文档库 最新最全的文档下载
当前位置:文档库 › 第三章__集成运放电路试题及答案(1)

第三章__集成运放电路试题及答案(1)

第三章__集成运放电路试题及答案(1)
第三章__集成运放电路试题及答案(1)

第三章集成运放电路

一、填空题

1、(3-1,低)理想集成运放的A ud=,K CMR=。

2、(3-1,低)理想集成运放的开环差模输入电阻ri=,开环差模输出电阻ro=。

3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或

两种的状态。

4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。

5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________, ___________。

6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。

7、(3-2,低)反相输入式的线性集成运放适合放大(a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大(a.电流、b.电压)信号。

8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。

9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。

(1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。

(2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。

(3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。

(4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。

10、(3-2,难)分别填入各种放大器名称

(1)运算电路可实现A u>1的放大器。

(2)运算电路可实现A u<0的放大器。

(3)运算电路可将三角波电压转换成方波电压。

(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。

(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

11、(3-3,中)集成放大器的非线性应用电路有、等。

12、(3-3,中)在运算电路中,运算放大器工作在区;在滞回比较器中,运算放大器工作在区。

13、(3-3,中)_________和_________是分析集成运算放大器线性区应用的重要依据。

二、选择题

1、(3-1,中)集成运放的主要参数中,不包括以下哪项。

A、输入失调电压

B、开环放大倍数

C、共模抑制比

D、最大工作电流

2、(3-1,低)差模输入信号是两个输入信号的。

A、和

B、差

C、比值

D、平均值

集成运算放大器(总结)

集成运算放大器 一、集成运放的结构框图 零点漂移是指将直流放大器输入端对地短路,使之处于静态状态时,在输出仍然会出现不规则变化的电压。 造成零漂的原因是电源电压的波动和三极管参数随温度的变化,其中温度变化是产生零漂的最主要原因。 二、理想运放工作在线性区的特点 在集成运放的各种应用中,其工作范围有两种,即工作在线性区和非线性区。若运放在开环状态和引入正反馈时,它就工作在非线性区;要使运放工作在线性区,则必须引入负反馈。运算电路中的集成运放都是闭环使用的,引入了深度负反馈,也就是工作在线性区。 1、理想运放在线性区具有以下特点: (1)v I+=v I- 虚短 v I+=v I-=0 虚地 i I+=i I- =0 虚断 (2) “虚短”和“虚断”是理想运放工作在线性区的两个重要结论,也是今后分析集成运放线性应用电路的重要依据。 三、反馈类型的判断 (1)负反馈放大器的四种组态 电压串联负反馈、电压并联负反馈、电流串联负反馈、电流并联负反馈(2)正反馈和负反馈的判定 反馈回到反相输入端的是负反馈; 反馈回到同相输入端的是正反馈 (3)电压反馈和电流反馈的判定 反馈电阻跟Vo接在同一端的是电压反馈,不接在同一端的是电流反馈。 (4)串联反馈和并联反馈的判定 反馈电阻跟Vi接在同一端的是并联反馈,不接在同一端的是串联反馈。 四、集成运算放大器线性应用电路 (一)反相输入比例运算电路(反相放大器)

电压并联负反馈 R 2=R l ∥R f= f f R R R R +11 (二)同相输入比例运算电路(同相放大器) 电压串联负反馈 R 2=R l ∥R f=f f R R R R +11 (三)减法比例运算电路(差分放大器) 电压负反馈

经典运放电路分析(经典)

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入

端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 1)反向放大器: 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,

(完整版)模拟电子技术基础-知识点总结

模拟电子技术复习资料总结 第一章半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 *P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6. 杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性 二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V 阳 >V 阴 ( 正偏 ),二极管导通(短路); 若 V 阳

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

运算放大器知识点总结

u o t u u i1 i2运算放大器知识点总结 1、 部分组成 偏置电路,输入级,中间级,输出级。 2、零点漂移: (1)表现: 输入u i =0时,输出有缓慢变化的电压产生。 (2)原因: 由温度变化引起的。当温度变化使第一级放大器的静态工作点发生微小变化时,这种变化量会被后面的电路逐级放大,最终在输出端产生较大的电压漂移。因而零点漂移也叫温漂。 (3)衡量方法: 将输出漂移电压按电压增益折算到输入端计算。 例如 100,=u1A 100=u2A 10000=u A 如果输入等效为100uV ,漂移为1V 。 (4)减小漂移的措施: 采用差动放大电路 采用温度补偿,非线性元件 3、差动放大电路 运放的输入级一般采用差动放大电路。 差动放大电路又称差分放大电路,它的输出电压与两个输入电压之差成正比。它能较好地克服直接耦合放大器的零点漂移问题,是集成运算放大器的基本组成单元。 结构如右图: (1)对称性结构 β1=β2=β U BE1=U BE2= U BE r be1= r be2= r be R C1=R C2= R C R b1=R b2= R b (2)信号分类 差模信号:i2i1id =u u u - o u V CC V EE o u V CC V EE

i2 u EE 共模信号:) ( 2 1 = i2 i1 ic u u u+ 差模电压增益: id od ud = u u A 共模电压增益: ic oc uc = u u A 总输出电压: ic uc id ud oc od o =u A u A u u u+ = + 2 1 1 EE AB R R R V U + = 3 AB C3 V 7.0 R U I - = 2 C3 C2 C1 I I I= = ②动态 恒流源等效电阻:) // 1( 3 2 1 be3 3 ce R R R r R r R + + + = β 等效 ,且 2 1 2 1 2 1 // R R R R R R + ? = (5)差动放大器输入、输出方式的接法 u i1=u i2 =u ic,u id=0 设u i1 ↑,u i2↑ →u o1↓,u o2↓。 因u i1 = u i2, →u o1 = u o2 → u o= 0 (理想化) 共模电压放大倍数A UC=0 i2 i1 u

第5章 含有运算放大器的电阻电路总结

第五章 含有运算放大器的电阻电路 ◆ 重点: 1、运放的传输特性 2、比例器、加法器、减法器、跟随器等运算电路 3、含理想运放的运算电路的分析计算 ◆ 难点: 熟练计算含理想运放的电路 5.1 运放的电路模型 5.1.1 运放的符号 运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。其符号为 + u- _ o + _ 图5-1 运放的符号 在新国标中,运放及理想运放的符号分别为 图5-2 运放的新国标符号 5.1.2 运放的简介 一、同相与反相输入端 运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。其意义并不是电压的参考方向。 二、公共端 在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3 运放的输入输出关系 一、运放输入输出关系曲线 在运放的输入端分别同时加上输入电压+ u 和- u (即差动输入电压为d u )时,则其输 出电压u o 为 d u u o u A u u A u =-=-+)( d 图5-3 运放输入输出关系曲线 实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。 二、运放的模型 a u - u o u 图5-4 运放的电路模型 由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。 例:参见书中P140所示的反相比例器。(学生自学) 5.1.4 有关的说明 在电子技术中,运放可以用于 1.信号的运算——如比例、加法、减法、积分、微分等 2.信号的处理——如有源滤波、采样保持、电压比较等 3.波形的产生——矩形波、锯齿波、三角波等 4.信号的测量——主要用于测量信号的放大 5.2 具理想运放的电路分析 5.2.1 含理想运放的电路分析基础 所谓“理想运放”,是指图中模型的电阻R in 、R 0为零,A 为无穷大的情况。由此我们可以得出含有理想运放的电路的分析方法。根据输入输出特性,我们可以得出含有理想运放器件的电路的分析原则:

十一种经典运放电路分析

十一种经典运放电路分析 从虚断,虚短分析基本运放电路 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器: 传输文件进行[薄膜开关] 打样 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

第六章集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名 称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波 变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。 【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。

实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压

专用集成电路

实验一 EDA软件实验 一、实验目的: 1、掌握Xilinx ISE 9.2的VHDL输入方法、原理图文件输入和元件库的调用方法。 2、掌握Xilinx ISE 9.2软件元件的生成方法和调用方法、编译、功能仿真和时序仿真。 3、掌握Xilinx ISE 9.2原理图设计、管脚分配、综合与实现、数据流下载方法。 二、实验器材: 计算机、Quartus II软件或xilinx ISE 三、实验内容: 1、本实验以三线八线译码器(LS74138)为例,在Xilinx ISE 9.2软件平台上完成设计电 路的VHDL文本输入、语法检查、编译、仿真、管脚分配和编程下载等操作。下载芯片选择Xilinx公司的CoolRunner II系列XC2C256-7PQ208作为目标仿真芯片。 2、用1中所设计的的三线八线译码器(LS74138)生成一个LS74138元件,在Xilinx ISE 9.2软件原理图设计平台上完成LS74138元件的调用,用原理图的方法设计三线八线译 码器(LS74138),实现编译,仿真,管脚分配和编程下载等操作。 四、实验步骤: 1、三线八线译码器(LS 74138)VHDL电路设计 (1)三线八线译码器(LS74138)的VHDL源程序的输入 打开Xilinx ISE 6.2编程环境软件Project Navigator,执行“file”菜单中的【New Project】命令,为三线八线译码器(LS74138)建立设计项目。项目名称【Project Name】为“Shiyan”,工程建立路径为“C:\Xilinx\bin\Shiyan1”,其中“顶层模块类型(Top-Level Module Type)”为硬件描述语言(HDL),如图1所示。 图1 点击【下一步】,弹出【Select the Device and Design Flow for the Project】对话框,在该对话框内进行硬件芯片选择与工程设计工具配置过程。

运算放大器总结

运算放大器的原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间, 且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图: 一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。 运放的供电方式分双电源供电与单电源供电两种。对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。采用单电源供电的运放,输出在电源与地之间的某一范围变化。 运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。这种运放称为轨到轨(rail-to-rail)输入运算放大器。 运算放大器的输出信号与两个输入端的信号电压差成正比,在音频段有:输出电压=A0(E1-E2), 反相端的输入信号电压。 运算放大器的历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 运放的工艺技术

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运放电路实验报告

实验报告姓名:学号: 日期:成绩: 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 =∞ 开环电压增益A ud =∞ 输入阻抗r i 输出阻抗r =0 o =∞ 带宽 f BW

失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图6-1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图6-1 反相比例运算电路 图6-2 反相加法运算电路 2) 反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图6-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U - =

专用集成电路AD的设计

A/D转换器的设计 一.实验目的: (1)设计一个简单的LDO稳压电路 (2)掌握Cadence ic平台下进行ASIC设计的步骤; (3)了解专用集成电路及其发展,掌握其设计流程; 二.A/D转换器的原理: A/D转换器是用来通过一定的电路将模拟量转变为数字量。 模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。符号框图如下: 数字输出量 常用的几种A/D器为; (1):逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 (2): 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 (3):并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型AD,而从转换时序角度又可称为流水线型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 一.A/D转换器的技术指标: (1)分辨率,指数字量的变化,一个最小量时模拟信号的变化量,定义为满刻度与2^n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率,是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级,属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位ksps 和Msps,表示每秒采样千/百万次。 (3)量化误差,由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。(4)偏移误差,输入信号为零时输出信号不为零的值,可外接电位器调至最小。(5)满刻度误差,满度输出时对应的输入信号与理想输入信号值之差。 (6)线性度,实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 三、实验步骤 此次实验的A/D转换器用的为逐次比较型,原理图如下:

集成运放组成的基本运算电路-实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的要紧参数 第六节场效应管简介 第一节学习要求 1. 掌握差不多镜象电流源、比例电流源、微电流源电路结构及差不多特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握差不多型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的要紧技术指标及集成运算放大电路的一般电路

结构。 学习重点: 掌握集成运放的差不多电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采纳直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采纳了温度补偿的手段 ----输入级是差放电路。 3. 大量采纳BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采纳复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、差不多镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 3 / 34

运放电路分析方法总结

运放电路分析方法总结 学生: [38]陈再 指导教师:陈永强 摘要:运放电路的分析是一个非常重要的知识点,这里主要是论述用“虚短”、“虚断”来对运放电路进行详细的分析,也会通过几种典型电路分析,来讲述运放电路的分析方法。 关键词:运放电路;虚短;虚断;分析;方法 1 引言 随着我们学知识的深入,会发现运放中所学的知识应用越来越多,在这门学科中所占比例比较大,而在许多结构复杂的电路中,对它们进行分析,用运放知识 快速、简洁的找出输入输出的关系式非常重要的。(这里主要是分析线性运放电路) 2 理想运放的特点 图 1 输入输出的关系:()o v id v v A v A v v +-=?=?- 3 虚短 、虚断的概念 虚短:因为理想运放开环增益:Av →∞→虚短,根据输入输出关系,得到: v ≈v (同相端和反相端电位近似相等)。 虚断:由于同相和反相两输入端之间出现虚短现象,而输入电阻:Ri →∞→虚断,i =i ≈0 (同相端和反相端电流近似为零)。 输出电阻:Ro →0 4 线性应用分析 4.1 反相比例电路

图 2 * v v + -≈=0(虚短) * 12i i =(虚断) 根据这个基本特点,电阻上流过的 111 i i v v v i R R --= = ; 222o o v v v i R R --= =- 电流等于电压除以电阻值。 得到 2 1 o i R v v R =- ? ( 3 R 不起作用) 同理得到: 2 1x i R v v R =- ? 图 3 4.2 同相比例电路 图 4 同相与反相比例电路要注意放大器输 v v -+≈ 12i i = → 111 2220o o v v i R R v v v v i R R -+ -+ -= =--= = 入端的接地极性(+ 和 -) 得到:2 1 (1)o R v v R +=+ ? 要灵活运用式子的转换

简析集成运算放大器的发展及典型精典应用电路

模拟电子技术科技小论文 简析集成运算放大器的发展及典型精典 应用电路 姓名: 学院:电子工程学院 专业:电子信息工程 班级:2016级5班 指导老师:

一、集成运算放大器的发展历史及现状 1934年的某天,哈里·布莱克(Harry·Black)搭渡从他家所在的纽约到贝尔实验室所在的新泽西去上班。渡船舒缓了他那紧张的神经,使得他可以做一些概念性的思考。哈里有个难题要解决:当电话线延伸得很长时,信号需要放大。但放大器是如此的不可靠,使得服务质量受到严重制约。首先,初始增益误差很大,但这个问题很快就通过使用一个调节器解决了。第二,即使放大器在出厂时调节好了,但是在现场应用的时候,增益的大范围漂移使得音量太低或者输入的语音失真。 为了制造一个稳定的放大器,很多的方法都尝试过了,但是变化的温度和极差的电话线供电状况所导致的增益漂移,一直难以克服。被动元件比主动元件有更好的漂移特性,如果放大器的增益取决于被动元件的话,问题不就解决了吗?在这次搭渡途中,哈里构思了这样一个新奇的解决方法,并记录了下来。 这个方法首先需要制造一个增益比实际应用所需增益要大的放大器,然后将部分的输出信号反馈到输入端,使得电路(包括放大器和反馈元件)增益取决于反馈回路而不是放大器本身。这样,电路增益也就取决于被动的反馈元件而不是主动的放大器,这叫做负反馈,是现代运算放大器的工作原理。哈里在渡船上记录了史上第一个有意设计的反馈电路,但是我们可以肯定在这之前,有人曾无意构建过反馈电路,只不过忽视了它的效果而已。起初,管理层和放大器设计者有很大的抱怨:“设计一个30-KHz增益带宽积(GBW)的放大器已经够难的了,现在这个傻瓜想要我们设计成3-MHz的增益带宽积,但他却只是用来搭建一个30-KHz增益带宽积的电路!”然而,时间证明哈里是对的。但是哈里没有深入探讨这带来的一个次要问题——振荡。当使用大开环增益的放大器来构建闭环电路时,有时会振荡。直至40年代人们才弄懂了个中原因,但是要解决这个问题需要经过冗长繁琐的计算,多年过去了也没有人能想出简单易懂的方法来。 1945年,H.W.Bode提出了图形化方式分析反馈系统稳定性的方法。此前反馈的分析是通过乘除法来完成的,传函的计算十分费时费力,需要知道的是,直至70年代前工程师是没有计算器和计算机的。波特使用了对数的方法将复杂的数学计算转变成简单直观的图形分析,虽然设计反馈系统仍然很复杂,但不再是只被“暗室”里的少数电子工程师所掌握的“艺术”了。任何电子工程师都可以使用波特图去寻找反馈电路的稳定性,反馈的应用也得以迅速增长。 世界上第一台计算机是模拟计算机!它使用预先编排的方程和输入数据来计算输出,因为这种“编程”是硬件连线的——搭建一系列的电路,这种局限性最

模电实验八集成运放基本应用之一模拟运算电路实验报告

实验八集成运放基本应用之一--模拟运算电路 班级:姓名:学号: 2015.12.30 一、 实验目的 1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大电路在实际应用时应考虑的一些问题。 二、 实验仪器及器件 三、 实验原理 1、反相比例运算电路 电路如图8-1所示。 图8-1反相比例运算电路 2、反相加法电路 电路如图8-2所示。 图8-2 反相加法电路 )V R R V R R ( V i22 F i11F O +-= R 3═R 1// R 2// R F 3、同相比例运算电路 电路如图8-3(a)所示。 图8-3(a)同相比例运算电路图8-3(b) 电压跟随器 i 1 F O )V R R 1(V + =R 2═R 1// R F 当R 1→∞时,V O ═V i 即得到如图8-3(b)所示的电压跟随器。

4、差分放大电路(减法电路) 电路如图8-4所示。 图8-4 减法运算电路 5、积分运算电路 电路如图8-5所示。 图8-5 积分运算电路 如果v i(t)是幅值为E的阶跃电压,并设v c(0)═0,则 四、实验内容及实验步骤 实验前要看清运放组件各管脚的位置;切忌正负电源极性接反和输出端短路,否则将会损坏集成块。 1、反相比例运算电路 1)按图8-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。 2)输入f= 100Hz,V i = 0.5V的正弦交流信号,测量相应的V o并用示波器观察v o和v i的相位关系,记入表8-1。 表8-1f= 100Hz,V i = 0.5V V i(V)V o(V)v i和v o波形A V 实测值计算值 0.175 -1.755 10.03 10.00 2、同相比例运算电路 1)按图8-3(a)连接实验电路。实验步骤同内容1,将结果记入表8-2。 2)按图8-3(a)中的R1断开,得图8-3(b)电路重复内容1)。 表8-2f= 100Hz,V i = 0.5V V i(V)V o(V)v i和v o波形A V 实测值计算值

相关文档