文档库 最新最全的文档下载
当前位置:文档库 › 王高雄等《常微分方程》第三版习题解答详细

王高雄等《常微分方程》第三版习题解答详细

王高雄等《常微分方程》第三版习题解答详细
王高雄等《常微分方程》第三版习题解答详细

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

常微分方程王高雄第三版答案

习题2.2 求下列方程的解 1. dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 21 e x -(x x cos sin +)+c] =c e x -2 1 (x x cos sin +)是原方程的解。 2. dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ? -dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1 e t 5+c) =c e t 3-+5 1 e t 2 是原方程的解。 3. dt ds =-s t cos + 21t 2sin 解:s=e ? -tdt cos (t 2sin 2 1 ?e dt dt ? 3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为: dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy + 1212 --y x x =0 解:原方程可化为: dx dy =-1212 +-y x x ? =-dx x x e y 2 1 2(c dx e dx x x +? -2 21) ) 2 1(ln 2 + =x e )(1ln 2 ?+- -c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 2 3 4xy x x += 解: dx dy 2 3 4 xy x x += =2 3y x + x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u += 2 u x 2 1u dx du = dx du u =2 c x u +=3 31 c x x u +=-33 (*) 将 x y u =带入 (*)中 得:3 4 3 3cx x y =-是原方程的解.

常微分方程(第三版)(王高雄周之铭朱思铭)高等教育出版社课后答案

常微分方程习题答案 2.1 1.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== , 0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为: x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 2 2 2 2 3 22 3 2 )1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+ ? + =+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

常微分方程王高雄第三版答案3.1

习题3.1 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=--=0 )1(22y y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023 x x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

常微分方程(第三版)王高雄著课后习题答案.doc

\ 习题 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2 另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2 dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 & 解:y 2 dx=-(x+1)dy 2y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+3 1 x x + y y 21+dy=3 1 x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 、 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0

解:原方程为: dx dy =-y x y x +- { 令 x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+2 2y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx } arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 ` 2 e x 3-3e 2 y -=c. (lnx-lny)dy-ydx=0

常微分方程课后答案(第三版)王高雄

常微分方程课后答案(第三版)王高雄

习题 3.4 (一)、解下列方程,并求奇解(如果存在的话):。 1、4 22? ? ? ??+=dx dy x dx dy x y 解:令 p dx dy =,则422p x xp y +=, 两边对x 求导,得dx dp p x xp dx dp x p p 3 244222+++= ()02213 =?? ? ? ?++p dx dp x xp 从0213=+xp 得 0≠p 时,2 343,21p y p x -=-=; 从02=+p dx dp x 得 222,c p c y p c x +==, 0≠p 为参数,0≠c 为任意常数. 经检验得331234x p y p ? =-?? ? ?=-?? ,是方程奇解. 2、2 ? ? ? ??-=dx dy y x 解:令 p dx dy =,则2p x y +=, 两边对x 求导,得dx dp p p 21+= p p dx dp 21-=, 解之得 ()c p p x +-+=2 1ln 2, 所以()c p p p y +-++=221ln 2, 且y=x+1也是方程的解,但不是奇解.

3、2 1? ? ? ??++=dx dy dx dy x y 解:这是克莱洛方程,因此它的通解为21c cx y ++=, 从?? ???=+-++=0112 2 c c x c cx y 中消去c, 得到奇解21x y -=. 4、02 =-+?? ? ??y dx dy x dx dy 解:这是克莱洛方程,因此它的通解为 2c cx y +=, 从???=++=0 22 c x c cx y 中消去c, 得到奇解 2 40y x +=. 5、022 =-+?? ? ??y dx dy x dx dy 解:令 p dx dy =,则22p xp y +=, 两边对x 求导,得 dx dp p dx dp x p p 222++= 22 --=x p dp dx , 解之得 23 2 -+-=cp p x , 所以 123 1 -+-=cp p y , 可知此方程没有奇解. 6、012 3 =-?? ? ??-??? ??dx dy y dx dy x 解:原方程可化为2 1?? ? ??- =dx dy dx dy x y ,

相关文档
相关文档 最新文档