类似地可作D C B A

直角三角形存在性问题解决方法汇总

【问题描述】 如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标. 【几何法】两线一圆得坐标 (1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ; (2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ; (3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角) 重点还是如何求得点坐标,C1、C2求法相同,以C2为例: 【构造三垂直】 01问题与方法

C3、C4求法相同,以C3为例: 构造三垂直步骤: 第一步:过直角顶点作一条水平或竖直的直线; 第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股 还剩下C1待求,不妨来求下C1: 【解析法】 还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1. 考虑到直线AC1与AB互相垂直,k1k2=-1, 可得:kAC=-2, 又直线AC1过点A(1,1), 可得解析式为:y=-2x+3, 所以与x轴交点坐标为(1.5,0), 即C1坐标为(1.5,0). 确实很简便,但问题是这个公式出现在高中的教材上

方法小结 几何法: (1)两线一圆作出点; (2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数. 代数法: (1)表示点A、B、C坐标; (2)表示线段AB、AC、BC; (3)分类讨论①AB2+AC2=BC2、②AB2+BC2=AC2、③AC2+BC2=AB2; (4)代入列方程,求解. 02从等腰直角说起 再特殊一些,如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等. 2019兰州中考删减 【等腰直角存在性——三垂直构造全等】 通过对下面数学模型的研究学习,解决问题. 【模型呈现】 如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”. 推理过程如下: 【模型迁移】 二次函数y=ax2+bx+2的图像交x轴于点A(-1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式; (2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略 存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。 【典型例题】 例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根, 390cos 5 a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明 理由。 分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。 解:在△中,∠°,∵Rt ABC C B ==903 5 cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴, ∵ ∴,,a b c ===91215 设一元二次方程的两个实数根为,x m x m m x x 2 2 12319200-++-+=() 则有:,x x m x x m m 12122 31920+=+=-+() ∴x x x x x x m m m 1222 12212222312920+=+-=+--+()[()]() =+-736312 m m 由,x x c c 12 22 2 15+== 有,即7363122573625602 2 m m m m +-=+-= ∴,m m 124647 ==-

2018二次函数与直角三角形存在性问题

二次函数中直角三角形存在性问题 1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么 以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点 2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1 以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者 三条边分别表示之后,利用勾股定理求解 例一:如图,抛物线()2 230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; (3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.

例二、如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.(1)求该抛物线的解析式; (2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大; (3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由. 练习:

2.如图,抛物线y=x2-2mx (m>0)与x轴的另一个交点为A,过P(1,-m)作PM⊥x轴与点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C. (1)若m=2,求点A和点C的坐标; (2)令m>1,连接CA,若△ACP为直角三角形,求m的值; (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由. 3. 如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).

(完整word版)解直角三角形思想方法中考题型

思想方法中考题型 一、方程思想 根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解. 例1如图1,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号). 解:过A点作AB⊥CD交CD的延长线于点B,设AB=x 在Rt△ABC中,因为∠ACB=∠CAE=30°,所以AC=2ABC=2x,BC=3AB=3x 在Rt△ABD中,因为∠ADB=∠EAD=45°,所以DB=AB=x 因为CD=50,所以 解得x=25(1+3)。答:缆绳AC的长为() 5013 +米. 说明先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意. 二、数形结合思想 将数量和图形巧妙结合来寻找解题思路 例2如图2,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆。已知A、B、C所处位置的海拔高度分别为124m、400m、1100m,如图建立直角坐标系,即A(a,124)、B(b,400)、C(c, 1100),若直线AB的解析式为y=1 2x+4,直线BC与水平线BC1的交角为45°. ⑴分别求出A、B、C三个缆车站所在位置的坐标; ⑵求缆车从B站出发到达C站单向运行的距离(精确到1m). A(240,124)、B(792,400)、C(2192,1100);(2)7002≈990(米). 三、转化思想 抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法. 例3如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面成30°的角.求旗杆AB的高度(精确到1米).(tan26°=0.43) 解:延长AD、BC交于点E,过点D作DF⊥CE于F.则依据题意可知,∠E=°,∠DCE=°。 在Rt△CFD中,得DF=4,CF=43≈6.928, 在Rt△DFE中, 在Rt△ABE中, 答:旗杆AB的高度约为. 四、建模思想 所谓建模思想就是认真分析题意,将实际问题抽象、转化为数学问题,建立数学模型,再通过对数学模型的探索达到解决问题的目的. 例4如图4,MN表示一段高速公路的设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区? 解:过点A作AC⊥MN于点C.依题意,得∠AMC=60°-30°=30°,∠ABC=75°-30°=45°.设AC为x m, 图2 B A 图4 M 30° 60° 75° 北 北 N C 图1 F 图3 E D C B A

初中数学开放性探究性试题及解题策略

初中数学开放性探究性试题及解题策略 随着课程改革和素质教育的全面推进,近几年,在初中数学教学和各省、市的中考题中,出现了一批符合学生年龄特点和认知水平、设计优美、个性独特的开放题。 一数学开放题的概述 1. 关于数学开放题的几种论述 数学开放题主要有几种论述:(1)答案不固定或者条件不完全的习题;(2)开放题是条件多余需选择、条件不足需补充或答案不固定的;(3)有多处正确答案的问题,以自己喜欢的方式解答问题,在解题过程中,学生可以把自己的知识、技能以各种方式结合,去发现新的思想方法;(4) 答案不唯一的问题;(5)具有多种不同的解法,或者可能有多种解答方法的问题;(6)问题不必有解,答案不必唯一,条件可以多余的问题等。通俗地说就是给学生以较大认知空间的题目。_|一个问题是开放还是封闭常常取决于提出问题时学生的知识水平如何。例如,对n个人两两握手共握多少次的问题=,在学生学习二《组合》》知识以前解法很多=,是一个开放题,在学习组合知识之后则是一个封闭题。 2. 数学开放题的基本类型,大概包括以下几种 (1) 条件开放型。这类问题一般是由给定的结论,反思、探索应具备的条件,而满足结论的条件并不唯一。 例1.假如,AB=DB,/仁/ 2,请你添加一个适当的条件,使厶ABC ◎△ DBE,则需添加的条件是___________ 。 (2) 结论开放型。这类题目就是在给定的条件下,探索响应的对象是否存在。它有结论存] 在和结论不存在两种情况。其基本解题方法是:假设存在,演绎推理,得出结论,从而对是否存 在做出准确的判断。 例2.假如,O O的直径AB为6,P为AB上一点,过点P作O O的弦CD,连结AC、BC,设/ BCD=m / ACD,是否存在正实数m,使弦CD最短?如果存在,请求出m的值;如果不存在请说明理由。 简析:假设存在正实数m,使弦CD最短,则有CD丄AB于P,从而cos / POD=OP:OD,因为AB=6,所以cos / POD=30。于是/ ACD=15o,/ BCD=75o,故m=5。 (3) 简略开放型 例3.计算:+++,学生可能出现以下几种方法。 相反数的和来计算,显然新颖、简便。 此外,设计开放型、举例开放型、实践开放型、信息开放型(限于篇幅不举例子)。还有 综合开放型、情境开放型等等。这些开放题的条件、问题变化不定,有的条件隐蔽多余,有的结论多样,有的解法丰富等。 二开放题具有不同于封闭题的显著特点

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

开放性问题(题型概述)

开放性问题 【题型特征】一个数学问题系统中,通常包括已知条件、解题依据、方法和结论.如果这些部分齐备,称之为封闭性问题.若不完全齐备,称之为开放性问题,数学开放题就是指那些条件不完整,结论不确定,解法不限制的数学问题,它的显著特点是正确答案不唯一. 常见的开放性问题有:(1)条件开放型;(2)结论开放型;(3)策略开放型;(4)综合开放型. 【解题策略】(1)条件开放型,指结论给定,条件未知或不全,需要探求结论成立的条件,且与结论成立相对应的条件不唯一的数学问题.这类开放题在中考试卷中多以填空题形式出现. 解条件开放型问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,挖掘条件,逆向追索,逐步探求,最终得出符合结论的条件.这是一种分析型思维方式. (2)结论开放型,指条件充分给定,结论未知或不全,需要探求,整合出符合给定条件下相应结论的一类试题.这类开放题在中考试卷中,以解答题居多. 解结论开放型问题的一般思路是:充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.这是一种归纳类比型思维方式. (3)策略开放型,是指题目的条件和结论都已知或部分已知,需要探求解题方法或设计解题方案的一类试题.这类开放题在中考试卷中,一般出现在阅读题、作图题和应用题中. 解策略开放型问题的处理方法一般需要模仿、类比、实验、创新和综合运用所学知识,建立合理的数学模型,从而使问题得到解决.这是一种综合性思维. (4)综合开放型,是指条件、结论、解题方法中至少有两项同时呈现开放形式的数学问题.这类问题往往仅提供一种问题情境,需要我们补充条件,设计结论,并寻求解法的一类问题. 解综合开放型问题要求我们对所学知识特别熟悉并能灵活运用. 类型一条件开放型 典例1(2014·云南)写出一个图象经过一、三象限的正比例函数y=kx(k≠0)的表达式(表达式). 【解析】∵正比例函数y=kx(k为常数,且k≠0)的图象经过一、三象限,

初二数学培优之直角三角形

初二数学培优之直角三角形 阅读与思考 直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余; 边的关系:斜边的平方等于两直角边的平方和; 边角关系:30o 所对的直角边等于斜边的一半. 这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面. 在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法. 熟悉以下基本图形基本结论: 例题与求解 【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________. (2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________. D C (太原市竞赛试题) 解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手. 【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°

(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础. 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数. B C (“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键. 【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD. B A C (上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明. 【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222 += BD AB BC B (北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中. 【例6】斯特瓦尔特定理:

二次函数压轴题等腰三角形存在性-直角三角形存在性

中考数学压轴题 一、等腰三角形存在性 1 解题思想:分类讨论 2 解题技巧:坐标系内线段长度表示 (1)线段在坐标轴上或平行于坐标轴 在x轴或平行于x轴:x右-x左 在y轴或平行于y轴:y上-y下 (2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C) 由勾股定理得:AB2= AC2= BC2= 3 解题方法 (1)代数法:(1)根据条件用坐标表示三边或三边的平方 (2)分三种情况列方程,解方程 (3)根据题目条件及方程解确定坐标(注意重根) (2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点 (2)画图,作圆法,垂直平分线法 (3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。 例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 代数法: 几何法: 例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.

(1)试求△ABC 的面积; (2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况 2 根据已知表示三边长度(相似) 3 列方程计算 同步练习: 1.如图,抛物线2 54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC . (1)写出A,B,C 三点的坐标并求抛物线的解析式; (2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由. 2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. A C B y x 0 1 1

数学开放性问题怎么解

数学开放性问题怎么解 数学开放性问题是近年来高考命题的一个新方向,其解法灵活且具有一定的探索性,这类题型按解题目标的操作模式分为:规律探索型,问题探究型,数学建模型,操作设计型,情景研究型.如果未知的是解题假设,那么就称为条件开放题;如果未知的是解题目标,那么就称为结论开放题;如果未知的是解题推理,那么就称为策略开放题.当然,作为数学高考题中的开放题其“开放度”是较弱的,如何解答这类问题,还是通过若干范例加以讲解. 例 1 设等比数列{}n a 的公比为 q ,前 n 项和为 n S ,是否存有常数 c ,使数列 {}c S n +也成等比数列?若存有,求出常数c ;若不存有,请 明 理 由. 讲解 存有型开放题的求解一般是从假设存有入手, 逐步深化解题进程的. 设存有常数c , 使数列{}c S n + 成等比数列. 2 12)())((c S c S c S n n n +=++++ 2112 22(++++--=-?∴n n n n n n S S S c S S S (i) 当 1=q 时,1na S n = 代入上式得 ()[])2()1((1)2(12 2 12 1+--+=+-+n n n a ca n a n n a 即2 1a =0 但01≠a , 于是不存有常数c ,使{}c S n +成等比数列. (ii) 当 1≠q 时,q q a S n n --=1) 1(, 代 入 上 式 得 1,)1()1()1() 1(12122 2 1-=∴--=---q a c q q q ca q q q a n n . 综 上 可 知 , 存 在 常 数 1 1 -= q a c ,使{}c S n +成等比数列. 等比数列n 项求和公式中公比的分类, 极易忘记公比1=q 的 情 形, 可 不 要 忽 视 啊 !

相关文档
相关文档 最新文档