文档库 最新最全的文档下载
当前位置:文档库 › 数控开关电源的设计与实现

数控开关电源的设计与实现

数控开关电源的设计与实现
数控开关电源的设计与实现

数控开关电源的设计与实现

摘要:本文采用AT89S51单片机作为数控开关电源的主控部件,通过巧妙的软件设计与简易可靠的硬件电路相配合,实现输出电压可步进调整、输出电压信号可直接显示的功能。

整个设计包括电源变换部分、数字控制部分、数码显示部分三大电路模块组成。主芯片采用开关稳压集成电路芯片LM2575,数字电位器X9511依据指令,用数字控制来改变反馈,并将输出电压在数码管上显示。

关键词:单片机;开关电源;数控

The Switch Electrical Source of

High-precision Numerical Control

Abstract: In this digital switching power supply, AT89S51 MCU is the main components. Through clever design and simple and reliable software, hardware circuit line, stepping to achieve output voltage adjust, output voltage signal functions can be directly displayed.

Transform the whole design including the power of the digital control of the part of the three digital display circuit module. The main chip switching regulator IC LM2575, Digital Potentiometers X9511 based on instructions to change the use of digital feedback control and output voltage on the LED display.

Key Words:Singlechip microcomputer; switching power supply; n umerical control

1引言

1.1数控开关电源概述

随着电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源。电源是各种电子设备必不可少的重要组成部分,其性能的优劣直接关系到整个系统的安全性与可靠性。而开关电源是目前应

用最为广泛的一种新式电源装置,由于其小型化、轻量化、高效率、可大量节约能源等显著优点而深受人们的青睬,并被广泛应用于电子计算机、电视机、邮电通信、军事装备、交通设施、仪器仪表、工业设备等领域中。近年来,随着电子信息产业的迅速发展,人们对开关电源的需求也与日俱增。开关电源的开发与制造已成为了方兴未艾、发展前景十分诱人的朝阳产业。而怎样使开关电源在低成本情况下实现高精度的数控化调控成了人们研究的热点。

开关电源是利用现代电力电子技术,采用功率半导体器件作为开关,通过控制开关晶体管开通和关断的时间比率(占空比),调整输出电压,维持输出稳定的一种电源。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源。再者开关电源与线性电源相比又有以下优点:

1)开关电源的体积和重量明显地小于同功率的线性电源。因为它用高频变压器

代替了线性电源中笨重的工频变压器,能降低大量金属消耗。

2)开关电源的效率高于线性电源。因为它的功率管工作在开关状态,其效率一

般高于60%,且随着输出功率的增大而提高,普遍可达80%以上。对于开关电源而言,只要在脉冲宽度调节范围内,开关电源功率管上的功耗不随电网电压和输出电压变动,固有损耗比较低,所以它可应用于长期工作的各种设备中以降低能耗。而线性电源中由于调整管工作在线性状态且流过负载电流,所以功耗很大。当输出电压较低时,其效率小于50%。

3)开关电源的适应性强。因工作方式的特殊性,开关电源能够适应更宽的工作

电压范围。以电视机中的开关电源为例,目前生产的电视机能够做到同时适应国内220V和国外110V的电源。在经济日益全球化的今天,这一特性是传统线性电源无法比拟的。

4)开关电源更安全。线性电源的输入电压和输出电压的差值较大,一旦调整管

击穿,全部输入电压将加到输出端,有可能危及负载。而并联式开关电源中,当功率管损坏时,主回路停止工作,输出端就没有电压输出,不会出现过压现象。另外由于开关电源的效率比较高,开关管上的功耗比较小,发热较低,所以对散热安装设计的要求降低,以及涉及220V电压等情况进行的多重安全设计,都进一步提高了系统的安全性。

当今开关电源发展的三大趋势为:

1)非隔离DC/DC技术迅速发展

2)初级PWM控制IC不断优化

3)同步整流技术实现高效率

4)开关的频率更高

1.2数控开关电源目前发展状况

电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。日前,随着单片开关电源集成电路的应用,开关电源正朝着短、小、轻、薄的方向发展。单片开关电源自20世纪90年代中期问世以来便显示出强大的生命力,它作为一项颇具发展前景和影响力的新产品,引起了国内外电源界的普遍重视。现已成为具有发展前景和影响力的一项高新技术产品。最近两年来,国外—些著名的一些芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广与普及奠定了良好的基础。随着单片机技术的发展和控制理论研究的深入,开关电源的数字化控制也从比较简单的MCU加电源芯片的控制结构发展到利用高性能DSP及FPGA进行PWM、通信、监控的全数字化控制结构。实时性和多任务的要求使双CPU结构得到了更加广泛的应用。目前开关电源的发展,主要朝着更高的功能密度和变换效率及更好的动态特性,更好的环保性能,智能化与高可靠性,更广泛的应用等方面发展。

1.3开关电源的分类

随着电力电子器件和开关变频技术几乎同步开发的前提下,两者相互促进与推动,开关电源每年以超过两位数字的增长率,向轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源科分为AC/DC,AC/AC,DC/AC,DC/DC四大类。DC/DC 变换器现已实现模块化、成熟化和标准化。但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对四类开关电源的结构和特性作以阐述。[2]

1、DC/DC变换器

DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton)和频率调制方式(ton 不变,改变Ts)两种。前者较为通用,后者容易产生干扰。其具体电路有Buck 电路(降压斩波器,其输出平均小于输入电压,极性相同)、Boost电路(升压斩波器,其输出平均电压大于输入电压,极性相同)、Buck—Boost电路(降压或升压斩波器,电感传输方式。其输出平均电压大于或小于输出电压,极性相反)和Cuk电路(降压或升压斩波器,电容传输方式。其输出平均电压大于或小于输入电压,极性相反)四种。

2、AC/DC变换器

AC/DC变换器是将交流电压变换成直流电压,其功率流向可以是双向的功率六由电源流向负载的称为“整流”,功率六有负载返向电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准,(如UL、CCE等)及EMC指令

的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高要求,由于同样的原因,高电压、大电流开关使得电源工作效率达到一定的满意程度。

AC/DC变换按电路的接线方式右分为,半波电路、全波电路。按电源相数可分为,单相。按电路工袋子和象限又可分为一象限、二象限、三象限、四象限。

3、DC/AC变换器

它是将直流电转换成交流电的开关变换器,有的称其为变流器,是交流输出开关电源和不间断电源(UPS)的主要部件。在某些特殊场合,例如卫星、飞机、舰船、潜艇等没有工频交流电源(50或60Hz),仅有蓄电池或太阳能电池可供使用,它们都属于直流电源,当需要由这些电源向交流负载供电时,便需要DC/AC变换。此外,工频交流电对某些负载来说并不适用,例如飞机上使用400Hz交流电,感应加热需要使用中频或高频交流电,感应电动机变频凋速需要在一定范围内可以任意变频、变压的交流电等。在有工频交流电源的情况下,先将工频交流电变成直流电,再经过逆变器变成所需频率和电压的交流电,这些应用都需要DC/AC 变换技术。

随着电力半导体器件的发展,逆变技术在应用范围得到进一步拓宽,它几乎渗透到国民经济的各个领域。尤其是高压、大电流、高频三者功能兼备的场控器件的开发成功,为简化逆变电路、提高逆变器的性能及高频脉宽调制(PWM)技术的广泛应用奠定了基础。

4、AC/AC变换器

它是将一种频率的交流电直接转换成另一种恒频或可变频率的交流电.或是将变频交流电直接转换成恒频交流电的变换装置。在需要不同于市电频率或频率可变的交流电源场合,通常采用AC/AC变换器,它可以用两种方案实现:( 1 ) AC/DC/AC变换,该方案必须通过AC/DC和DC/AC两次电能变换,故效率较低。

( 2 ) AC/AC变换:该方案无需中间直流环节,就可以直接将工频交流电能转换成频率可变的交流电能。故称为直接变频。由于电源电压是交变的,故这种变换大多采用电网换流方式,少数也采用强迫换流方式,随着自关断器件的发展,AC/AC变换技术已得到重视。

AC/AC变换技术主要应用范围如下:

1 ) 大功率(几千千瓦以上)的交流传动:

2 ) 舰船或飞机用的恒频电源。

3 ) 静止无功补偿。

1.4开关电源的控制方式

无工频变压器开关电源的控制方式,大致有以下三种:脉宽调制方式,脉冲频率调制方式,混合调制方式。

1.4.1 脉宽调制技术

脉宽调制PWM技术(相对于软开关技术,PWM也称为硬开关)由于其电路简单、控制方便而得到了广泛应用。1976年美国硅通用公司第一个做出了单片集成控制芯片SG1524,称为脉宽调制器。从此,PWM技术的应用和发展开始进入了相对成熟的阶段。脉冲宽度调制(Pulse Width Modulation,PWM)波形图如图1-1所示,是将脉冲周期固定,通过调节脉冲宽度来调节输出电压。

图1-1 PWM控制方式波形图

稳压原理是:当输出电压升高时,控制器输出信号的脉冲周期不变,而脉冲宽度变小,使占空比减小,输出电压降低。

目前,应用PWM技术的变换器运行的最佳频率范围是50~120KHz(使用MOSFET做开关管),在这个范围内,整个系统无论体积、重量、可靠性和价格都基本实现了最佳。但是,常规PWM技术的固有缺陷限制了其进一步的高频化,表现在:

1.在开关器件导通和关断的过程中,电压和电流的波形有重叠,产生开关损耗,并且该损耗随着开关频率的提高而增大;

2.电路的寄生电感和寄生电容在高频时产生严重的电压尖峰和浪涌电流。

由于这些局限性,迫使人们另想办法,围绕着减小开关损耗,消除或缓解电路中寄生参数的影响而提出了谐振变换技术。

1.4.2 脉冲频率调制技术

脉冲频率调制(Pulse Frequency Modulation,PFM)波形图如图2-6所示,是将脉冲宽度固定,通过调节工作频率来调节输出电压。

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

PI开关电源电路设计

PI开关电源设计指引 (发布日期:2011-11) 1范围 本标准描述了开关电源电路硬件控制的实现方法,一般开关电源电路设计者在使用不同型号的开关电源控制IC及不同的开关电源电路方案时可以此为参考,更快、更好地完成特定功能的硬件设计。希望本标准能对硬件可靠性的提升有所帮助。 本标准适用于PI开关电源电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB/T 15184 按能力批准评定质量的电子设备用开关电源变压器分规范 GB/T 14714 微小型计算机系统设备用开关电源通用技术条件 QMK-J33.242 开关变压器设计指引 3硬件接口定义及相关原理图 3.1控制芯片型号——TinySwitch-III系列离线开关IC(TNY276~TNY279); 3.2管脚功能说明如下: EN/UV脚:输入使能信号和输入线电压欠压检测。 1、EN功能:在正常工作时,通过此引脚可以控制功率MOSFET的开关,当从此引脚拉出的 电流大于115μA,MOSFET被关断。当此引脚拉出的电流小于75μA时,MOSFET重新开启。 2、UV功能:在EN/UV引脚和DC电压间连接一个外部电阻可以用来感测输入电压的欠压情况。 如果没有外部电阻连接到此引脚,TinySwitch-III可检测出这情况并禁止输入电压欠压保护功能。 BP/M脚:旁路/多功能控制脚。 1、旁路:一个外部旁路电容连接到这个引脚,用于生成内部5.85 V的供电电源。 2、外部限流点设定:根据所使用电容的容值选择电流限流值。 3、关断功能:在输入掉电时,当流入旁路引脚的电流超过I SD时关断器件,直到BP/M电压下降 到4.9 V之下。还可将一个稳压管从BP/M引脚连接到偏置绕组供电端实现输出过压保护。 D脚:旁路电容充电引脚,同时也是内部功率MOSEFT的漏极(D极)。 S脚:内置功率MOSEFT的源极(S极),同时也是开关电源控制电路的参考点。 3.3参考设计原理图

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

开关电源的设计修订版

物理与机电工程学院(2015——2016 学年第二学期) 综合设计报告 开关电源的设计 专业:电子信息科学与技术学号:2014216010 姓名:侯涛 指导教师:石玉军

开关电源的设计 摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小,重量轻等优势在很多方面逐步取代了效率低、又笨重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务。信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。开关电源的高频变换电路形式很多,常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本文章是基于芯片UC3842的小功率高频开关电源系统设计。 关键词开关电源半桥全桥高频变压器 1、引言 1.1研究的背景 随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。显然,那种体积大而笨重的使用

工频变压器的线性调节稳压电源已经过时。取而代之的是小型化、重量轻、效率高的隔离式开关电源。 开关电源技术发展趋势可以归纳以下几点: ①小型化、薄型化、轻量化、高频化是开关电源的主要发展方向。 ②提高可靠性,提高集成度,增加保护功能,拓宽输入电压范围,提高平均无故障时间。 ③随着频率提高,开关电源的噪声随之增大,降低噪声也是高频开关电源的研究方向。 ④提高电源装置和系统的电磁兼容性(EMC)。 ⑤用计算机软件进行辅助设计与控制,具有高效、高精度、高经济性和高可靠性的优点,可以使开关电源具有最佳电路结构与最佳工作状况。开关电源高频化的实现,与磁性元件和半导体功率器件的发展状况有着密切的关系。 隔离式开关电源的核心是一种高频电源变换电路。它使交流电源高效率地产生一路或多路经调整的稳定直流电压。早在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化水平也不断提高,外接组件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。目前己形成了各类功能完善的集成开关稳压器系列。近年来高反压MOS大功率管的

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源原理与设计(6)word文档

开关电源原理与设计(连载九)并联式开关电源输出电压滤 波电路 时间:2013-11-01 来源:作者: 1-4-2.并联式开关电源输出电压滤波电路 上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。但在应用中,大多数并联式开关电源输出电压还是经过整流滤波后的直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。 图1-12是带有整流滤波功能的并联式开关电源工作原理图。图1-12中,Ui 是开关电源的工作电压,L是储能电感,eL为电流iL在储能电感两端产生的反电动势,K是控制开关,R是负载。而图1-13、图1-14、图1-15分别是并联式开关电源控制开关K工作于占空比为0.5、< 0.5、> 0.5时,图1-12电路中各点的电压、电流波形。图图1-13、图1-14、图1-15中Ui是开关电源的输入电压,uo是控制开关K两端的输出电压,uc是滤波电容两端的输出电压,Up是开关电源输出的峰值电压,Uo是开关电源输出电压(平均值),Ua是开关电源输出的平均电压, iL是流过储能电感L的电流,iLm是流过储能电感L电流的最大值,Io是流过负载R的电流(平均值)。 当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L 的电流iL开始增加,同时电流在储能电感中也要产生反电动势eL;当控制开关K由接通转为关断的时候,储能电感也会产生反电动势eL。eL反电动势的方向与开关K 关断前的方向相反,但与电流的方向相同,因此,在控制开关K两端的输出电压uo 等于输入电压Ui与反电动势eL之和。 因此,在Ton期间:

eL = Ldi/dt = Ui —— K接通期间 (1-43)

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源课程设计

太原理工大学课程设计任务书 指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24) 心得体会 (25) 参考文献 (26)

开关电源设计的一般考虑 经典!!!

第一章开关电源设计的一般考虑 在设计开关电源之前,应当仔细研究要设计的电源技术要求。现以一个通信电源模块的例子来说明设计要考虑的问题。该模块的技术规范如下: 1 电气性能 除非另外说明,所有参数是在输入电压为220V,交流50Hz以及环境温度25℃下测试和规定的. 表1.1 调压范围2 效率 额定电压输出电流限流范围过压范围调压范围1 I(max) 54.9V 28A 110% 58.8- 52.55- 45.7 >87% Imax 61.2V 52.75V 45.9V 1.1 输入 电压:单相交流额定电压有效值220V±20% 频率:频率范围 45-65Hz 电流:在满载运行时,输入220V,小于8A。在264V时,冲击电流不大于18A 效率:负载由50%-100%为表2.1值 功率因数:大于0.90,负载在50%以上,大于0.95 谐波失真:符合IEC 555-2要求 启动延迟:在接通电源3秒内输出达到它的额定电平 保持时间:输入176V有效值,满载,大于10mS 1.2 输出 电压:在满载时,输出电压设定在表1值的±0.2% 电流:负载电流从零到最大值(参看表1),过流保护开始是恒流,当电压降低到一定值得时,电流截止. 稳压特性:负载变化由零变到100%, 输入电压由176V变到264V最坏情况下输出电压变化不超过200mV. 瞬态响应:在没有电池连接到输出端时,负载由10%变化到100%,或由满载变化的10%,恢复时间应当在2mS之内. 最大输出电压偏摆应当小于1V. 静态漏电流:当模块关断时,最大反向泄漏电流小于5mA. 温度系数:模块在整个工作温度范围内≤±0.015%. 温升漂移:在起初30秒内,±0.1% 输出噪音:输出噪音满足通信电源标准,衡重杂音<2mV. 1.3 保护 输入:输入端保护保险丝定额为13A. 输出过压:按表 1.1设置过压跳闸电压,输出电压超过这个电平时,将使模块锁定在跳闸状态.通过断开交流输入电源使模块复位. 输出过流:过流特性按表1.1的给定值示于图1.过流时,恒流到60%电压,然后电流电压转折下降.(最后将残留与短路相同的状态) 输出反接:在输入反接时,在外电路设置了一个保险丝烧断(<32A/ 55V) 过热:内部检测器禁止模块在过热下工作,一旦温度减少到正常值以下,自动复位. 1.4 显示和指示功能 输入监视:输入电网正常显示. 输出监视:输出电压正常显示.(过压情况关断). 限流指示:限流工作状态显示. 负载指示:负载大于低限电流显示. 继电器:输入和输出和输入正常同时正常显示。 输出电流监视:负载从10%到100%,指示精度为±5%. 遥控降低:提供遥控调节窗口. 1.5 系统功能 电压微调:为适应电池温度特性,可对模块的输出电压采取温度补偿. 负载降落:为适应并联均流要求,应能够调节外特性。典型电压降落0.5%,使得负载从零到增加100%,输出电压下降250mV. 遥控关机:可实现遥控关机。 1.6 电气绝缘 下列试验对完成的产品100%试验。 1.在L(网)和N(中线)之间及其它端子试验直流电压为6kV. 2.在所有输出端和L,N及地之间试验直流2.5kV.这检查输出和地之间的绝缘. 3.下列各点分别到所有其它端子试验直流100V: 电压降低(11和12脚) 继电器接点(14,15和16脚) 状态选择-输入,输出和电流限制(3,4,5和6脚)

相关文档
相关文档 最新文档