文档库 最新最全的文档下载
当前位置:文档库 › 34-智能网联汽车测试装调职业技能等级标准

34-智能网联汽车测试装调职业技能等级标准

34-智能网联汽车测试装调职业技能等级标准
34-智能网联汽车测试装调职业技能等级标准

智能网联汽车测试装调职业技能等级标准

目次

前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1 1范围﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 2规范性引用文件﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 3术语和定义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 4对应院校专业﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4 5面向工作岗位(群)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4 6职业技能要求﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍12

前言

本标准按照GB/T 1.1-2009给出的规则起草。

本标准起草单位:国汽(北京)智能网联汽车研究院有限公司、中国汽车工程学会、东风汽车集团有限公司、浙江吉利汽车有限公司、北京新能源汽车股份有限公司、上海汽车集团股份有限公司乘用车分公司、爱驰汽车(上海)有限公司、华晨汽车集团控股有限公司、安徽江淮汽车集团股份有限公司、奇瑞汽车股份有限公司、长城汽车股份有限公司、东风柳州汽车有限公司、奇瑞捷豹路虎汽车有限公司、捷豹路虎(中国)投资有限公司北京企业管理分公司、江苏新通达电子科技股份有限公司、浙江亚太机电股份有限公司、浙江万安科技股份有限公司、深圳市镭神智能系统有限公司、武汉理工大学、北京电子科技职业学院、湖南汽车工程职业学院、重庆工业职业技术学院、芜湖职业技术学院等。

本标准主要起草人:徐念峰、赵丽丽、吴志勇、王海川、詹海庭、林乃挺、李书利、罗浩、徐新平、林长波、赵明钧、王甘、徐少悯、顾丽军、陈锋、施正堂、胡小波、张国方、李妙然、张华磊、王楠、陈刚、罗洋坤、李雷、张杨、钱峰、陈万顺、董杰、宋汉超、李标、乐启清等。

声明:本标准的知识产权归属于国汽(北京)智能网联汽车研究院有限公司,未经国汽(北京)智能网联汽车研究院有限公司同意,不得印刷、销售。

1范围

本标准规定了智能网联汽车测试装调职业技能等级对应的工作领域、工作任务及职业技能要求。

本标准适用于智能网联汽车测试装调职业技能培训、考核与评价,相关用人单位的人员聘用、培训与考核可参照使用。

2规范性引用文件

下列文件对于本标准的应用是必不可少的。凡是标注日期的版本适用于本标准。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 1.1-2009标准化工作导则第1部分:标准的结构和编写

GB21861-2008机动车安全技术检验项目和方法

GB7258-2012机动车运行安全技术条件

GB/T4094.2-2017电动汽车操纵件、指示器及信号装置的标志

GB/T4782-2001道路车辆操纵件、指示器及信号装置词汇

GB/T28679-2012汽车零部件再制造装配

GB/T33905.3-2017智能传感器第3部分:术语

T/CSAE53-2017合作式智能运输系统车用通信系统应用层及应用数据交互标准T/CSAE100-2018车联网数据采集要求

T/CSAE101-2018智能网联汽车车载端信息安全技术要求

3术语和定义

国家、行业标准界定的以及下列术语和定义适用于本标准。

3.1智能网联汽车

搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境智

能感知、决策、控制等功能,可实现“安全、高效、舒适、节能”智能行驶,由智能网联汽车智能驾驶系统协助或替代人类驾驶员的新一代汽车。

3.2智能网联汽车环境感知传感器

获取智能网联汽车环境及定位等信息,为环境感知融合和决策控制系统提供信号输入的器件或装置,主要包含激光雷达、毫米波雷达、视觉摄像头、超声波雷达、惯性导航等。

3.3智能网联汽车计算平台

以环境感知数据、导航定位信息、车辆实时数据、云端智能计算平台数据和其他V2X交互数据等作为输入,基于环境感知定位、智能规划决策和车辆运动控制等核心控制算法,输出驱动、转向和制动等执行控制指令,实现车辆智能驾驶路径的决策规划控制系统。

3.4智能网联汽车底盘线控执行系统

智能网联汽车基于计算平台的决策规划进行转向和加减速的执行系统,包括线控转向、线控制动、线控驱动等软硬件。

3.5智能网联汽车智能座舱系统

以车联网为依托,集合丰富的车载传感器、控制器、网络传感器、云端数据、算力资源,基于人工智能技术和先进的人机交互技术,提供友好的人机交互界面,提升车辆行驶安全、通信感知能力、用户体验的汽车座舱软硬件集成系统。主要由人机交互系统、环境控制系统、影音娱乐系统、信息通信系统、导航定位系统等组成。

3.6车联网

通过新一代信息通信技术,实现车与车、车与路、车与云、车与人、车内等全方位链接的网络。

3.7智能驾驶

由感知、决策和控制系统组成的可协助、代替人类驾驶员的驾驶技术。

4对应院校专业

中等职业学校:汽车制造与检修、汽车电子技术应用、新能源汽车装调与检修、汽车运用与维修、汽车车身维修、新能源汽车维修、地图制图与地理信息系统、计算机应用、计算机网络技术、计算机与数码产品维修、电子与信息技术、电子技术应用、通信技术、通信系统工程安装与维护、物联网技术应用等专业。

高等职业学校:汽车智能技术、汽车电子技术、汽车造型技术、汽车试验技术、汽车改装技术、新能源汽车技术、智能交通技术运用、汽车运用与维修技术、新能源汽车运用与维修、汽车检测与维修技术、汽车制造与装配技术、导航与位置服务、地图制图与数字传播技术、电机与电器技术、智能控制技术、工业网络技术、工业自动化仪表、电子信息工程技术、应用电子技术、智能终端技术与应用、电子电路设计与工艺、电子制造技术与设备、电子测量技术与仪器、电子工艺与管理、物联网工程技术、计算机应用技术、嵌入式技术与应用、信息安全与管理、云计算技术与应用、通信技术、移动通信技术等专业。

应用型本科学校:车辆工程、汽车维修工程教育、汽车运用工程、交通工程、机械电子工程、电子信息工程、电子科学与技术、通信工程、信息工程、自动化、计算机科学与技术、软件工程、网络工程、信息安全、物联网工程、电子信息科学与技术、电信工程及管理、智能科学与技术、空间信息与数字技术、导航工程等专业。

5面向工作岗位(群)

主要针对智能网联汽车技术链和产业链相关的整车企业、零部件企业、研究机构、设计机构、服务机构等单位,面向研发、设计辅助,制造装配及相关技术

管理、质量管理等专业岗位,从事检测、试验、装配、调试、质量控制及相关工艺文件设计、编写等工作。

6职业技能要求

6.1职业技能等级划分

智能网联汽车测试装调职业技能分为三个等级:初级、中级、高级。三个级别依次递进,高级别涵盖低级别职业技能要求。

【智能网联汽车测试装调职业技能等级标准】(初级):主要面向智能网联汽车整车企业、零部件企业、研究机构、设计机构、服务机构等单位的生产制造部门,从事智能网联汽车环境感知传感器、计算平台、智能座舱系统的装配调试等操作。

【智能网联汽车测试装调职业技能等级标准】(中级):主要面向智能网联汽车整车企业、零部件企业、研究机构、设计机构、服务机构等单位的生产制造部门,从事智能网联汽车环境感知传感器、计算平台、智能座舱系统、底盘控制执行系统的装配调试等操作及相关工艺文件的设计编写;面向以上单位的研发、设计部门,从事智能网联汽车环境感知传感器、计算平台、智能座舱系统、底盘控制执行系统的测试、标定等操作,以及整车的车辆测试与车联网综合测试等。

【智能网联汽车测试装调职业技能等级标准】(高级):主要面向智能网联汽车整车企业、零部件企业、研究机构、设计机构、服务机构等单位的生产制造部门,从事智能网联汽车环境感知传感器、计算平台、智能座舱系统、底盘控制执行系统装配调试相关设计、技术文件编写;面向以上单位的研发、设计部门,从事智能网联汽车环境感知传感器、计算平台、智能座舱系统、底盘控制执行系统的测试、标定相关技术文件编写、测试诊断结果分析、测试诊断报告编写,以及整车测试相关策划、技术文件编写、测试结果分析、测试报告编写等。

6.2职业技能等级要求描述

表1智能网联汽车测试装调职业技能等级要求(初级)工作领域工作任务职业技能要求

1.智能网联汽车环境感知传感器测试装调1.1智能网联

汽车环境感知

传感器装配

1.1.1能理解并执行通用安全规范,识别智能网联汽

车及零部件相关作业中的安全风险,并采取必要防范

措施。

1.1.2能识读电路图,选择电子元件,识别安装位置;

能根据装配图识别传感器装配要求。

1.1.3能按照工艺文件正确选择并使用装配工具和

测量工具。

1.1.4能按照工艺文件对传感器进行生产装配;能识

别传感器的型号,认知部件功能;能识别传感器上的

硬件接口。

1.1.5能按照工艺文件对传感器进行整车装配;能按

照工艺文件对传感器装配参数进行测量;能按照工艺

文件连接、检查传感器线路。

1.2智能网联

汽车环境感知

传感器调试

1.2.1能按照工艺文件对传感器进行生产调试;能按

照工艺文件启动传感器,按步骤设置传感器参数。

1.2.2能按照工艺文件在整车上进行传感器电路和

信号传输的调试;能按照工艺文件在整车上进行激光

雷达、毫米波雷达、超声波雷达、视觉传感器、惯性

导航等传感器与控制系统的联机调试。

2.智能网联汽车计算平台测试装调2.1智能网联

汽车计算平台

装配

2.1.1能理解并执行通用安全规范,识别智能网联汽

车及零部件相关作业中的安全风险,并采取必要防范

措施。

2.1.2能识读电路图,选择电子元件,识别安装位置;

能根据装配图识别计算平台装配要求。

2.1.3能按照工艺文件正确选择并使用装配工具和

测量工具。

2.1.4能按照工艺文件对计算平台进行生产装配;能

识别计算平台的型号,认知部件功能;能识别计算平

台上的硬件接口;能完成集成电路板去除静电、防护

漆喷涂、外壳组装等工作;能完成计算平台的程序写

入工作。

2.1.5能按照工艺文件对计算平台进行整车装配;能

安装计算平台并连接相关线束;能检查计算平台的安

装情况及线束接线端子的连接状况。

2.2智能网联

汽车计算平台

调试

2.2.1能按照工艺文件对车载计算平台进行功能调

试。

3.智能网联汽3.1智能网联

汽车智能座舱

3.1.1能理解并执行通用安全规范,识别智能网联汽

车及零部件相关作业中的安全风险,并采取必要防范

车智能座舱系统测试装调系统装配措施。

3.1.2能识读电路图,选择电子元件,识别安装位置;

能根据装配图识别智能座舱系统装配要求。

3.1.3能按照工艺文件正确选择并使用装配工具和

测量工具。

3.1.4能按照工艺文件对智能座舱系统各部件进行

生产装配;能识别智能座舱系统各部件的型号,认知

部件功能;能识别智能座舱系统各部件的硬件接口。

3.1.5能按照工艺文件对智能座舱系统进行整车装

配;能连接、检查智能座舱系统相关电气线路。

3.2智能网联

汽车智能座舱

系统调试

3.2.1能按照工艺文件对车载智能座舱系统及各部

件进行功能调试。

表2智能网联汽车测试装调职业技能等级要求(中级)工作领域工作任务职业技能要求

1.智能网联汽车环境感知传感器测试装调1.1智能网联

汽车环境感知

传感器装配

1.1.1能对车载传感器进行维护,根据电路图更换相

关元器件;能根据传感器安装环境要求(温度、湿

度、噪声、干涉等)优化安装位置。

1.1.2能设计编写传感器生产装配工艺文件;能设计

编写传感器整车装配工艺文件;能设计编写传感器

在整车上的电路与信号传输原理图。

1.2智能网联

汽车环境感知

传感器调试

1.2.1能使用外置设备、外置电源进行车载传感器调

试。

1.2.2能进行车载多传感器的联合调试。

1.3智能网联

汽车环境感知

传感器测试

1.3.1能按照测试方案搭建相关测试场景,对传感器

进行测试。

1.3.2能识别传感器电路故障,并按照诊断流程进行

分析与处理;能识别传感器工作异常,并按照诊断

流程进行分析与处理。

1.4智能网联

汽车环境感知

传感器标定

1.4.1能按照标定方案进行传感器的单独标定。

1.4.2能按照标定方案在整车上进行传感器的标定。

1.4.3能测量传感器坐标系转换数据。

2.智能网联汽车计算平台测试装调2.1智能网联

汽车计算平台

装配

2.1.1能对计算平台进行生产装配;能组装集成电路

板;能组装计算平台外壳。

2.1.2能设计编写计算平台生产装配工艺文件;能设

计编写计算平台整车装配工艺文件;能设计编写计

算平台在整车上的电路与信号传输原理图。

2.2智能网联

汽车计算平台

调试

2.2.1能完成车载计算平台的软件升级。

2.3智能网联 2.

3.1能按照测试方案对计算平台硬件、软件功能进

汽车计算平台测试行测试。

2.3.2能按照诊断流程对计算平台故障进行分析与处理。

3.智能网联汽车智能座舱系统测试装调3.1智能网联

汽车智能座舱

系统装配

3.1.1能识读电器线路图,识别对应的电子部件接口

定义。

3.1.2能设计编写智能座舱系统各部件装配工艺文

件;能设计编写智能座舱系统整车装配工艺文件;

能设计编写智能座舱系统电器原理图。

3.2智能网联

汽车智能座舱

系统调试

3.2.1能完成车载智能座舱系统的软件升级。

3.3智能网联

汽车智能座舱

系统测试

3.3.1能按照测试方案对智能座舱系统的硬件、软件

功能进行测试。

3.3.2能按照诊断流程对智能座舱系统故障进行分

析与处理。

4.智能网联汽车底盘线控执行系统测试装调4.1智能网联

汽车底盘线控

执行系统装配

4.1.1能理解并执行通用安全规范,识别智能网联汽

车及零部件相关作业中的安全风险,并采取必要防

范措施。

4.1.2能根据装配图识别线控驱动、线控制动、线控

转向等系统的装配要求。

4.1.3能按照工艺文件正确选择并使用装配工具和

测量工具。

4.1.4能按照工艺文件对线控驱动、线控制动、线控

转向等系统各部件进行生产装配;能识别线控驱动、

线控制动、线控转向等系统各部件的型号,认知部

件功能;能识别线控驱动、线控制动、线控转向等

系统各部件的硬件接口。

4.1.5能按照工艺文件对线控驱动、线控制动、线控

转向等系统进行整车装配;能连接、检查线控驱动、

线控制动、线控转向等系统相关电气线路。

4.2智能网联

汽车底盘线控

执行系统调试

4.2.1能按照工艺文件完成线控驱动、线控制动、线

控转向等系统的参数调试;能根据电器原理图完成

线控驱动、线控转向、线控制动等系统的电路调试;

能根据相关规范完成线控驱动、线控转向、线控制

动等系统的软件刷写。

5.智能网联汽车整车综合测试5.1智能网联

汽车车辆测试

5.1.1能理解并执行通用安全规范,识别智能网联汽

车及零部件相关作业中的安全风险,并采取必要防

范措施。

5.1.2能识读测试规程和整车设计任务书;能根据装

配图识别关键零部件的装配位置。

5.1.3能按照测试规程的要求,正确选择并使用测试

仪器和设备。

5.1.4能根据测试要求搭建测试场景;能按照操作手

册进行测试车辆的操控;能根据相关规范完成测试车辆的整备;能根据相关规范完成测试设备的检查。

5.1.5能根据测试车辆智能驾驶的功能要求,设定测试设备参数;能根据相关规范完成测试车辆的静态测试与动态测试。

5.1.6能根据相关规范,结合智能网联汽车静态与动态测试的功能要求,进行测试设备的调试与维护。

5.2智能网联汽车车联网综合测试5.2.1能按照操作手册进行测试车辆的操控;能根据相关规范完成测试车辆的整备;能根据相关规范完成测试路段的检查。

5.2.2能根据测试要求搭建测试场景;能根据相关规范完成测试车辆的网联道路测试。

5.2.3能根据相关规范,结合网联道路测试的功能要求,进行测试场景设施的维护;能根据相关规范,进行测试设备的调试与维护。

表3智能网联汽车测试装调职业技能等级要求(高级)工作领域工作任务职业技能要求

1.智能网联汽车环境感知传感器测试装调1.1智能网联

汽车环境感知

传感器装配

1.1.1能设计、调整和优化传感器的外形结构。

1.1.2能设计、调整和优化传感器在整车上的安装位

置;能设计、调整和优化传感器的电路图与安装线

路。

1.1.3能设计传感器的安装支架。

1.2智能网联

汽车环境感知

传感器调试

1.2.1能设计编写传感器生产调试和整车调试工艺

文件。

1.3智能网联

汽车环境感知

传感器测试

1.3.1能根据需求设计特殊测试场景.

1.3.2能设计编写传感器测试方案;能设计编写传感

器诊断流程。

1.4智能网联

汽车环境感知

传感器标定

1.4.1能设计编写传感器标定方案。

1.4.2能根据需求调整和优化传感器软件参数。

2.智能网联汽车计算平台测试装调2.1智能网联

汽车计算平台

调试

2.1.1能设计编写计算平台生产调试和整车调试工

艺文件。

2.2智能网联

汽车计算平台

测试

2.2.1能根据需求调整计算平台的软件参数。

2.2.2能设计编写软件测试大纲;能编写软件测试报

告。

2.2.3能设计编写硬件测试大纲;能编写硬件测试报

告。

2.2.4能根据设计手册进行计算平台诊断分析,并编

写诊断报告。

3.智能网联汽车智能座舱系统测试装调3.1智能网联

汽车智能座舱

系统装配

3.1.1能设计、调整和优化智能座舱系统各部件的外

形结构。

3.1.2能设计、调整和优化智能座舱系统各部件在整

车上的安装位置;能设计、调整和优化智能座舱系

统各部件的电路图与安装线路。

3.1.3能设计智能座舱系统各部件的安装支架。

3.2智能网联

汽车智能座舱

系统调试

3.2.1能设计编写智能座舱系统生产调试和整车调

试工艺文件。

3.3智能网联

汽车智能座舱

系统测试

3.3.1能根据产品主要功能,对系统做任务分解,设

计编写测试方案和测试用例。

3.3.2能根据测试方案,使用设备工具搭建测试环

境,并应用测试用例完成台架及实车测试。

3.3.3能根据测试方案,使用自动化平台编写自动化

测试脚本;能使用测试平台,进行自动化测试工具

的二次开发和功能扩展。

3.3.4能根据设计手册进行智能座舱系统诊断分析,

并编写诊断报告。

4.智能网联汽车底盘线控执行系统测试装调4.1智能网联

汽车底盘线控

执行系统调试

4.1.1能设计编写线控驱动、线控转向、线控制动等

系统的硬件调试和软件调试工艺文件。

4.1.2能根据相关规范,完成线控驱动、线控转向、

线控制动等系统的诊断;能根据调试结果,完成数

据处理与分析评价,并编写调试报告。

4.2智能网联

汽车底盘线控

执行系统设计

4.2.1能根据设计手册完成线控驱动、线控转向、线

控制动等系统的机械结构3D设计和图纸设计。

4.2.2能根据设计手册完成线控驱动、线控转向、线

控制动等系统的电气原理图设计;能根据相关规范

编写电路设计报告。

5.智能网联汽车整车综合测试5.1智能网联

汽车整车测试

策划

5.1.1能根据整车测试需求以及车辆智能驾驶和车

联网的功能设定,进行测试策划。

5.2智能网联

汽车车辆测试

5.2.1能根据测试车辆智能驾驶的功能设定规划测

试场景;能根据相关规范完成测试场景的搭建与管

理。

5.2.2能根据测试车辆智能驾驶的功能设定,完成静

态测试与动态测试的结果数据处理与分析评价;能

根据相关规范编写测试报告。

5.2.3能根据测试车辆智能驾驶的功能需求,完成相

关车载应用程序的调整;能根据测试车辆操作手册,

完成相关车载应用程序的调整。

5.3智能网联汽车车联网综合测试5.3.1能根据测试车辆车联网的功能设定规划测试场景;能根据相关规范完成测试场景的搭建与管理;能根据相关规范完成测试道路管理。

5.3.2能根据测试车辆车联网的功能设定,完成测试结果的数据处理与分析评价;能根据相关规范编写测试报告。

5.3.3能根据测试车辆网联道路测试的功能需求,完成相关车载应用程序的调整。

参考文献

[1]GB/T1.1-2009标准化工作导则第1部分:标准的结构和编写

[2]GB/T4094.2-2017电动汽车操纵件、指示器及信号装置的标志

[3]GB/T4782-2001道路车辆操纵件、指示器及信号装置词汇

[4]GB7258-2012机动车运行安全技术条件

[5]GB21861-2008机动车安全技术检验项目和方法

[6]GB/T28679-2012汽车零部件再制造装配

[7]GB/T33905.3-2017智能传感器第3部分:术语

[8]QC/T413-2002汽车电气设备基本技术条件

[9]QCT727-2017汽车、摩托车用仪表

[10]QC/T1081-2017汽车电动助力转向装置

[11]QC/T1089-2017电动汽车再生制动系统要求及试验方法

[12]QC/T29106-2014汽车电线束技术条件

[13]T/CSAE53-2017合作式智能运输系统车用通信系统应用层及应用数据交互标准

[14]T/CSAE66-2018汽车工程师能力标准

[15]T/CSAE100-2018车联网数据采集要求

[16]T/CSAE101-2018智能网联汽车车载端信息安全技术要求

[17]工信部联科[2017]332号《国家车联网产业标准体系建设指南(智能网联汽车)》

[18]工信部联装[2018]66号《智能网联汽车道路测试管理规范》

[19]全国汽车标准化技术委员会《智能网联汽车自动驾驶功能测试规程》

[20]《节能与新能源汽车技术路线图》

[21]《智能网联汽车技术路线图》

[22]《C-V2X产业化路径和时间表研究》

[23]《车载智能计算基础平台参考架构1.0(2019年)》

[24]《面向零拥堵的车路协同3.0架构及产业生态重构》

[25]《中国智能网联汽车测试示范区发展调查研究1.0》

[26]《中国智能网联汽车领域创新资源调研报告》

[27]《中国智能网联汽车产业发展报告(2019)》

[28]《智能网联汽车信息物理系统参考架构1.0》

《智能网联汽车公共道路测试监管数据采集方法及要求》编制说明

《智能网联汽车公共道路测试监管数据 采集方法及要求》编制说明 一、工作简况 1.1 任务来源 《智能网联汽车公共道路测试监管数据采集方法及要求》团体标准是由上海市标准化协会批准立项,文件号沪标协【2020】4号。本标准由上海市标准化协会提出,上海淞泓智能汽车科技有限公司牵头承担标准的研究与制定。 1.2编制背景与目标 智能网联汽车是顺应全球汽车产业变革趋势、抢占未来产业制高点的优先战略选择,是服务国家制造强国战略、建设全球科技创新中心尤其是强化产业创新的优先布局方向,是推动新常态下率先转换产业发展动能、建设智慧交通乃至智慧城市的重要引擎。 智能网联汽车的测试验证已成为智能网联汽车自动驾驶功能开发和应用不可或缺的重要环节。智能网联汽车在正式推向市场之前,必须在真实交通环境中进行充分的测试,全面验证自动驾驶功能,实现与道路、设施及其他交通参与者的协调。近年来,我国已初步形成由封闭测试区测试、开放道路测试两部分组成的智能网联汽车外场测试验证体系。封闭场地测试作为自动驾驶测试验证的重要环节,是自动驾驶车辆道路测试的前提条件,开放道路测试将进一步为智能网联汽车技术落地和场景应用提供真实的测试环境。国家及地方相关主管部门陆续出台政策,在测试示范区建设、测试能力、服务配套、开放路试等方面营造良好的生态环境。 为推动智能网联汽车安全有序地开展公共道路测试,加快推动智能网联汽车从研发测试向示范应用和商业化推广转变,根据《上海市智能网联汽车道路测试和示范应用管理办法》规定测试主体需建立智能网联汽车公共道路测试监管数据采集方法及要求,测试车辆按采集方法及要求上传相关测试数据。 1.3主要工作过程 2020年1月17日,在上海市标准化协会办公室召开标准立项审查会,专家组一致同意《智能网联汽车公共道路测试监管数据采集方法及要求》标准立项,建议上海市标准化协会将该项目列入标准制定计划;

网联汽车技术的发展现状趋势

一、智能网联汽车基本内涵 1)概念层面的理解 ①汽车是指传统意义的汽车,包含今天广义上的新能源汽车; ②网联汽车是指在汽车的基础上,彼此能通信的汽车; ③智能网联汽车是指网联汽车基础上,具备智慧(有学习、判断、决策)能力的汽车。 理解: ①汽车还是汽车,这是没有改变的部分; ②智能网联汽车是新时代的汽车,这是变的部分。 ③传统汽车由人驾驶,彼此之间没有“会话”(通信)功能,更没有判断(决策)能力。 2)术语层面的表述 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置(注:硬件系统),并融合现代通信与网络技术,实现车与X(车、路、人、云等)智能信息交换、共享(注:对外通信系统),具备复杂环境感知、智能决策、协同控制等功能(注:软件系统),可实现安全、高效、舒适、节能行驶,并最终实现替代人来操作的新一代汽车(注:功能)。 理解: ①智能网联汽车由软件和硬件两部分组成, i)硬件细分3个部分:传感器、控制器、执行器等装置; ii)软件:在现代通信与网络技术的支持下,具有环境感知、智能决策、协同控制等功能; ②发展智能网联汽车最终目的是:实现替代人工操作的新一代汽车; ③发展智能网联汽车的基本要求:安全、高效、舒适、节能 二、智能网联汽车概念的位置关系 智能网联汽车、智能汽车与车联网、智能交通等概念间的相互关系,如图 1 所示。智能汽车隶属于智能交通,智能网联汽车是智能交通与车联网的交集。

图1 智能网联汽车是智能交通与车联网的交集 理解: ①智能网联汽车、智能汽车与车联网、智能交通是4个概念,不能混淆; ②智能交通是一个种概念,智能汽车、智能网联汽车是智能交通2个属概念, ③智能交通与车联网彼此之间有交集,这个部分是智能网联汽车。 三、发展智能网联汽车的时代意义 ①智能网联汽车是国际公认的是未来的发展方向; ②智能网联汽车的初级阶段,有助于减少30% 左右的交通事故,交通效率提升10%,油耗与排放分别降低5%; ③智能网联汽车的终极阶段,完全避免交通事故,提升交通效率30% 以上,并最终能把人从枯燥的驾驶任务中解放出来。 一句话,智能网联汽车可以提供更安全、更节能、更环保、更便捷的出行方式。 四、智能网联汽车4个发展阶段及技术特点 1)自主式驾驶辅助阶段及技术特点 自主式驾驶辅助系统是指依靠车载传感系统进行环境感知并对驾驶员进行驾驶操作辅助的系统。 (1)技术特点: 环境感知,运用传感系统技术是主要技术特点。 (2)技术分类: 有预警系统与控制系统两大类。 ①预警系统细分: i)前向碰撞预警(Forward Collision Warning,FCW);ii)车道偏离预警(Lane Departure Warning,LDW);iii)盲区预警(Blind Spot Detection,BSD);iv)驾驶员疲劳预警(Driver Fatigue Warning,DFW);v)全景环视(Top View System,TVS);vi)胎压监测(Tire Pressure Monitoring System,TPMS)等6大系统; ②控制类系统有: i)车道保持系统(Lane Keeping System,LKS);ii)自动泊车辅助(Auto Parking System,APS);iii)自动紧急刹车(Auto Emergency Braking,AEB);iv)自适应巡航(Adaptive Cruise Control,ACC)等4大系统。

智能网联汽车道路测试管理规范

智能网联汽车道路测试管理规范 (试行) 第一章总则 第一条为深入贯彻落实党的十九大精神,加快制造强国、科技强国、网络强国、交通强国建设,推动汽车智能化、网联化技术发展和产业应用,推进交通运输转型升级创新发展,规范智能网联汽车道路测试管理,依据《道路交通安全法》《公路法》等法律法规,制定本规范。 第二条本规范适用于在中华人民共和国境内进行的智能网联汽车道路测试。 第三条工业和信息化部、公安部、交通运输部定期联合发布智能网联汽车道路测试相关信息。 第四条省、市级政府相关主管部门可以根据当地实际情况,依据本规范制定实施细则,具体组织开展智能网联汽车道路测试工作。 本规范所称省、市级政府相关主管部门,包括各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、公安机关交通管理部门和交通运输主管部门。 第二章测试主体、测试驾驶人及测试车辆 第五条测试主体是指提出智能网联汽车道路测试申请、组织测试并承担相应责任的单位,应符合下列条件: (一) 在中华人民共和国境内登记注册的独立法人单位; (二) 具备汽车及零部件制造、技术研发或试验检测等智能网联汽车相关业务能力; (三) 对智能网联汽车测试时可能造成的人身和财产损失,具备足够的民事赔偿能力; (四) 具有智能网联汽车自动驾驶功能测试评价规程; (五) 具备对测试车辆进行实时远程监控的能力; (六) 具备对测试车辆事件进行记录、分析和重现的能力; (七) 法律、法规规章规定的其他条件。 第六条测试驾驶人是指经测试主体授权,负责测试并在出现紧急情况时对测试车辆实施应急措施的驾驶人,应符合下列条件: (一) 与测试主体签订有劳动合同或劳务合同; (二) 取得相应准驾车型驾驶证并具有3年以上驾驶经历;

智能网联汽车政策法律研究报告

《智能网联汽车政策法律研究报告》 10 月引引言言智能网联汽车是汽车工业和人工智能技术结合的全新产物,是我国抢占汽车产业未来战略的制高点,也是人工智能大规模应用的重要场景。 智能网联汽车的发展将引发汽车工业,交通形态,社会分工等等方面巨大的变化,同时也必然会对既有的社会秩序和规则带来挑战。 法律规则建设是智能网联汽车发展中非常重要的一环。 一方面由于智能网联汽车给社会生活带来的新变化,许多传统立法的规定不能适用于智能网联汽车,甚至会对智能网联汽车上路行驶或运输服务构成限制,需要及时对这些立法做出调整或解释,减少对智能网联汽车产业发展的阻碍;另一方面,智能网联汽车带来的新业态、新秩序需要新的规则予以调整,科学有效的法律制度供给能够促进新业态的良性健康发展,也有利于增加公众对于智能网联汽车的接受程度。 因此,赛迪研究院政策法规研究所对智能网联汽车发展涉及到的法律问题做了比较系统地研究,我们认为智能网联汽车既需要新的法律规则,同时更需要新的治理理念,以治理创新推动产业创新,以规则之变促进业态之变,使我国能在未来产业

竞争中获得制度优势。 在10 月北京举行的首届世界智能网联汽车大会上我们发布月,沃尔沃汽车公司宣布对其全自动驾驶系10 了《更新而成了. 统造成的人员、财产损伤承担责任,奥迪官方也于表示如果奥迪车在自动驾驶模式下发生事故,公司将承担全部责任。 但规则制定不能倚赖企业的道德责任,对于智能网联汽车的事故责任,需要区分是否有人为干预,是否存在设计缺陷,算法的合理性,对车辆的可责性等不同情况,分别制定对应的责任规则。 6 二、二、全球主要国家和地区的规则修订进程全球主要国家和地区的规则修订进程(一)美国(一)美国1.联邦层面:避免技术路线干预,负责构建安全框架联邦层面:避免技术路线干预,负责构建安全框架美国的智能网联汽车起源于智能交通系统美国的智能网联汽车起源于智能交通系统,,成名于自动成名于自动驾驶技术驾驶技术,,正迈向车路协同发展正迈向车路协同发展高级阶段高级阶段。 。 美国的智能网联汽车起步于代,当时的重点在于依托智能交通系统的整体发展推进汽车网联化。

调研报告智能网联汽车关键技术

智能网联汽车关键技术 调研报告 概况 中国的智能网联汽车发展已上升至国家战略层面,发展定位从原来以车联网的概念体现并作为物联网的重要组成部分,向智能制造、智能网联等智能化集成转移。2015 年工信部关于《中国制造2025》的解读中首次提出了智能网联汽车概念,明确了智能网联汽车的发展目标: 2020年掌握智能辅助驾驶总体技术及各项关键技术,初步建立智能网联汽车自主研发体系及生产配套体系;2025 年掌握自动驾驶总体技术及各项关键技术,建立较完善的智能网联汽车自主研发体系、生产配套体系及产业群,基本完成汽车产业转型升级。同时,提出重点发展基于车联网的车载智能信息服务系统、公交及营运车辆网联化信息管理系统和装备自动驾驶系统的智能网联汽车领域。 国家智能网联技术发展规划 目前,我国主要整车企业纷纷制定了智能网联汽车的战略规划,并通过跨界合作寻求产业融合和商业模式创新发展。上汽与阿里巴巴互联网汽车领域战略合作,以及智能驾驶相关的前瞻技术研发; 一汽“挚途”智能网联汽车技术战略,明确表示将在2025 年实现智能商业服务平台运营; 东风与华为已签署战略合作协议; 长安面向2025 智能网联汽车技术发展的“654”战略,并已和长安、高德、百度开展多方面的战略合作; 北汽与乐视联手打造全新一代互联网智能汽车及汽车生态系统,并创立轻资产品牌等。 我国于2016年10月颁布《节能与新能源汽车技术路线图》。该路线图的总体框架为“1+7”,即一个总报告再加7个报告分会,分别是节能汽车、纯电动和混合动力汽车、燃料电池汽车、智能网联汽车和汽车制造、动力电池、轻量化的技术路线图,如下图所示。

图 1 节能与新能源汽车总体技术路线图 参与编写技术路线图的专家们关于世界汽车技术发展趋势达成的共识包括三方面,即低碳化、信息化、智能化。信息化是指通过移动互联网、V2V、V2X等技术提升汽车的联网水平,从人性的角度而言,通信是人的基本需求,移动互联网普及之后,人几乎24小时挂在网上,自然期待在汽车场景下依然保持在线,享受车载娱乐服务;此外,联网也可使OTA(Over-the-Air)变成提升系统软件性能的常规手段。智能化是指利用大数据与机器智能实现ADAS与无人驾驶技术,解放人类的双手双脚,是人类免于驾车的苦役,每天变向延长人类1~2个小时的寿命,同时也是实现汽车主动安全的终极技术。而信息化与智能化二者的结合,亦可大幅提升道路的通行效率,是建设智慧城市不可缺少的一环。 《节能与新能源汽车路线图》对图2中的7大方向提出了以下量化指标:

《国家车联网产业标准体系建设指南(智能网联汽车)(

《国家车联网产业标准体系 建设指南(智能网联汽车)(2017)》 编制说明 一、背景与概述 (一)定义与内涵 智能网联汽车(Intelligent&Connected Vehicles,简称“ICV”)是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终可实现替代人来操作的新一代汽车。 (二)国内外技术及产业发展现状 作为汽车与信息、通信等产业跨界融合的重要载体和典型应用,智能网联汽车代表了汽车技术和产业未来发展的方向,也是国际汽车产业未来竞争的重要阵地。包括欧、美、日在内的汽车工业发达国家和地区都将智能网联汽车作为汽车产业未来发展的重要方向,通过加强共性技术研发、示范运行、标准法规、政策鼓励等综合措施引导和促进产业发展,并在智能网联汽车发展方面构建了协调、协作机制。 在规划和战略层面,美国从上世纪九十年代初开始,通过实施

“智能交通系统(ITS)”项目,支持智能网联汽车相关技术和产业发展,2009年和2014年分别以网联化和自动驾驶为重点发布战略研究计划,并于2016年发布自动驾驶汽车政策指南。欧盟议会早在1984年即通过关于道路安全的决议,并于1988年正式启动了“车辆安全专用道路设施(DRIVE)”项目,持续资助对智能网联汽车相关技术研发和应用。2015年,欧盟发布GEAR2030战略,聚集汽车、IT、通信、保险和政府等方面,重点关注高度自动化和网联化驾驶领域等推进及合作。日本政府也将自动驾驶和车车通信作为重要方向和目标,通过车辆信息与通信系统(VICS)、先进安全汽车(ASV)等项目支持技术研发与应用。2014年,日本发布《战略性创新创造项目(SIP)》,将自动驾驶作为十大战略领域之一。 在技术和产品层面,欧、美、日等国家和地区的整车企业,如奔驰、宝马、沃尔沃、通用、福特、特斯拉、丰田、日产等已经实现先进驾驶辅助系统,正在普及推动PA级自动驾驶产品的商业化,部分高端品牌已计划推出CA级自动驾驶产品;各国在整个产业链上的合作日益加强,相互持股与并购的情况日益普遍,通信、信息、电子、整车等行业深度融合发展。美国在网联化技术、智能控制技术、芯片技术等方面处于优势地位,产业上、中、下游实力均衡,欧洲拥有强大的汽车整车及零部件企业,日本则在智能安全技术应用上较为领先。 我国政府高度重视智能网联汽车相关技术及产业发展,工业和信息化部、发展改革委、科技部等相关政府部门,先后安排专项资

探究我国智能网联汽车发展现状

龙源期刊网 https://www.wendangku.net/doc/ac4926007.html, 探究我国智能网联汽车发展现状 作者:曹汝浪 来源:《科技资讯》2019年第18期 摘 ;要:众所周知,智能网联为我国当前新能源汽车产业将要重点发展的重点产业。目前我国的智能网联汽车产业发展面临着很多的问题,处于刚刚发展的阶段。对于智能网联汽车的发展,不仅面临着智能化与网联化的困难,还需要克服诸如怎样使得企业能够更好地发展、怎样去完善产业发展的战略缺失、怎样才能使得产业的标准更加健全、怎样使得产业的政策更加完善以及怎样完善测试场地和评价标准等诸多的困难。根据调查表明,为了能够促进我国智能网联汽车产业更好地发展,仅仅依靠企业自身的发展很难做到,在智能网联汽车产业发展的过程中需要通过政府、行业、高校和研究机构对其进行共同合作等,让其取得良好的发展前景。除了共同的合作促进智能网联汽车的发展外,还需要顶层设计来推动产业标准体的建设。 关键词:智能网联 ;汽车 ;困难 ;措施 中图分类号:U495 ; 文献标识码:A ; ; ; ; ; ;文章编号:1672-3791(2019)06(c)-0018-02 随着以互联网、大数据和云计算等技术为代表的新一轮的科技改革兴起,我国的政府提出了“中国制造2015”和“互联网+”等新型的发展方案。我国新一轮的科技改革正在不断发展。智能网联汽车可以提供更安全、更节能、更环保、更快捷的出行方式和全面的解决方案,是国际公认的未来发展方向和关注的焦点。 随着全球气温的上升,许多国家联合采取相应的措施来减少汽车对环境的危害,对燃气的销售情况进行了相应的规定和禁止。荷兰对2025年的燃油提出了禁令,印度、英国、法国也将会在2030—2040年全面地对燃油进行禁止出售,当然我国也会相应地出台有关燃油禁令指令。为了解决全球现在所面临的环境问题,推动智能网联汽车产业的发展成为重要措施之一。同时推动智能网联汽车产业的发展也是我国创新发发展的重要内容之一。我国目前的智能汽车产业还处于发展初期,必然会在发展的路上面临着很多的困难,全面地对我国现在产业的发展状况进行分析,对产业发展的困难和决策仔细地研究,会极大地促进我国智能网联汽车产业的发展。 1 ;智能网联汽车的含义 中国汽车工业协会对智能网联汽车做出了如下的相关定义:智能网联汽车是搭载先进的车载传感器、控制器、执行器等装置结合现代的通信与网络的技术,实现车和人的智能信息交换共享,智能网联汽车具有对复杂环境的感知、智能决策、共同控制和执行等功能,还能够安全、舒适、节能地高效行驶,最终能够代替人来对汽车完成相应的操作。

智能网联汽车测试题2

智能网联汽车测试题2 测验题2.1:简述智能网联汽车控制计算平台的硬件和软件主要构成。 答: 电子电气架构:把汽车中的各类传感器、ECU(电子控制单元)、线束拓扑和电子电气系统完美地整合在一起,完成运算、动力和能量的分配,实现整车的各项智能化功能。 智能网联汽车计算平台是基于高性能芯片和嵌入式实时操作系统构建的整车计算控制核心,能够实现对车辆进行状态判断、行为决策和整车控制,其架构如下图所示: 计算平台结构方案:通过“端、管、云”分布方式,主要包含构件有MCU,GPU,FPGA,ASIC,CPU+GPU。

测验题2.2:简述智能驾驶决策规划的主要难点和挑战。 答:1)基于有限状态机决策模型的状态划分问题。解决方案:引入其他决策理论。 2)基于有限状态机决策模型的复杂场景遍历问题。解决方案:采用状态机与学习算法结合的方法。 3)基于学习算法决策模型的正确性与稳定性问题。解决方案:大量可靠、高质量的试验数据,选择合理的学习算法,配置合理的试验参数,调整网络结构 4)伦理问题。 难点和挑战: 1)从短期来看,首要难点不在于自身,而是预测,也就是如何像人一样可以在有限的信息输入里面,根据“习惯”判断未来3-5s会发生的事情。这背后的逻辑复杂无比,不是单纯通过训练旁车的轨迹就可以做好,同时还需要反推感知和Map fusion,可以获取目标物更多的信息,车灯、交规、人的驾驶习惯,前方路线变化等等;这背后是一次柔性推理的过程。 2)预测的普遍性,并不是只关注车与自己的状态关系,甚至还有其他物体之间互相作用。 3)如何让自动驾驶的决策规划,有类似人的“直觉”。目前来看还没有一种算法可以达到这种水平,从大量数据中,实现仿人的经验决策。 4)次要难点在于如何保证规划曲线是时刻平滑的,换句话说,是不是在一定危险或特殊情况下允许非平滑的存在和求解。做轨迹规划训练的常用cost包含几个方面:舒适性、效率、安全性、动力模型可实现性。但如何在这三者之间矛盾中进行平衡,让乘坐者更满意。 5)从长期来看,决策规划难题在于如何保证你的结果是正确的,数据验证无疑是最好的手段,但这背后近乎无限的元素叠加及长尾问题,是从量变到质变的瓶颈。 测验题2.3:简述智能驾驶控制系统实现高超驾驶技能的关键要点。 答:高超驾驶技能主要包括:漂移、防侧倾等。 对于漂移,关键要点有:1)车辆质心位置不断变化,难以确定质心位置,

2018年中国智能网联汽车道路测试标准体系建设政策汇总分析

2018年中国智能网联汽车道路测试标准体系建设政策汇总 分析 作为汽车产业与物联网、人工智能、大数据等尖端技术和新兴产业跨界融合的产物界融合的产物,智能网联汽车已成为产业变革和国际竞争的重要领域。但是,智能网联汽车的产业化仍面临着技术能网联汽车的产业化仍面临着技术、标准、法律法规等多方面的障碍,迫切需要测试示范区为其产业化提供孵化平台测试示范区为其产业化提供孵化平台。 全国及各地智能网联汽车道路测试政策汇总 近年来,我国智能网联汽车发展明显提速。自2015年我国明确提出加快汽车等行业的智能化改造后,2017年工信部出台《车联网发展创新行动计划》,加快车联网技术研发和标准制定。2018年,工信部加快制定《车联网产业发展行动计划》及《车联网和智能网联汽车发展三年行动计划》,建立涵盖车辆、通信、道路设施等的标准体系。 同时,智能驾驶上路法规也在加紧拟定。2016年9月,重庆出台《重庆市推进基于宽带移动互联网的智能汽车与智慧交通应用示范项目实施方案 (2016-2019)》,确定了自动驾驶汽车上路测试的时间表。2018年3月,上海发布了《上海市智能网联汽车道路测试管理办法(试行)》;3月,重庆发布《重庆市自动驾驶道路测试管理实施细则(试行)》。2018年4月,工信部、公安部、交通部联合颁布了《智能网联汽车道路测试管理规范(试行)》,是我国中央政府出台的第一个规范自动驾驶汽车道路测试的法规文件。

多个城市相继发布智能网联汽车上路测试的有关政策法规,开创了国内开展智能网联汽车路试的先例,使国内各相关企业可以不必远渡重洋进行路试,即解决了企业的迫切需求,也使企业在此方面的成本大大降低。可以预见随着时间推移,将会有更多的城市开放测试环境,使国内各企业能够有充裕的环境开展路试工作。但是,开放路试还仅仅是第一步,今后各地还要根据需求加紧建设测试环境和设施,能够真正构建智能网联汽车的测试需求环境,同时还要完善智能网联汽车相关法规的建设,使智能网联汽车的发展能够有真正政策法规进行规范。 国家级智能网联汽车测试示范区10个 我国目前正在规划或建设的智能网联汽车测试及示范基地可以主要分为两类:一类是由国家相关部委联合地方政府批复,由相关企业或研究机构承担建设的封闭测试场地,目前主要以工信部、交通部为主。自2015年以来,其中由国

深圳市智能网联汽车道路测试

深圳市智能网联汽车道路测试 首批开放道路目录 深圳市智能网联汽车道路测试首批开放道路是用于智能网联汽车道路测试的开放路段。符合《深圳市关于贯彻落实<智能网联汽车道路测试管理规范(试行)>的实施意见》要求的测试主体(测试主体是指提出智能网联汽车道路测试申请、组织测试并承担相应责任的单位)可根据测试需求及拟测试期间申请道路的实际路况,从本目录中选取合适道路,向深圳市智能网联汽车道路测试联席工作小组办公室提出申请,咨询单位:深圳市交通运输委员会,联系人:杨东龙,电话:83165182。 首批开放道路选择合围区域19个,总面积约30 km2,道路里程合计约124km,覆盖深圳市福田、南山、盐田、宝安、光明、龙华、龙岗、坪山、大鹏9个行政区域。具体开放道路如下: 一、福田区 福田区可供道路测试的片区为福田保税区,具体为金葵道-市花路-瑞香道-绒花路-红花路合围区域。 二、南山区 南山区可供道路测试的片区为西丽、大学城、赤湾、前海、深圳湾口岸和深圳湾六个片区,具体为创科路-打石二路-石鼓路-茶光路-创研路-打石一路合围区域、留仙大道辅

道-丽水路-丽山路合围区域、赤湾六路-赤湾七路-赤湾四路-赤湾九路-赤湾二路-赤湾五路合围区域、白石路-深湾二路-白石三道-深湾四路-白石四道-深湾五路合围区域、听海路-前湾四路-临海大道-妈湾大道合围区域、工业八路-后滨海路-望海路-中心路-科苑南路合围区域。 三、盐田区 盐田区可供道路测试的片区为梅沙片区、沙头角和海山片区,具体为环梅路-盐梅路合围区域、深盐路-海山路-海景二路-金融路-沙深路合围区域。 四、宝安区 宝安区可供道路测试的片区为宝安机场和尖岗山片区,具体为领航三路-领航一路-领航四路-机场南路合围区域、上川路-留仙一路-留仙二路-隆昌路合围区域。 五、光明区 光明区可供道路测试的片区为光明南片区,具体为牛山路-创投路-观光路-茶林路-光侨路-华夏路合围区域。 六、龙华区 龙华区可供道路测试的片区为大浪片区和观湖片区,具体为大浪北路-石龙仔路-浪荣路-浪花路合围区域、观乐路-澜清二路-观盛五路-翠幽路-观盛一路-观清路-观盛二路合围区域。 七、龙岗区

智能网联汽车测试规范

5G自动驾驶联盟团体标准 智能网联汽车自动驾驶功能测试规范 (征求意见稿) Intelligent & C o nn e c t e d vehicle autonomous driving function test procedure 2018-12-07发布2018-12-07实施

目次 前言......................................................... 错误!未定义书签。 1 范围...................................................... 错误!未定义书签。 2 规范性引用文件............................................ 错误!未定义书签。 3 术语和定义................................................ 错误!未定义书签。4检测项目................................................... 错误!未定义书签。5通用要求................................................... 错误!未定义书签。 6 通过条件................................................... 错误!未定义书签。7测试规范................................................... 错误!未定义书签。附录A....................................................... 错误!未定义书签。

2020年智能网联汽车标准化工作要点

《2020年智能网联汽车标准化工作要点》 2020年是完成智能网联汽车标准体系建设第一阶段目标的收官之年,也是下一阶段工作谋篇布局之年。2020年智能网联汽车标准化工作,将以推动标准体系与产业需求对接协同、与技术发展相互支撑,建立国标、行标、团标协同配套新型标准体系为重点,促进智能网联汽车技术快速发展和应用,充分发挥标准的引领和规范作用,支撑我国汽车产业转型升级和高质量发展。 一、完成标准体系阶段性建设目标 (一)加快完善智能网联汽车标准体系建设。实现《国家车联网产业标准体系建设指南(智能网联汽车)》第一阶段建设目标,形成能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系;系统开展国家、行业和团体标准需求调查和分析,进一步优化完善智能网联汽车标准体系,编制汽车网联功能与应用标准化路线图,为实现支撑高级别自动驾驶的标准体系第二阶段建设目标提供基础保障。 (二)建立智能网联汽车标准制定及实施评估机制。根据产业发展情况,针对先进驾驶辅助系统、自动驾驶、信息安全、功能安全、汽车网联功能与应用等技术领域特点,有计划、有重点地部署标准研究与制定工作;强化标

准前期预研和关键技术指标验证,提高标准与产业发展的匹配度、粘合度;选择典型企业和产品,开展标准实施效果跟踪评估,实现智能网联汽车标准体系闭环管理与持续完善。 二、推进产品管理和应用示范标准研制(一)加大智能网联汽车产品管理所需标准的有效供给。适应智能网联汽车商品化进程,加快开展自动驾驶系统通用技术要求、信息安全、功能安全等支撑智能网联汽车产品安全性评估的通用类标准制定;推进模拟仿真、封闭场地和实际道路测试评价类系列标准制定,建立智能网联汽车自动驾驶综合评价能力;完成自动驾驶汽车数据记录系统、测试场景、汽车软件升级等关键标准的立项和编制工作;启动智能网联汽车网联性能测试评价、测试设备和工具、试验室能力评价方法等标准研究,促进提升我国智能网联汽车测试服务能力。 (二)发挥标准对产业重点需求及应用示范的支撑作用。面向无人接驳、无人物流等新型产业模式及港口、园区、停车场等特定场景的应用示范需求,完成所需技术标准的立项研究;加快智能网联汽车自动驾驶功能测试相关标准制定,有力支撑智能网联汽车道路测试及应用示范;持续完善智能网联汽车测试评价标准体系,营造高质量的开发、测试及应用环境,助力智能网联汽车技术应

智能网联汽车测试题1

智能网联汽车测试题1 一、请畅想人类10-20年后的出行模式,可以从交通工具、交通系统、交通模式等方面入手。简述你的畅想,不少于500字。 1.交通工具 1)私家车出现新型车辆,转向系统创新,车辆具有更高的灵活性; 2)无人驾驶巴士,智能自动检测行人乘客,无线上网充电; 2.交通系统、模式 1)多车间信息交互快捷高效,车辆将车辆、道路等数据上传至征集站,通过征集站实现了信息的交互共享,可以主要实现的功能: 对于视线阻挡造成的驾驶困难将通过前车将信息直接传送至后车等汽车之间的信息交互的方式进行快速响应,从而解决视觉死角带来的交通事故; 对于不良交通道路,如雨雪天湿滑路面,将通过汽车检测上传征集站,再传给后续通过该道路的其他车辆,避免道路影响导致车祸; 通过综合其他汽车信息选择合适车道,便捷的道路,避开路边停车车辆; 上传车辆动态位置信息以帮助乘客确定车辆位置,更好地制定出行方案; 实时对车辆进行动态检测,收集车辆信息便于交通管理监控中心对车辆道路进行管理 2)对于突发状况,车辆将进行快速反应,通过传感器及网联传递的信息,降低出行风险,主要实现的功能: 通过紧急操作将无人驾驶更改为人工驾驶; 避免车祸,救护车、消防车通过时将会做出让行; 对残疾人具有优待措施,盲人等残疾人过马路时将会提前对车辆发出警告,使得残疾人可以优先通过马路; 对于盲人驾驶员,具有更为安全妥善的保护措施。 2. 简述智能网联汽车有哪些关键核心技术以及技术等级划分的主要思想。

答:智能汽车包含九大核心技术: 智能驾驶汽车技术分级: 美国分五级,中国分五级,德国分三级。 德国:1)部分自动驾驶阶段:驾驶员需要持续监控车辆驾驶辅助系统的提示,车辆无法做出自助动作; 2)高度自动驾驶阶段:驾驶员不再需要对驾驶辅助系统持续监控,驾驶辅助系统可以在某些状态下暂时代替驾驶员做出一定的动作,并且能由驾驶员随时接管对车辆的操控; 3)完全自动驾驶阶段:真正实现无人驾驶的状态。 美国:1)无自动驾驶阶段(0级):驾驶员拥有车辆的全部控制权; 2)驾驶员辅助阶段(1级):驾驶员拥有车辆的全部控制权,车辆具备一种或多种辅助控制技术,例如倒车影像与倒车雷达、电子稳定控制、车道偏离报警、正面碰撞预警、定速巡航及汽车并线辅助系统等; 3)半自动驾驶阶段(2级):驾驶员和车辆共享对车辆的控制权,驾驶员为主; 4)高度自动驾驶阶段(3级):车辆和驾驶员共享对车辆的控制权,自动驾驶为主;

智能网联汽车测试评价关键技术

智能网联汽车测试评价关键技术 : 中国汽车工程研究院智能汽车测试评价中心副主任陈涛博士,针对智能网联汽车的相关技术的测试的核心技术作学术报告。他主要介绍了智能网联汽车发展情况和一些具体的技术,由三个部分组成。 第一,主要介绍了智能网联汽车相关的发展大背景。 从目前来看,智能网联汽车全球发展主要是为了解决人类所面临的交通安全问题、环境问题,不同于目前的新能源汽车。从另一个维度看,可以解决现在所面临的问题,例如交通设备问题。以上是智能网联汽车的定义(今年十月份由中国汽车工业协会正式发布)。从这个定义里面可以看到几个比较核心的点,它既强调了车上的各类传感器,也强调了我们和未来通信技术、网络技术以及其他领域的交互作用,这才是我们未来发展智能网联汽车的一个非常核心的部分。 从国外的发展来看,智能网联汽车分为几个非常详细的阶段。目前,从产业化应用的角度来看,我们的ADAS系统已经进入了一个产业化阶段。从智能化的角度来看,不管是国内还是国外,五年之后,智能网联汽车将会有一个跨越式的进步。另一方面,从国外的角度来看,网联化发展的情况比国内的要好,它的基本通信技术包括基于通信技术的应用,还有就是它的一些基本的注册已经初具规模。而国内很有可能在三年后实现国内自主LTV的车—车、车—路的通信技术市场化。下面是美国的一个综合发展战略,它明确了智能化、网联化两大核心方向,也是其成为世界领先战略地位的两个非常重要 的角度。 欧盟是一个协调性的组织,对于欧盟这么大的团体来讲,首要解决的是如何应用这种智能化、网联化的技术去解决安全、道路

弱势群体、移动与效率、物流等问题。 日本的计划是非常有野心的,日本目前的智能交通系统在全球是处于最领先的地步,并且想要借助2020年的东京奥约会的机会,提出来要建造世界上最安全的道路。其中最主要的技术有两类,一类是信息型的支持系统;另外一类是自动驾驶的系统。从整个技术发展来看,国外注重的自动驾驶技术的一些应用。从网联化的技术特点来看,网联化是为了未来能实现自动驾驶的一个重要技术支撑。日本定了一个大的目标,根据它的时间节点来看的话,在2020年建成世界最 安全的道路实现他的三级驾驶目标。 而从国内的情况来看,我们定的目标,一些技术和国外的基本保持一致。我们国内也有一些大的发展和变化,下面是中国制造2025的一个计划。 这样将智能汽、新能源汽车、节能汽车并列为未来三大类未来汽车发展的方向,在这个大的计划支持下这才有了后面相对发展的重点的专项工作。在这个里面,我们已经非常明确的提出来要突出中国的LET—V的技术特点,国外主要运用的是其他的技术路线,LET—V在国内主要是以大唐、华为为主的主要技术路线。很可能在两三年之后LET—V这条技术路线会取代802.11p,这条路线用于我们车—车、车—路这条线。另外一点也就是在支持未来网联化汽车发展的过程当中,智能汽车和智慧交通应用示范的专项工作已经进入到了国家重点支持的项目范畴。从智能网联汽车的角度来讲,专门把应用示范提出来,不仅是示范验证而且还有测试验证,而最大的原因还是在于这个新的技术和传

智能网联汽车公共道路测试监管数据采集方法及要求

智能网联汽车公共道路测试监管数据采集方法及要求 1 范围 本标准规定了智能网联汽车(L3以上)公共道路测试的第三方监管系统架构、监控终端要求、监管平台要求、系统数据传输协议等内容。 本标准适用于智能网联汽车公共道路测试的第三方监管,其它公共道路测试可参考执行。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 2312 信息交换用汉字编码字符集 GB 4943.1-2011 信息技术设备安全第1部分:通用要求 GB 16735-2019 道路车辆识别代号(VIN) GB/T 2260-2007 中华人民共和国行政区划代码 GB/T 2423.5-2019 环境试验第2部分:试验方法试验Ea和导则:冲击 GB/T 2423.10-2019 环境试验第2部分:试验方法试验Fc:振动(正弦) GB/T 19056-2012 汽车行驶记录仪 JT/T 415-2006 道路运输电子政务平台编目编码规则 JT/T 794-2019 道路运输车辆卫星定位系统车载终端技术要求 JT/T 808-2019 道路运输车辆卫星定位系统终端通信协议及数据格式 JT/T 809-2019 道路运输车辆卫星定位系统平台数据交换 JT/T 1076-2016 道路运输车辆卫星定位系统车载视频终端技术要求 YD/T 2583.14-2013 蜂窝式移动通信设备电磁兼容性能要求和测量方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 监控终端 Monitor terminal 第三方安装在测试车辆,收集并上报智能网联汽车实时状态、测试驾驶人状态和车辆周边环境信息的车载终端。 3.2 监管平台 platform 第三方机构搭建,具备智能网联汽车公共道路测试数据存储、测试数据分析及处理、监控终端安装信息管理等功能的综合管理平台。 3.3 监管系统system 监控终端和监管平台的系统整合。 3.4 车牌号plate number 公安交通管理部门颁发的机动车车牌号码。 3.5 车辆定位信息vehicle's positioning information 1

《智能网联汽车政策法律研究报告》.doc

《智能网联汽车政策法律研究报告》 10月引引言言智能网联汽车是汽车工业和人工智能技术结合的全新产物,是我国抢占汽车产业未来战略的制高点,也是人工智能大规模应用的重要场景。 智能网联汽车的发展将引发汽车工业,交通形态,社会分工等等方面巨大的变化,同时也必然会对既有的社会秩序和规则带来挑战。 法律规则建设是智能网联汽车发展中非常重要的一环。 一方面由于智能网联汽车给社会生活带来的新变化,许多传统立法的规定不能适用于智能网联汽车,甚至会对智能网联汽车上路行驶或运输服务构成限制,需要及时对这些立法做出调整或解释,减少对智能网联汽车产业发展的阻碍;另一方面,智能网联汽车带来的新业态、新秩序需要新的规则予以调整,科学有效的法律制度供给能够促进新业态的良性健康发展,也有利于增加公众对于智能网联汽车的接受程度。 因此,赛迪研究院政策法规研究所对智能网联汽车发展涉及到的法律问题做了比较系统地研究,我们认为智能网联汽车既需要新的法律规则,同时更需要新的治理理念,以治理创新推动产业创新,以规则之变促进业态之变,使我国能在未来产业竞争中获得制度优势。 在10月北京举行的首届世界智能网联汽车大会上我们发布了《更新而成了10月,沃尔沃汽车公司宣布对其全自动驾驶系

统造成的人员、财产损伤承担责任,奥迪官方也于表示如果奥迪车在自动驾驶模式下发生事故,公司将承担全部责任。 但规则制定不能倚赖企业的道德责任,对于智能网联汽车的事故责任,需要区分是否有人为干预,是否存在设计缺陷,算法的合理性,对车辆的可责性等不同情况,分别制定对应的责任规则。 6二、二、全球主要国家和地区的规则修订进程全球主要国家和地区的规则修订进程(一)美国(一)美国1.联邦层面:避免技术路线干预,负责构建安全框架联邦层面:避免技术路线干预,负责构建安全框架美国的智能网联汽车起源于智能交通系统美国的智能网联汽车起源于智能交通系统,,成名于自动成名于自动驾驶技术驾驶技术,,正迈向车路协同发展正迈向车路协同发展高级阶段高级阶段。 。 美国的智能网联汽车起步于代,当时的重点在于依托智能交通系统的整体发展推进汽车网联化。 在后,谷歌的自动驾驶项目将美国推向了智能网联汽车产业发展的中心。 10月,美国交通部在其《准备迎接未来交通:自动驾驶汽车3.0》中认可了交通基础设施对人类驾驶和自动驾驶的安全和高效的作用,并其提出将把车路协同发展作为智能网联汽车产业发展的方向。

智能网联汽车测试技术探究

智能网联汽车测试技术探究 摘要:目前,中国不仅是在技术研发、政策制定等方面推动智能网联汽车产业的发展,更是在各地建立了多个智能网联汽车测试示范区,用以促进相关技术进步,支撑标准和法律法规制定。本文从仿真测试和实车测试两方面介绍了智能网联汽车的测试技术,分析了典型测试技术应用案列,总结了封闭场地和开放道路测试现状,提出了智能网联汽车测试技术的发展建议。 关键词:智能网联汽车;仿真测试;实车测试;场景 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与人、车、路、云端等智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现安全、高效、舒适、节能行驶,并最终可实现替代人来操作的新一代汽车[1]。依据IHSAutomotive的预测数据,2035年智能网联汽车的销量将接近2100万辆,其中中国智能网联汽车销量有望达到570万辆,超过美国的450万辆、西欧的300万辆,成为全球最大的市场,如图1所示。智能网联汽车如何进行测试是目前公认的难题,也是产业发展中急需解决的问题。为了保证智能网联汽车的安全性和验证自动驾驶系统的稳定性、合理性,可以从智能网联汽车功能、性能、安全、稳定、舒适性和鲁棒性等方面进行测试。智能网联汽车测试方法主要包括仿真测试和实车测试。仿真测试主要有软件在环(Softwareintheloop,SIL)、硬件在环(Hardwareintheloop,HIL)、车辆在环(Vehicleintheloop,VIL)等方法。实车测试主要包括封闭场地

测试和开放道路测试。实车测试是最真实的测试方法,但其缺点也最明显,效率低、可重复性差、灵活性差、反馈不及时等。对智能网联汽车的测试主要有传感器(摄像头、激光雷达、毫米波雷达、超声波雷达等)、执行器、算法、人机交互界面以及封闭场地测试、公共道路测试等。智能网联汽车安全可分为主动安全、被动安全、功能安全、预期功能安全和信息安全。其中,主动安全主要是对车辆主动的加以干预,减少和避免事故的发生;被动安全主要是事故发生后减少人身、财产的伤害,如安全玻璃、安全气囊、安全座椅等;功能安全主要是由于系统、硬件故障或软件失效而产生的危险;预期功能安全主要是在车辆无故障情况下,由于环境感知或执行系统不符合预期而产生的危险;信息安全主要是保障车辆信息的机密性、完整性、可用性、可认证性和可审计性[2]。以下情况的发生可能会产生预期功能安全:一是自动驾驶系统由于道路环境、天气等因素,导致系统不能准确地进行感知、决策及控制;二是自动驾驶系统测试场景不完善,导致系统不能准确识别环境要素;三是自动驾驶系统功能决策逻辑设计不合理,导致决策错误;四是网联通信预警信息传输不正确,导致智能网联汽车通信错误;五是自动驾驶系统的执行系统响应能力不足,导致运动控制不准确。为了保证智能网联汽车在使用中的安全性,智能网联汽车应设置有保障机制。保障机制定义为当自动驾驶系统发生故障或车辆安全无法保证时应能够通过某种方式提示驾驶人进行人工接管或自动进入最小风险状态。对人工操作接管测试主要包括:智能网联汽车能够识别自动驾驶系统功能失效、硬件故障或处于设计边界等

中国智能汽车智能网联汽车产业链深度调研报告

中国智能汽车智能网联汽 车产业链深度调研报告 The document was prepared on January 2, 2021

2017-2021年中国智能汽车(智能网联汽车)产业链发展预测及投资咨 询报告

▄核心内容提要 【出版日期】2017年4月 【报告编号】 【交付方式】Email电子版/特快专递 【价格】纸介版:7000元电子版:7200元纸介+电子:7500元▄报告目录 第一章智能汽车(智能网联汽车)基本概述 第一节、智能汽车相关概念 一、车联网的概念 二、互联网汽车概念 三、智能汽车的概念 四、无人驾驶汽车概念 第二节、智能汽车体系架构 一、智能汽车的构造 二、智能汽车产业链 三、智能汽车功能结构 第二章2014-2016年智能汽车(智能网联汽车)行业发展环境

一、国民经济发展态势 二、工业经济运行状况 三、制造业加速转型升级 四、宏观经济发展走势 第二节、政策环境 一、汽车十三五规划 二、中国制造2025 三、智能汽车试点政策 四、互联网+人工智能政策第三节、社会环境 一、两化深度融合 二、城镇化进程加快 三、交通拥堵严重 四、产业联盟成立 第四节、技术环境 一、技术专利分析 二、物联网技术

三、云计算技术 四、人工智能技术 第三章2014-2016年智能汽车(智能网联汽车)行业发展分析第一节、智能汽车发展综述 一、行业生命周期 二、行业发展层次 三、行业开发模式 四、发展核心分析 第二节、2014-2016年智能汽车市场分析 一、市场竞争态势 二、行业发展成果 三、人工智能形态 四、行业市场空间 五、行业实现路径 第三节、智能汽车商业模式分析 一、数据和受众整合者 二、数字化服务提供商

相关文档
相关文档 最新文档