文档库 最新最全的文档下载
当前位置:文档库 › 近代物理实验报告3

近代物理实验报告3

近代物理实验报告3
近代物理实验报告3

2016/11/22 23:07:00近代物理实验报告

实验名称:核磁共振

指导教师:刘洋

专业:物理

班级:求是物理班1401

姓名:朱劲翔

学号:3140105747

实验日期:2016.12.7

实验目的:

1. 掌握核磁共振的实验原理和方法。

2.用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 。

实验原理:

质子和中子都是自旋角动量为2 的费米子,中子数和质子数均为偶数,核自旋量子数

I 为零,此类原子核不能产生核磁共振;中子数与质子数其一为奇数,核自旋量子数I

为半整数,此类原子核能产生核磁共振;中子数与质子数均为奇数,核自旋量子数I 为

整数,如H 2

原子核等,此类原子核能产生核磁共振。

原子中电子的能量不能连续变化,只能取分立的数值,在微观世界中物理量只能取分立数值。原子核自旋角动量也不能连续变化,也只能取分立值 )1(+=I I p ,其中I 称为自旋量子数,取0,l ,2,3,…等整数值或l/2,3/2,5/2,…等半整数值,公式中

的π2h = ,而h 为普朗克常数,对不同的核素,I 分别有不同的确定值,本实验涉及

水的质子H 1和氟核F 19

的自旋量子数I 都等于l/2,类似地原子核的自旋角动量在空间

某一方向,例如z 方向的分量也不能连续变化,只能取分立的数值 m p z =,其中磁量子数m 只能取I ,1-I ,…,1+-I ,-I 等(12+I )个数值。

自旋角动量不为零的原子核具有与之相联系的核自旋磁矩,简称核磁矩,其大小为

p m e g

p

2=μ (3—1)

其中e 为质子的电荷,

p

m 为质子的质量,g 是一个由原子核结构决定的因子,对不同

种类的原子核g 的数值不同,g 称为原子核的朗德因子,值得注意的是g 可能是正数,也可能是负数,因此,核磁矩的方向可能与核自旋角动量方向相同,也可能相反。 由于核自旋角动量在任意给定的z 方向只能取(12+I )个分立的数值,因此核磁矩在z 方向也只能取(12+I )个分立的数值

p

z p z m e gm p m e g

22 ==μ=

N

g m μ? (3—2)

原子核的磁矩通常用P N m e 2/ =μ作为单位,N μ称为核磁子,采用N μ作为核磁矩的单位以后,z μ可记为

N

z m g μμ=,与角动量本身的大小为

)1(+I I 相对应,核磁矩

本身的大小为N I I g μ)1(+,除了g 用因子表征核的磁性质外,通常引入另一个可以由实验测量的物理量γ(回旋比),γ定义为原子核的磁矩与自旋角动量之比:

g m e

p

p

2=

=

μ

γ (3—3)

利用γ我们可写成p γμ=,相应地有z z p γμ=。通常称πγ2/为原子核的回旋频率。 当不存在外磁场时,每一个原子核的能量都相同,所有原子核处在同一能级,但是,当施加一个外磁场B 后,情况发生变化,为了方便起见,通常把m 的方向规定为z 方向,

由于外磁场B 与磁矩的相互作用能为

B m B p B B E z z γγμμ-=-=-=?-=

(3—4)

因此量子数m 取值不同的核磁矩的能量也就不同,从而原来简并的同一能级分裂为(12+I )个子能级,由于在外磁场中各个子能级的能量与量子数m 有关,因此量子数m 又称为磁量子数。这些不同子能级的能量虽然不同,但相邻能级之间的能量间隔

B E γ=?却是一样的,而且,对于质子而言,I =1/2,因此,

m 只能取m =1/2和m =-1/2两个数值,施加磁场前后的能级分别如图-1所示

当施加外磁场B 以后,原子核在不同能级上的分布服从玻尔兹曼分布,显然处在下能级的粒子数要比上能级的多,其差数由ΔE 大小、系统的温度和系统的总粒子数决定,这时,若在与B 垂直的方向上再施加一个高频电磁场,通常为射频场,当射频场的频率满足E h ?=ν时会引起原子核在上下能级之间跃迁,但由于一开始处在下能级的核比在上能级的要多,因此净效果是往上跃迁的比往下跃迁的多,从而使系统的总能量增加,这相当于系统从射频场中吸收了能量。

图3—1

我们把当E h ?=ν时引起的上述跃迁称为共振跃迁,简称为共振。射频场的频率满足共振条件为:

νh =

B h

E πγ2=

?=B

g N μ

(3—5)

对裸露的质子而言经过大量测量得到T

MHz /577469.422=πγ

和一些核素的回旋率数值

见附录一。但是对于原子或分子中处于不同基团的质子,由于不同质子所处的化学环境

不同,受到周围电子屏蔽的情况不同,πγ

2的数值将略有差别,这种差别称为化学位移,

对于温度为25℃球形容器中水样品的质子,T

MHz /576375.422=π

γ

,本实验可采用

这个数值作为很好的近似值,通过测量质子在磁场B 中的共振频率H ν可实现对磁场的校准,即

πγν2H B =

(3—6)

反之,若B 已经校准,通过测量未知原子核的共振频率ν便可求出待测原子核的γ值(通

常用πγ

2值表征)或g

因子;

B νπγ=2

(3—7)

h B

g N μν=

(3—8)

通过上述讨论,要发生共振必须满足πγν2B =,为了观察到共振现象通常有两种方法:一种是固定B ,连续改变射频场的频率,这种方法称为扫频方法;另一种方法,也就是本实验采用的方法,即固定射频场的频率,连续改变磁场的大小,这种方法称为扫场方法,如果磁场的变化不是太快,而是缓慢通过与频率ν对应的磁场时,用一定的方法可以检测到系统对射频场的吸收信号,如图3-2(a)所示,称为吸收曲线,这种曲线具有洛伦兹型曲线的特征,但是,如果扫场变化太快,得到的将是如图3-2(b)所示的带有尾波的衰减振荡曲线,然而,扫场变化的快慢是相对具体样品而言的,例如,本实验采用的扫场是每秒50周,幅度为几个高斯的交变磁场,对固态的聚四氟乙烯样品而言是变化十分缓慢的磁场,其吸收信号将如图3-2(a)所示,而对液态的水样品而言却是变化太快的磁场,其吸收信号将如图3-2(b)所示,而且磁场越均匀,尾波中振荡的次数越多。

图 3-2(a) 图 3-2(b)

实验内容与步骤:

1.测量永久磁铁中心最均匀处的磁场0B

把样品为水(掺有三氯化铁)的探头下端的样品盒插人到磁铁中心,并使电路盒水平放置在磁铁上方的木座上,左右移动电路盒使它大致处于木座的中间位置,将电路盒背面的“频率输出”和“检波输出”分别与频率计和示波器连接,用示波器观察扫描信号,打开频率计,示波器和边限振荡器的电源开关,这时频率计应有读数,接通可调变压器电源并把输出调节在较大数值(100V 左右),缓慢调节边限振荡器的频率旋钮,改变振荡频率(由小到大或由大到小)同时监视示波器,搜索共振信号。

由共振条件,只有πγν2B =才会发生共振,外磁场是永久磁铁的磁场0B 和一个50Hz 的交变磁场叠加的结果,总磁场为:

t B B B '0cos 'ω+= (3—9)

其中'

B 是交变磁场的幅度,'ω是市电的圆频率,总磁场在(0B -'B )到(0B +'

B )的范围

内按图3—5的正弦曲线随时间变化,只有ν落在这个范围内才能发生共振,为了容易找到共振信号,要加大'

B ,(即把可调变压器的输出调到较大数值),使可能发生共振的磁场变化范围增大;另一方面要调节射频场的频率,使ν落在磁场变化的范围就能观察到共振信号。如图3-5所示:共振发生在数值为的水平虚线与代表总磁场变化的正弦曲线交点对应的时刻,如前所述,水的共振信号将如图3-2(b)所示,而且磁场越均匀尾波中的振荡次数越多,因此一旦观察到共振信号以后,应进一步仔细调节电路盒在木座上的左右位置,使尾波中振荡的次数最多,即使探头处在磁铁中磁场最均匀的位置,并利用标尺记下此时电路盒边缘的位置。

由图3—5可知,只要γω在(0B -'B )~(0B +'

B )范围内就能观察到共振信号,但这时

γω未必正好等于0B ,从图上可以看出;当0B ≠ω时,各个共振信号发生的时间间

隔并不相等,共振信号在示波器上的排列不均匀,只有当0B =γω时,它们才均匀排列,这时共振发生在交变磁场过零时刻。当'0B B -=ω或'0B B +=ω时,在示波器上也能观察到均匀排列的共振信号,只是此时的共振信号在扫场的波谷和波峰处,间隔比

0B =γω时大一倍。

3-5

2、估测永久磁铁中心最均匀处磁场0B 的不确定度

从图3—5可以看出,一旦观察到共振信号,0B 的误差不会超过扫场的幅度'

B ,因此,

为了减小估计误差,在找到共振信号之后应逐渐减小扫场的幅度'

B ,在能观察到和分

辨出共振信号的前提下,力图把'B 减小到最小程度,记下'

B 达到最小时共振信号的频率N ν。

为了定量估计0B 的测量误差0B ?,首先必须测出'

B 的大小,可采用以下步骤:保持这

时扫场的幅度不变,调节射频场的频率,使共振先后发生在(0B +'

B )与(0B -'

B )处,这

时图3—5中与πω2对应的水平虚线将分别与正弦波的波峰和波谷相切,即共振分别发生在正弦波的波峰和波谷附近,这时从示波器看到的共振信号均匀排列,记下这两次的

共振频率'

N ν和"

N ν,利用公式

πγνν22)('"'N N B -=

(3—10)

可求出扫场的幅度。

实际上0B 的估计误差比'

B 还要小,这是由于借助示波器上网格的帮助,共振信号排列

均匀程度的判断误差通常不超过10%,由于扫场大小是时间的正弦函数,容易算出相应的0B 的估计误差是扫场幅度'

B 的8%左右,考虑到'

B 的测量本身也有误差,可取'

B 的

1/10作为0B 的估计误差,即取

πγνν220)(10'"

'0N N

B B -=

=? (3—11)

0B ?只保留一位有效数字,进而可以确定0B 的有效数字,可得0B =测量值 ± 估计误差。

3、现象观察:适当增大'

B ,观察到尽可能多的尾波振荡,然后向左(或向右)逐渐移动电路盒在木座上的左右位置,使下端的探头从磁铁中心逐渐移动到边缘,同时观察移动过程中共振信号波形的变化并加以解释。

4、选做实验;利用样品为水的探头,把电路盒移到木座的最左(或最右)边,测量磁场边缘的磁场大小。

5、测量19

F 的g 因子

把样品为水的探头换为样品为聚四氟乙烯的探头,并把样品放在相同的位置(永久磁铁中心最均匀处的磁场0B ),用与测量磁场过程相同的方法和步骤测量聚四氟乙烯中19

F

与0B 对应的共振频率F ν以及在峰顶及谷底附近的共振频率'F ν及"F ν,利用F ν求出19F 的

g 因子,根据公式(3-9),g 因子的不确定为

2

002?

???

???+???? ???=?B B g g

F

F νν (3—12)

式中0B 为永久磁铁中心最均匀处的磁场0B ,与上述估计0B ?的方法类似,可取

20

"'F

F F ννν-=

?作为N ν的估计误差。

6、观测聚四氟乙烯中氟的共振信号时,比较它与掺有三氯化铁的水样品中质子的共振

信号波形的差别。 选做内容

1.利用样品为水的探头,把电路盒移到平台上面最左(或右)边,测量磁场边缘的磁场强度并与中心的磁场强度作比较。

对物理专业高年级学生还可以引导他们观察当样品盒从磁场中心移向边缘过程中共振信号波形的变化:随着样品逐渐移向磁场边缘,共振信号尾波中的振荡次数逐渐减少,甚至出现与氟核共振信号类似的波形。通过讨论使学生明白:在磁场边缘由于磁场均匀性下降,使得有效的弛豫时间T 2减小,从而影响共振信号的波形。进而可定性说明固态样品和液态样品共振信号波形的差别。

2.估测固态聚四氟乙烯样品中氟核的驰豫时间T 2。

估测方法如下:示波器改用X-Y 输入方法,把底座前方标有“扫场输出”的信号(它与扫场线圈两端电压成正比)输入到X 端,“检波输出”信号输入到Y 端。把频率调节在氟的共振频率并适当增大扫场幅度,从示波器上观察到的将是重叠而又相互错开了两个共振峰(可利用相移调节旋钮改变两个峰的位置)。利用示波器上的网格估测其中一个共振

峰的半宽度B ?与扫场变化范围'

2B 的比值k (即'2/B B k ?=)。然后固定扫场的幅度不

变,把示波器改回正常的接法,用与基本要求 1.中相同方法,测出共振发生在扫场的

峰顶与谷底时的共振频率'F ν和"F ν求出这时扫场的变化范围'2B ,进而求出氟核共振峰的

半宽度B ?,即

k

k B B F

F ?-=?=?πγνν22"

'

然后利用公式

F B T ??? ???=πγπ212

()

"'2

1F F k T ννπ-=

(3—13)

估算出聚四氟乙烯中氟核的驰豫时间T 2,上面式中F ??? ??πγ2为氟核的回旋频率(参见附录一)。

实验器材及注意事项

实验器材:

图 3—3 核磁共振实验实物装置图

实验装置的方框图如图 所示:永久磁铁(含扫场线圈)、边限振荡器(包括探头两个(样品分别为水和聚四氟乙烯))、数字频率计、示波器、可调变压器和220V/6V

小变压器组

成。

1.永久磁铁

2.扫场线圈

3.电路盒

4.振荡线圈及样品

5.数字频率汁

6.示波器

7.可调变压器

8.小变压器

图 3—4 核磁共振实验装置方框图

注意事项:

1、发现信号幅度明显减小或频率偏低达不到要求时应该首先检查电池电源,当电压小于8.5V时应更换电池

2、由于电池容量小会出现电压下降的情况,从而频率后两位会出现缓慢减小的情况需要尽快读数。

3、勿使用常规稳压直流电源代替电池,不然会烧毁电路元器件。

数据处理处理及实验结果:

实验数据表:

实验结果:

B 0=

n H

g 2p ()H

=0.5967T ()

()0.002T

22

'“'=-=

H

H H

B πγνν左边

0.0002T 10'0==

?左边

B B

B 0=0.5967±0.0002T

g =

n F B

m N h

=5.25 g =5.25±0.03

D g=

=0.03

分析实验结果和不确定度的来源及谈谈心得和改进方法

分析:结果上所得到的都是计算得到的,实验不确定度是本身实验所定义的。结果上来说g的测量较为不准确,可能是由于之前的B以及之后的测量有问题,可能中间存在B 的变化。

改进:做实验要快从而减少在中间过程所发生的变化。

选择题

1)、在核磁共振实验系统中磁场调制的主要作用:C

A、产生一正弦波。

B、与外磁场,叠加形成合磁场。

C、帮助实验者比较容易地发现共振信号。

D、便于从示波器获得稳定清晰波形。

2)、本在实验中产生核磁共振信号的方法是:B

A、脉冲波法。

B、连续波法。

C、感应辐射法。

D、上述任意一种方法。

3)用示波器扫描信号观察核磁共振吸收信号中,当射频振荡输出频率等于核磁共振频率时,共振吸收峰的特征是:B

A、共振吸收峰的位置要随调制磁场幅度值的改变而移动。

B、共振吸收峰的位置等间距,共振吸收峰的位置会随调制磁场幅度值改动而移动。

C、共振吸收峰位置等间距,共振吸收峰位置不随调制磁场幅值改变而移动,仅峰值有微小变化。

D、共振吸收峰的位置及幅值都会随调制磁场幅值的改变而改变。

4)当射频振荡频率为适合外磁场

B的原子核拉摩尔频率时,调制磁场的幅

度改变不影响共振吸收峰的位置的原因是:A

A、核磁共振吸收峰出现在调制磁场瞬时值为0的时刻。

B、示波器扫描信号频率为共振信号的整数倍时。

C、原子核拉摩尔频率为射频振荡频率的整数倍。

D、射频振荡频率为调制磁场频率的整数倍。

5)射频边缘振荡线圈在NMR实验中的作用:C

A、只作高频磁场的发射线圈。

B、只作共振信号的接收线圈。

C、既作高频磁场的发射线圈又作共振信号的检测线圈。

D、以利用自差法观测共振现象。

6)本实验采用连续波方法产生NMR 信号,其调制磁场的产生装置是D

A 、Hz 500交流电。

B 、通电的赫姆霍兹线圈

C 、通电的长直螺线管。

D 、通以Hz 50工作频率电流的一对特制线圈。 9、思考题

1). 什么样的原子核具有核磁矩?什么样原子核能产生核磁共振?本实验中的样品是什么原子核?

答:质子数或中子数为奇数的原子核具有核磁矩,具有磁矩的核能产生核磁共振,本实验用的样品是水和聚四氟乙烯,故为 1 H 和19 F 2).实验中不加扫场能否观察到共振信号?为什么?

答:能,可采用固定磁场大小而改变射频频率的办法实现, B π

γ

υ2= 时产生共振。

3). 怎样利用核磁共振测量磁场强度?

答:用水做样品,通过 1 H 的核磁共振来测量磁场强度。将样品放入磁 场中,测量发生共振时射频场的频率,则γ

πυ

2=

B

4).存在扫场时,如何根据所观察到的共振信号的图形,确定共振磁场0B 的值。为什么质子样品的共振频率N ν和氟样品的共振频率F ν必须在同一磁场下测出?

答:调节射频场的频率使共振吸收信号的峰值与调制磁场的零点对齐,此时所得的频率即可用来确定共振磁场。因为我们要测量的量是氟样品的g 因子,必须校准磁场,质子样品就是用来校准磁场用的,自然应在同一磁场下测出。

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

大学物理实验报告范例

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量 【实验题目】长度和质量的测量

【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1 -(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺分度值的差值为:n x x n n x =-- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对 齐的刻线数k 和卡尺的分度值x/n 读取:n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ;对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退mm ,而微分筒每转一格时,测微螺杆前进或后退50=。可见该螺旋测微器的分度值为mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m =?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?= 。 【实验内容与步骤】(实验内容及主要操作步骤) 1. 米尺测XX 面积:分别测量长和宽各一次。 2. 游标卡尺测圆环体积:(1)记下游标卡尺的分度值和零点误差。(2)用游标卡尺测量圆环

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

近代物理实验报告

近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料班级: 学号: 学生姓名: 实验教师: 2010-2011学年第1学期

实验1真空获得与真空测量 实验时间: 地点: 指导学生: 【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。 【关键词】镀膜机;机械泵;扩散泵;真空获得和测量 一、实验目的 1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法; 1.2、熟悉实验设备和仪器的使用。 二、实验仪器 JCP-350C 型热蒸发/磁控溅射真空镀膜机。 三、真空简介 3.1真空 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。其实真空应理解为气体较稀薄的空 间。在指定的空间内,低于一个大气压力的气体状态统称为真空。 3.2真空的等级 真空状态下气体稀薄程度称为真空度,通常用压力值表示。1958年,第一界国际技术 会议曾建议采用“托”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa)。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa ● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 35103331~100131???? ● 低真空 Pa 13103331~103331-???? ● 高真空 Pa 61 103331~103331--???? ● 超高真空 Pa 106103331~103331--???? ● 极高真空 Pa 10103331-??< 3.3获得真空的意义 获得真空不仅在科研、教学、工业以及人类生活中应用起到很大的作用,而且给人类的 整个社会文明的进步、财富创造以及科技创新都具有重大的意义。 3.4真空技术的应用 随着真空获得技术的发展,真空科学的应用领域很广,目前已经渗透到车辆、土木工程 呢、机械、包装、环境保护、医药及医疗机械、石油、化工、食品、光学、电气、电子、原

近代物理实验习题答案

《 近代物理实验》练习题参考答案一、填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全 1000V V R 。能量分辨率值越小,分辨能 力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反常塞曼效应。6、由于氢与氘的 能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置 1/4波片的目的是将圆偏振光变为线偏振光 。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底 片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和 ②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包 括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于 ③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左 1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极?

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

近代物理镀膜机实验报告

物理学本科专业近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料 班级:*** 学号:*** 学生姓名:*** 实验教师:*** 2014-2015学年第1学期

实验1真空获得与真空测量 地点:福煤实验楼D 栋405 【摘要】本文介绍了真空技术的有关知识,阐述了低真空和高真空的获得与测量方法。 【关键词】机械泵;扩散泵;真空技术;低真空;高真空;获得与测量 1.实验目的 (1)了解真空技术的基本知识。 (2)掌握真空获得和测量的方法。 (3)熟悉有关设备和仪器的使用方法。 2. 实验原理 2.1真空知识 2.1.1真空的概念及真空的区域划分 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。所谓真空,指的是压强比一个标准大气压更低的稀薄气体状态的空间。气体稀薄的程度称为真空度,通常用气体压强的大小来表示。气体越稀薄,气体压强越小,真空度越高;反之,则真空度越低。 1958年,第一界国际技术会议曾建议采用“托”(Torr )作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa )。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 3 5103331~100131???? ● 低真空 Pa 1 3 103331~103331-???? ● 高真空 Pa 61103331~103331--???? ● 超高真空 Pa 106 103331~10 3331--???? ● 极高真空 Pa 10 103331-??< 2.1.2真空技术的发展及应用 十九世纪初,利用低真空产生压力差的原理发明了真空提升、真空输送、吸尘、过滤、成形等技术。1879年爱迪生发明白炽灯,抽出灯泡中化学成份活泼的气体(氧、水蒸汽等),防止灯丝在高温下氧化.同年,克鲁克斯发明阴极射线管,第一次利用真空下气体分子平均自由程增大的物理特性.后来,在电子管、电视管、加速器、电子显微镜、镀膜、蒸馏等方面也都应用了这一特性.1893年发明杜瓦瓶,这是真空绝热的首次应用. 真空技术在二十世纪得到迅速发展,并有广泛的应用。二十世纪初,在真空获得和测量的设备方面取得进展,如旋转式机械泵,皮氏真空计,扩散泵,热阴极电离真空计的发明,为工业上应用高真空技术创造了条件.接着,油扩散泵,冷阴极电离真空计的出现使高真空

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

近代物理实验报告

近代物理实验报告

2019/8/9 18:29:00近代物理实验报告2 实验名称:铁磁共振 指导教师:鲍德松 专业:物理 班级:求是物理班1401 姓名:朱劲翔 学号:3140105747 实验日期:2016.10.19

实验目的: 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间 τ。 实验原理: 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕 着外磁场方向作进动。当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B ρ 和微波磁 场1B ρ的作用后,磁矩的进动情况将发生重要的变化。一方面,恒磁场0B ρ 使铁磁场物质 被磁化到饱和状态,当磁矩M ρ 原来平衡方向与0B ρ有夹角θ时,0B ρ使磁矩绕它的方向作进动,频率为h B g B H μν=;另一方面,微波磁场1B ρ强迫进动的磁矩M ρ随着1B ρ的作用

而改变进动状态,M ρ 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B ρ作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时,且微波 频率ν=H ν时,耦合到M ρ的能量刚好与M ρ 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B ρ(即0H ρ )和微波磁场1B ρ(即h ρ)的作用下,其进动方程可写为: dt M d ρ = -γ(M ρ×H ρ)+ T ρ (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B ρ(即H ρ)为恒磁场0B ρ(即0H ρ)和微波 磁场1B ρ(即h ρ)合成的总磁场,T ρ 为阻尼力矩,此系统从微波磁场1B ρ中所吸收的全部 能量,恰好补充铁磁样品通过某机制所损耗的能量。阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。 图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡

近代物理实验步骤、内容(2)

弗兰克-赫兹实验 一、实验内容 测量氩原子的第一激发电位,分析误差及其原因。 二、实验步骤 参阅实验课件 三、注意事项: 1、实验过程不允许离开仪器; 2、板极电压不允许超过85V 。 四、思考题 1、在夫兰克-赫兹实验中,为什么I A -U G2K 曲线的波峰和波谷有一定的宽度? 2、为什么I A -U G2K 曲线有的波谷电流不等于零,并且随着U G2K 的增大而升高? 3、试分析,当夫兰克—赫兹管的灯丝电压变化时,I A -U G2K 曲线应有何变化?为什么? 4、夫兰克—赫兹实验中,为什么说我们测到的是汞原子从10S 跃迁到31P 的第一激发电位,而不是10S 跃迁到30P 或32P 的第一激发电位。 5、测量氩原子的第一激发电位时,如果G 2-A 两极间没有反向拒斥电场,I A -U G2K 曲线会是什么样的一条曲线?这条曲线能求出激发电位吗? 6、I A -U G2K 曲线中,第一个波谷对应U G2K 不是汞原子的第一激发电位,为什么? 7、实验测出的氩原子I A -U G2K 曲线中,为什么峰-峰间距随U G2K 的增大而略有变大?

全息照相 一、实验内容 拍摄菲涅尔变换全息图 二、实验步骤 1、设计光路系统,光路系统应 满足下列条件: 1)、用透镜将物光束扩展到一定 程度以保证被摄物体能均匀照亮,参 考光也应扩展使感光板得到均匀光照。 2)、参考光应强于物光,在感光板的地方两光束的强度比约为4:1-10:1。 3)、物光与参考光束的夹角为30°-50°之间,两光束的光程大致相等(光程差小于1cm)。 (光学元件调整好后,关上照明灯,有条件的用照度计测量参考光与物光的强度(略),并调整符合要求。) 2、根据光强调好曝光器的曝光时间,(参考值:1-2秒),关上快门,在暗室下装上底片,底片的乳胶面向入射光(用手摸干片一角,有粘手感的一面为乳胶面),走到曝光器后静置2分钟后按曝光按钮曝光。取下曝光后的干片用黑纸包好放到纸盒中,再用黑布包好,拿到暗房显、定影。 3、显影及定影:先显影后定影,显影过程中应不断轻微摇动干片,显影完后放到清水中稍为洗一下,然后放入定影液中,并轻轻摇动干片,定影结束后取出再用清水洗2分钟。 显影时间:40 -100秒,由曝光时间、显影液浓度和温度决定。 定影时间:3-5分钟。 4、物像再现 1)、将全息片的乳胶面向着参考光,并尽可能使光照方向与原来参考光束的方向一致,从照片背面迎着参考光观察。 2)、试改变观察角度,看看物像有什么变化。 3)、移去扩束镜,使激光只照在全息片的一小部分,看看能否观察到整个物像。

大学实验报告

浙江大学实验报告 课程名称:嵌入式原理实验类型:计算机实验 实验项目名称:实验四熟悉交叉编译环境和开发工具 学生姓名:何斯琼、姚冠红专业:计算机学号:3043027075、3043027076 同组学生姓名:指导老师:陈文智 实验地点:东四五楼嵌入式实验室实验日期:2007 年 3 月 5 日 实验目的和要求(必填) 目的:熟悉交叉编译环境和开发工具 实验内容和原理(必填) 对交叉编译工具进行熟悉和运用。 主要仪器设备 PC机 操作方法与实验步骤 进入/home/student/XSBase/XSBase255_Linux_B/Toolchain; 解压缩hybus-arm-linux-R1.1.tar.gz; 将解压缩得到的文件夹复制到/usr/local/下; 进入/root, 执行ls –a, 可见隐藏文件.bash_profile; 用vim编辑器编辑此文件:将$PA TH=/bin: /usr/local/hybus-arm-linux-R1.1/bin; 再执行命令source .bash_profile已更新此文件; 此时arm-linux-gcc命令(即交叉编译指令)已经可以执行; 以下为我们进行此实验时的全部过程: [student@localhost student]$ su Password: [root@localhost student]# ls XSBase [root@localhost student]# cd XSBase/ [root@localhost XSBase]# ls XSBase255_Linux_B [root@localhost XSBase]# cd XSBase255_Linux_B/ [root@localhost XSBase255_Linux_B]# ls app Datasheet Filesystem Image Kernel Source Toolchain BootLoader Documents GDB Jflash-XSBase255 RPM Tiny-X [root@localhost XSBase255_Linux_B]# cd Toolchain [root@localhost Toolchain]# ls hybus-arm-linux-R1.1 hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# tar -zxf hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# ls hybus-arm-linux-R1.1 hybus-arm-linux-R1.1.tar.gz [root@localhost Toolchain]# pwd /home/student/XSBase/XSBase255_Linux_B/Toolchain ......cp -a /usr/local/hybus-arm-llinux-R1.1

变温霍尔效应近代物理实验报告_

变温霍尔效应 摘要:本实验采用范德堡测试方法,利用由控温仪、恒温器、电磁铁、恒流电源、电输运性质测试仪和装在恒温器内指上的锑化铟,碲镉汞单晶样品等组成的VTHM —1型变温霍尔效应仪首先测量室温条件下的电流和磁场不同方向的霍尔电压,又通过控温的方式测量了碲镉汞单晶样品的霍尔系数,得到并分析了实验与理论对比的T R H /1ln -曲线. 关键词:霍尔效应 半导体 载流子 霍尔系数 一:引言 对通电的导体或半导体施加一与电流方向垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,这个现象于1879年为物理学家霍尔所发现,故称为霍尔效应。在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,至今仍然是半导体材料研制工作中必不可少的一种常备测试手法。在本实验中,采用范德堡测试方法,测量样品霍尔系数随温度的变化。 二:实验原理 2.1 半导体内的载流子 半导体内载流子的产生有两种不同的机制:本征激发和杂质电离 2.1.1本征激发 在一定温度下半导体产生自由电子和空穴,半导体内的两种载流子:自由电子和空穴的产生过程叫做本征激发,与导带和价带有效能级密度,导带底和价带顶的能量温度等有关,确切地说与禁带宽度和温度以及波尔兹曼常数有关。 2.1.2杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性质,主要由浅杂质决定。从能带角度来看,就是价带中的电子激发到禁带中的杂质能级上,使硼原子电离成硼离子,而在价带中留下空穴,参与导电,这种过程称为杂质电离。由受主杂质电离提供空穴导电的半导体叫做P 型半导体,由施主杂质电离提供电子导电的半导体叫做N 型半导体。 2.2 载流子的电导率 p n pq nq μμσ+= 2-2-1

近代物理实验报告模板

近代物理实验报告格式 参考 (参考科技论文格式) 实验名称 姓名,班级 指导老师实验日期 【摘要】:简要概述主要实验内容和实验结果 内容约200-400字左右,以文章段落格式书写,包括由xx基本原理研究xx课题;采用了xx手段(过程);得到了xx结果。 关键词: 3-5个 一引言:(5号字体, 不超过一页。请严格执行。) 包括本实验的历史发展、目前该领域相关技术的研究进展和应用,本实验的目的和意义。 引言写作温馨提示: 1实验目的和意义不能照抄实验讲义,请用叙述性语言写自己做实验所体会到的实验目的、意义。 2引言中关于目前与本实验有关领域的研究进展和应用,最好自己上网查阅一两篇综述文献做大概的了解,查文献并对文献总结是做科研必备的基本功,希望在近物实验中有所体验。文中引用的结论性文字要标注参考文献,须加[]一般置于右上角。 3引言中一般不写实验原理,最好把原理放在结果分析部分,用原理去分析和解释实验现象和结果。

二实验 (A4纸,五号字,1.5倍行距,不超过一页) 介绍用什么型号的实验仪器在什么样的实验条件下做了哪些实验内容。如果实验仪器是自己设计的或对通用仪器做特别的改造,实验结果与你的设计改造密切相关,或者实验方法比较特别,在此要详细说明你实验或方法的独特之处。如果使用常规仪器做常规测量就不必详细叙述了,只给出实验条件即可。 说明:实验内容不是指实验操作步骤,要对内容用自己的语言概括总结。 三实验结果及讨论 (报告重点,A4纸,五号字体,1.5倍行距,内容不超过6页):这部分是实验报告的重点,先给出在不同的实验条件得到各种实 验结果或观察到不同的实验现象,然后对结果和现象进行分析讨论。讨论部分包括实验结果的物理解释,实验数据与理论结果对比的讨论、实验误差的分析等。 这部分写作要求:文字叙述简明通顺,图表、公式规范,实验结果合理。 (1)数据处理: 数据处理时写明所用的公式和数据处理方法,并注意有效数字的位数,实验结果尽量以图、表形式展示;图、表格式规范,大小适中。已转化为图表的数据表格可作为附录放在参考文献后面。

近代物理实验教程的实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054001 近代物理实验教程的实验报告Experimental report of modern physics experiment course

工作报告| Work Report 实验报告近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算), 第2页

南京大学近代物理实验2014版——差热分析

差热分析 摘要:本文阐述了差热分析的基本原理、实验及数据处理方法,分别测量了锡样品 和五水硫酸铜样品的差热曲线,并进行了分析讨论。 关键词:差热分析,差热曲线,五水硫酸铜,锡 引言 差热分析(DTA)是在程序控制温度下测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。描述这种关系的曲线称为差热曲线或DTA曲线。由于试样和参比物之间的温度差主要取决于试样的温度变化,因此就其本质来说,差热分析是一种主要与焓变测定有关并籍此了解物质有关性质的技术。 1.差热分析的基本原理 物质在加热或冷却过程中会发生物理变化或化学变化,与此同时,往往还伴随吸热或放热现象。伴随热效应的变化,有晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和离解等化学变化。另有一些物理变化,虽无热效应发生但比热容等某些物理性质也会发生改变,这类变化如玻璃化转变等。物质发生焓变时质量不一定改变,但温度是必定会变化的。差热分析正是在物质这类性质基础上建立的一种技术。 若将在实验温区内呈热稳定的已知物质(参比物)和试样一起放入加热系统中(图1),并以线性程序温度对它们加热。在试样没有发生吸热或放热变化且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸取足够的热量,从而使试样温度低于程序温度。只有经历一个传热过程试样才能回复到与程序温度相同的温度。 图1加热和测定试样与参比物温度的装置示意图 在试样和参比物的比热容、导热系数和质量等相同的理想情况,用图1装置测得的试样和参比物的温度及它们之间的温度差随时间的变化如图2所示。图中参比物的温度始终与程

大学实验报告模板三篇

大学实验报告模板三篇 篇一:大学物理实验报告格式 实验名称:杨氏弹性模量的测定 院专业学号 姓名 同组实验者 20XX年月日 实验名称 一、实验目的。。。。。。。。。 二、实验原理。。。。。。。。。。 三、实验内容与步骤。。。。。。。。。 四、数据处理与结果。。。。。。。。。 五、附件:原始数据 ****说明: 第五部分请另起一页,将实验时的原始记录装订上,原始记录上须有教师的签名。 篇二:大学实验报告册模板 实验课程名称开课学院理学院指导老师姓名学生姓名学生专业班级 200— 200 学年第学期 实验课程名称: 实验课程 名称: 篇三:浙江大学实验报告模板

专业:________________ 姓名:________________ 实验报告 学号:________________ 日期:________________ 地点:________________ 课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验名称:_______________________________姓名:________________学号:__________________ 大学实验报告模板三篇

伽马γ能谱测量分析近代物理实验报告

γ能谱的测量 中山大学 2013级材料物理 供参(吓)考(你),此报告真心累

数据处理 注:本实验所有数据来自文件“蝙蝠侠” 一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化 图1 改变高压,137Cs能谱变化曲线图 分析: 1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射 线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。高压越大,统计越明显。 2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。因为闪烁谱仪能量 分辨率不变,高压增大,道址增大,?V V又不变,则?V大,故宽度变大,高道址的粒子数减少,高度下降。 二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化 分析:(见图2) 1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500, 方便观察。 2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。因为道数越小,则 每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。

三、60Co的γ能谱曲线图(500V,通道数2014) 图3 60Co的γ能谱曲线图

分析: 1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为 1173keV、1333keV。 2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。 计算方法如下: 全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。加和结果通过matlab进行求和而得。虽然计算方式较为粗糙,但基本符合。 对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981 对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824 四、137Cs的γ能谱曲线图(500V,通道数2014) 图4 137Cs的γ能谱曲线图 分析: 1.全能峰面积为:S(E)=9916-(13+2)*90/2=9241 2.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是

相关文档
相关文档 最新文档