文档库 最新最全的文档下载
当前位置:文档库 › 高数大一下期末试卷

高数大一下期末试卷

高数大一下期末试卷
高数大一下期末试卷

一、选择题(每小题4分,共16分)

1、设22{(,)|1,0,0}D x y x y x y =+≤≥≥,则σ=??( )

(A)

43π (B) 23π (C) 13π (D) 16

π 2、若级数1n n u ∞

=∑和1

n n v ∞

=∑都发散,则下列级数中必发散的是( )

(A) 1()n

n n u

v ∞

=+∑ (B)

2

21

()n

n

n u

v ∞

=+∑ (C)

1

n n

n u v

=∑ (D)

1

()n

n n u

v ∞

=+∑

3、若

1

(1)

n

n

n a x ∞

=-∑在2x =-处收敛,则此级数在3x =处( )

(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性不能确定

4、计算d I z V Ω

=???,其中Ω为曲面22z x y =+及平面1z =所围成的立体,则正确的解法为( )

(A) 2110

d d d I r r z z πθ=??? (B) 2211

d d d r

I r r z z πθ=???

(C) 2110

d d d r

I r r z z πθ=??? (D) 120

d d d z

I z zr r πθ=???

二、填空题(每小题4分,共24分)

1、设Ω是由球面222x y z z ++=所围成的闭区域,则=V ???

2、设曲线Γ:22210

x y z x y z ?++=?++=?,则2()d x y s Γ

+=? 。

3、设L 为上半圆周y (0)a >及x 轴所围成的区域的整个边界,沿逆时针方向, 则

2

d L

y

x =? 。

4、设∑是平面

1234

x y z

++=在第一卦限的部分,则4(2)d 3x y z S ∑++=?? 。

5、函数()arctan f x x =在0x =处的幂级数展开式为 ,其收敛域为 。

6、设1

()sin n n S x b nx ∞

==

∑,x -∞<<+∞,其中0

2

sin d n

b

x nx x π

π

=

?

,则在[,]ππ-上

()S x = 。

三、解答题(分A 、B 类题,A 类题每小题10分,共60分;B 类题每小题8分,共48分)

每道题必须且只需选做一道题,或做A 类,或做B 类,不必A 、B 类题都做

1、(A 类)计算

22d d 2()

L

y x x y

x y -+?

,其中L 分别为

(1)圆周22(2)2x y -+=,沿逆时针方向;

(2)圆周22(1)2x y -+=,沿逆时针方向。 (B类)计算

(sin 2)d (cos 2)d x

x L

e

y y x e y y -+-?,其中L 为上半圆周222()(0),x a y a y -+=≥

沿逆时针方向。(常数0a >)

2、(A 类)计算]22

[()2d I x y z yz S ∑

=+++?? ,其中∑是球面22222x y z x z ++=+。

(B类)计算2

2()d I x y S ∑

=

+??

,其中∑

为锥面z 1z =所围成的区域的整个

边界曲面。

3、(A 类)计算3222()d d d d d d I x z x y z x yz z x x z x y ∑

=+--??,其中∑是抛物面

222z x y =--(12)z ≤≤的上侧。

(B类)计算222()d d ()d d ()d d I y z y z z x z x x y x y ∑

=-+-+-??,其中∑是锥面

z (01)z ≤≤的下侧。

4、(A 类) 设012,,,a a a 为等差数列0(0)a ≠,试求:

(1)幂级数

n

n n a x ∞

=∑的收敛半径; (2)数项级数02

n

n

n a ∞

=∑

的和。 (B类) 求幂级数1(1)

n

n x n n ∞

=+∑的收敛域以及和函数;

5、(A 类) 判断级数111

2

2

1(1)[ln(1)]n n n

n ∞

--

-=--+∑的收敛性,是绝对收敛还是条件收敛?

(B类) 判断级数1

1

ln (1)n n n

n

-=-∑的收敛性,是绝对收敛还是条件收敛? 6、(A 类)将函数()2f x x =+ (01)x ≤≤展开成以2为周期的余弦级数,并求2

11

n n

=∑

的和。 (B 类)将函数2

()f x x = (0)x π≤≤展开成以2π为周期的余弦级数。

附加题(10分)(选做题)

设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑 曲线,起点为(,)a b ,终点为(,)c d ,当ab cd =时,求

2

221[1()]d [()1]d L x I y f xy x y f xy y y y

=

++-?

一、DDAB 二、1.

10π, 2.32π 3.33

4a - 4. 614

5.1

2012)1(+∞

=∑+-n n n x n ;]1,1[- 6. ??

?±=<<-πππx x x 0

, 三.1.(A 类)解: 记,)(222y x y P +=,)

(222y x x Q +-=则x Q y x y x y P

??=+-=??2

2222)(2。 (1)设D 是由L 所围成的闭区域。因奇点D ?)0,0(,所以由格林公式,得

???=??-??=+-D L dxdy y P

x Q y x xdy ydx 0)(222。

(2)设D 是由L 所围成的闭区域。选取一正数12-<

r ,则222:r y x l =+是位于D 内

的圆周(取逆时针方向)。记L 和l 所围成的闭区域为1D ,1)0,0(D ?,从而由格林公式,得

122d d d d 02()L l D y x x y Q P

x y x y x y

-

+-??=-=+???

??,故

2222

2222220d d d d sin cos d 2()2()2L

l y x x y y x x y

r r x y x y r

πθθθπ----===-++?

??。 (B 类)解:补上曲线:0,:02l y x a =→,记L 和l 所围成的闭区域为D 。由格林公式,得 (sin 2)d (cos 2)d (sin 2)d (cos 2)d x x x x L l

l

e y y x e y y e y y x e y y +-+---+-?

?

2d d 0D

x y =-??

2a π=

2.(A 类)解:利用对称性和曲面方程,得

222[22]d I x y z xy yz S ∑

=++++??

222[]d x y z S ∑

=++??

2()d x z S ∑

=+??

4d x S ∑

=??

41d S ∑

=????

32π=

(B 类

)解:设1:z ∑(,)xy x y D ∈;2:1z ∑=,(,)xy x y D ∈,其中

22{(,)|1}xy D x y x y =+≤。则

1

2

2222()d ()d I x y S x y S ∑∑=+++????

2222()d d ()d d xy

xy

D D x y x y x y x y =+++??

221)()d d xy

D x y x y =+??

221)()d d xy

D x y x y =+??

21

30

1)d d r r πθ=??

3.(A 类)解:作辅助面1:1=∑z 1:),(2

2

≤+∈y x D y x y x ,取下侧。记∑和1∑所围成的空间闭区域为Ω,则

1

1

32

223222()d d d d d d ()d d d d d d I x z x y z x

yz z x x z x y x z x y z x yz z x x z x y

∑+∑∑=

+---+--????

222222

1(312)d d d d ()d d 2

xy

xy D D x z x z x z V x x y V x y x y Ω

Ω

=+---=-

+????????

?? 2

22

2131

021d d d d d 2x y z

z

x y r r π

θ+≤-=-

???

?? 2

1

(2)d 4

z z π

π=--

?

2

4

4

π

π

π

=

-

=

(B 类)解:作辅助面1:1=∑z 1:),(2

2

≤+∈y x D y x y x ,取上侧。记∑和1∑所围成的空 间闭区域为Ω,则

1

1

2

22222()d d ()d d ()d d ()d d ()d d ()d d I y

z y z z x z x x y x y y z y z z x z x x y x y

∑+∑∑=

-+-+---+-+-????

20d ()d d xy

D V x y x y Ω

=--?????

2d d xy

D x x y =-??

221

()d d 2xy

D x y x y =-

+?? 213001d d 2r r πθ=-??4

π

=-

4.(A 类)解:(1)依题意,,...2,1,0=+=n nd a a n ,其中d 为公差。从而

1)1(001=+++==∞→+∞

→d

n a nd

a Lim a a Lim

R n n n n , 故幂级数

n

n n a x

=∑的收敛半径为1。

(2)解法一:设0

(),(1,1)n n n S x a x x ∞

==

∈-∑,则

1

0000000111

()()()11n

n

n

n

n n n n n n n n n a a S x a x a nd x a x d nx d x nx d x x x x ∞

∞∞

-======'

==+=+=+?=+?--∑∑∑∑∑∑0000022

1

()()()1111(1)(1)n n a a a a d a x x d x

d x x d x x x x x x x ∞

=+-?''=+?=+??=+=------∑,(1,1)x ∈- 因而

10

1

()222n n n a S a ∞

===∑。 解法二:设0

(),(1,1)n n n S x a x x ∞

==

∈-∑,由,...2,1,1=+=-n d a a

n n

,得

x

x

d x a x x d x a x a n n n n n

n n

n n n

n -?

+=+=∑∑∑∑∞

=∞

=∞

=-∞=10

1

1

11

故0()()1x S x a xS x d x -=+?-,求得002()()(1)a d a x S x x +-=-,因而101

()22

2n n

n a S a ∞

===∑。 (B 类)解:幂级数1(1)

n n x n n ∞

=+∑的收敛半径为1)2)(1()

1(1=+++==∞→+∞→n n n n Lim a a Lim R n n n n ,

当1x =±时,此时幂级数为1

(1)(1)n

n n n ∞

=±+∑收敛,从而其收敛域为[1,1]-。

设1(),[1,1](1)

n

n x S x x n n ∞

==∈-+∑,则当(1,1)x ∈-,0x ≠时

111

()(1)1n n n

n n n x x x S x n n n n ∞

∞=====-++∑∑∑

121n n

n n x x n

x n ∞

∞===-∑∑

1

1

01

1

1d (d )x x n n n n t

t t t x x ∞

∞--===--∑∑??

00111d (d )11x

x t t x t x t

=----?

?

1

ln(1)ln(1)1x x x

=--+-+

1ln(1)1x x x

-=-+

又根据和函数在收敛域的连续性,得

(0)0S =, 11(1)ln(1)(1)lim ()lim 1x x x x x

S S x x

--

→→--+===,

11(1)ln(1)(1)lim ()lim 12ln 2x x x x x

S S x x ++→-→---+-===-。故

1ln(1)1110()0011x

x x x x S x x x -?-+-≤<≠??==??=??

5.(A 类)解:令)1ln(

)(x x x f +-=,0≥x ,则当0>x 时,011

1)(>+-='x

x f ,因 此对0>?x ,)(x f 单调递增且0)0()(=>f x f 。 对级数

111

2

2

1

(1)

[ln(1)]n n n

n ∞

-

-

-=--+∑来说,1112

2

2

ln(1)()0n

n f n -

-

-

-+=>,说明它是交错级数。又

1

111112

2

2

2

2

2

ln(1)()((1))(1)

ln[1(1)]n

n f n f n n n --

-

----+=>+=+-++且112

2

lim[ln(1)]0n n

n -

-

→∞

-+=,由莱布尼兹判别法

知,该级数收敛。

另外,因2

00011l n (1)111l i m l i m l i m ,

22(1)2x x x

x x x x x x

+++

→→→-

-++===+故112

2

ln(1)1

lim ,12n n n n

-

-

→∞

-+=这说明级数1

12

2

1

[ln(1)]n n

n ∞

--=-+∑是发散的。

综上所述,级数111

2

2

1

(1)[ln(1)]n n n

n ∞

--

-=--+∑是条件收敛的。

(B 类)对级数1

1ln (1)n n n n

-=-∑,因ln 0n n ≥(1,2,...n =),说明它是交错级数。当2n >时,ln ln(1)

1n n n n +>

+,且ln lim

0n n

n

→∞=,由莱布尼兹判别法知,该级数收敛。

另外,因ln lim ,1n n

n n

→∞=+∞这说明对级数1

ln n n n ∞

=∑,它是发散的。 综上所述,级数1

1

ln (1)n n n

n

-=-∑是条件收敛的。 5.(A 类)解:对函数()f x 偶周期延拓,先求延拓后函数的傅里叶级数:

?=+=1

05d )2(2x x a ;

]

)1(1[2

]cos 1sin 2[2d )cos()2(2221

221

0n n n x n n x n n x x x n x a ---=++=+=?ππππππ

?????

=-=-=k

n k n n 20

12422π,...2,1=k ;

0=n b

得 22

1541()~cos(21)2(21)

n f x n x n ππ∞=---∑ 因延拓后的函数在(,)-∞+∞是连续的,从而

2

2

1

541

()cos(21)2(21)

n f x n x n ππ

==---∑ 01x ≤≤

最后求级数211

n n

=∑:由2

215412(0)2(21)n f n π∞

===--∑,得2

2

11(21)8n n π∞

==-∑。又 2222

2111

11111184(21)(2)n n n n n n n n π∞

∞∞

∞=====+=+-∑∑∑∑, 得2

21

16n n π∞

==∑。

(B 类)对函数()f x 偶周期延拓,先求延拓后函数的傅里叶级数:

20

203

2

d 2

ππ

π?

==

x x a ;

n n n nx n nx n x nx n x x x n x a )1(4]sin 2cos 2sin [2d )cos(2

20

3220

2

-=-+==

?

π

π

ππ

0=n b

得2211(1)()~4cos 3n

n f x nx n

π∞

=-+∑。

因延拓后的函数在(,)-∞+∞是连续的,从而

2211(1)()4cos 3n

n f x nx n

π∞

=-=+∑ 0x π≤≤

附加题.解:记21[1()]P y f xy y =

+,22[()1]x

Q y f xy y

=-,则

2222111[1()][2()()]()()P y f xy yf xy xy f xy xyf xy f xy y y y y ?''=-+++=+-?, 2322211[()1]()()()Q x y f xy y f xy xyf xy f xy x y y y

?''=-+?=+-? 所以

P Q y x ??=??,这说明曲线积分2

22

1[1()][()1]L x I y f xy dx y f xy dy y y =++-? 在上半平面内与积分路径L 无关,只与起止点有关。

取1:L y b = (:)x a c →,2:L x c = (:)y b d →,则

2221[1()]d [()1]d L x

I y f xy x y f xy y y y

=++-?

12

2221[1()]d [()1]d L L x

y f xy x y f xy y y y

+=++-?

1222222211[1()]d [()1]d [1()]d [()1]d L L x x

y f xy x y f xy y y f xy x y f xy y y y y y

=++-+++-??

2221

[1()]d [()1]d c

d a

b c b f bx x y f cy y b

y =++-?

?

()d ()d c d a b c a c c

bf bx x cf cy y b d b -=

+++-?? ()d ()d cb cd ab

bc c a

f t t f t t d b =-++??

()d cd ab c a c a

f t t d b d b

=-+=-?

注:另外,也可取路径:ab

l y x

=

,(:)x a c →,则 2221[1()]d [()1]d L x

I y f xy x y f xy y y y =++-?

2221[1()]d [()1]d l x

y f xy x y f xy y y y

=++-?

3222()[()]()d c

a

x ab x ab

f ab xf ab x ab x a b x =++-?-? 222d c

a

x c a x ab ab

-==?

=c a d b -

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 0ln(15)lim .sin 3x x x x →+ 2. (6 分)设2,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 3 1;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分 2212[]121 x y x x '∴=-++ 4分

大一下学期《高等数学》期末考试试题

高数 高等数学A(下册)期末考试试题【A卷】 院(系)别班级学号姓名成绩 大题一二三四五六七 小题12345 得分 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量、满足,,,则. 2、设,则. 3、曲面在点处的切平面方程为. 4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数 在处收敛于,在处收敛于. 5、设为连接与两点的直线段,则. ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线在点处的切线及法平面方程. 2、求由曲面及所围成的立体体积. 3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设,其中具有二阶连续偏导数,求. 5、计算曲面积分其中是球面被平面截出的顶部. 三、(本题满分9分) 抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.

高数 四、(本题满分10分) 计算曲线积分, 其中为常数,为由点至原点的上半圆周. 五、(本题满分10分) 求幂级数的收敛域及和函数. 六、(本题满分10分) 计算曲面积分, 其中为曲面的上侧. 七、(本题满分6分) 设为连续函数,,,其中是由曲面 与所围成的闭区域,求. ------------------------------------- 备注:①考试时间为2小时; ②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交; 不得带走试卷。 高等数学A(下册)期末考试试题【A卷】 参考解答与评分标准 一、填空题【每小题4分,共20分】1、;2、;3、;4、3,0;5、. 二、试解下列各题【每小题7分,共35分】

济南大学大一上学期高等数学试题

高等数学(上)模拟试卷一 一、 填空题(每空3分,共42分) 1 、函数lg(1)y x = -的定义域是 ; 2、设函数20() 0x x f x a x x ?<=?+≥?在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C =+? ,则()f x = ;5、21lim(1)x x x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ; 8、曲线x y xe =的拐点是 ;9、201x dx -?= ; 10、设32,a i j k b i j k λ=+-=-+r r r r r r r r ,且a b ⊥r r ,则λ= ; 11、2 lim()01x x ax b x →∞--=+,则a = ,b = ; 12、311lim x x x -→= ;13、设 ()f x 可微,则()()f x d e = 。 二、 计算下列各题(每题5分,共20分) 1、011lim()ln(1)x x x →-+2 、y =y '; 3、设函数()y y x =由方程xy e x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =??=-?,求dy dx 。 三、 求解下列各题(每题5分,共20分) 1、421x dx x +? 2、2sec x xdx ?3 、40?4 、2201dx a x + 四、 求解下列各题(共18分): 1、求证:当0x >时,2 ln(1)2x x x +>- (本题8分) 2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且 →=0 () lim x f x A x ,A 为常数. 求'() g x

(精选)大一高数期末考试试题

一.填空题(共5小题,每小题4分,共计20分) 1. 2 1 lim() x x x e x →-= .2. ()()1 2005 1 1x x x x e e dx --+-= ? .3.设函数()y y x =由方程 2 1 x y t e dt x +-=? 确定,则 x dy dx == .4. 设()x f 可导,且1 ()()x tf t dt f x =?,1)0(=f , 则()=x f .5.微分方程044=+'+''y y y 的通解 为 . 二.选择题(共4小题,每小题4分,共计16分) 1.设常数0>k ,则函数 k e x x x f +- =ln )(在),0(∞+内零点的个数为( ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分 方程43cos2y y x ''+=的特解形式为( ). (A )cos2y A x *=; (B )cos 2y Ax x * =; (C )cos2sin 2y Ax x Bx x * =+; (D ) x A y 2sin *=.3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,?,则必有()()??≤b a d c dx x f dx x f ;(B )若0)(≥x f 在[]b a ,上可积, 则()0b a f x dx ≥?;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有 ()()?? +=T T a a dx x f dx x f 0 ;(D )若可积函数()x f 为奇函数,则()0 x t f t dt ?也为奇函数.4. 设 ()x x e e x f 11 321++= , 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1. 计算定积分 2 30 x e dx - 2.2.计算不定积分dx x x x ? 5cos sin . 求摆线???-=-=),cos 1(),sin (t a y t t a x 在 2π= t 处的切线的方程.

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 0=+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 2 2 2 21n n n n n n ππ π π . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 π π -?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 2 4 1(sin )x x x dx -+=? . 3. (3分) 2 1lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15)lim .sin 3x x x x →+ 2. (6 分)设1 y x = +求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ? ≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt + =?? 所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ?? ? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π?? =- ≤≤ ?? ? 与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().2 2 b b a a b a f x dx f a f b x a x b f x dx -''= ++ --? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 312 2 +--= x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数()2 1ln x y +=,则= 'y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1 = 在点?? ? ??2,21处的切线方程为 .

大一上学期高数期末考试题0001

大一上学期高数期末考试卷 一、单项选择题(本大题有4小题,每小题4分,共16分) 1 (X)= cos x(x + |sinx|),贝= O处有( ) (A) n°)= 2(B)广(°)= 1 (C)广(°)= °(D) /(X)不可导. 设a(x) = |—0(兀)=3-3坂,则当^ —1时( ) 2. 1 + 兀? 9 9 (A) &⑴与0(力是同阶无穷小,但不是等价无穷小;(B) a(“)与仪兀)是 等价无穷小; (C) °(x)是比0(力高阶的无穷小;(D) 0(")是比°(x)高阶的 无穷小. 3. 若F(x)= Jo(力-兀)")力,其中/(兀)在区间上(71)二阶可导且广(小>0,则(). (A) 函数尸⑴ 必在x = 0处取得极大值; (B) 函数尸⑴必在“ °处取得极小值; (C) 函数F(x)在x = 0处没有极值,但点(0,F(0))为曲线>'=F(x)的拐点; (D) 函数F(x)在* = °处没有极值,点(°,F(0))也不是曲线〉'=F(x)的拐点。 4 设f(x)是连续函数,-W(x) = x + 2j o* f(t)dt,贝!j f(x)=( ) 十竺+ 2 (A) 2 (B) 2 +(C) —I (D) x + 2. 二、填空题(本大题有4小题,每小题4分,共16分) 5.腳(f ____________________________________ 己知竿是/(X)的一个原函数贝IJ“(x)?竽dx = (? 7C #2兀 2 2龙2刃—1 \ lim —(cos —+ cos ——H ------ cos -------- 兀)= 7. nfg n n n n i x2arcsinx + l , ------ / ——dx = 8. 飞__________________________ . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数尸曲由方程严+sing)"确定,求0(兀)以及以。).

2017大一第一学期期末高数A试卷及答案

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 2 2βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++ - . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

大一(第一学期)高数期末考试题及答案

( 大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. … 4. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 5. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 6. , 7. = +→x x x sin 20 ) 31(lim . 8. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 9. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 10. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 11. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .

大一下学期高等数学期中考试试卷及答案

大一下学期高等数学期中考试试卷及答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大一第二学期高等数学期中考试试卷 一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。 1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________ 2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为 3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为 4、2222222(,)(0,0)(1cos())sin lim ()e x y x y x y xy x y +→-+=+ 5、设二元函数y x xy z 3 2+=,则=???y x z 2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。 1、旋转曲面1222=--z y x 是( ) (A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成. 2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).212211sin )(cos )(x d x b x a x x b x a x ++++; (B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++; (D).322111)sin )(cos (d x d x d x x b x a x +++++ 3、已知直线π 22122:-=+= -z y x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( ) (A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=; (B) 二元函数()y x f z ,=的两个二阶偏导数22x z ??,22y z ??在区域D 内连续,则在该区域内两个二阶混合偏导必相等; (C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条 件;

大一下学期高等数学期中考试试卷及答案

大一第二学期高等数学期中考试试卷 一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。 1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________ 2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为 3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为 4、 22 22222 (,)(0,0) (1cos())sin lim ()e x y x y x y xy x y +→-+=+ 5、设二元函数y x xy z 3 2 +=,则 =???y x z 2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。 1、旋转曲面1222=--z y x 是( ) (A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成. 2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).2 12211sin )(cos )(x d x b x a x x b x a x ++++; (B).322 12211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).322 12211)sin cos )((d x d x d x b x a b x a x +++++; (D).322 111)sin )(cos (d x d x d x x b x a x +++++ 3、已知直线π 22122 : -= += -z y x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( ) (A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=; (B) 二元函数()y x f z ,=的两个二阶偏导数22x z ??,22y z ??在区域D 内连续,则在该区 域内两个二阶混合偏导必相等;

大一下学期高等数学考试题

大一下学期高等数学考 试题 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、单项选择题(6×3分) 1、设直线,平面,那么与之间的夹角为() B. C. D. 2、二元函数在点处的两个偏导数都存在是在点处可微的() A.充分条件 B.充分必要条件 C.必要条件 D.既非充分又非必要条件 3、设函数,则等于() A. B. C. D. 4、二次积分交换次序后为() A. B. C. D. 5、若幂级数在处收敛,则该级数在处() A.绝对收敛 B.条件收敛 C.发散C.不能确定其敛散性 6、设是方程的一个解,若,则在处()

A.某邻域内单调减少 B.取极小值 C.某邻域内单调增加 D.取极大值 二、填空题(7×3分) 1、设=(4,-3,4),=(2,2,1),则向量在上的投影 = 2、设,,那么 3、D为,时, 4、设是球面,则= 5、函数展开为的幂级数为 6、= 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(4×7分) 1、设,其中具有二阶导数,且其一阶导数不为1,求。 2、求过曲线上一点(1,2,0)的切平面方程。 3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。

5、求级数的和。 四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。 五、证明题(6分) 设收敛,证明级数绝对收敛。 一、单项选择题(6×3分) 1、A 2、C 3、C 4、B 5、A 6、D 二、填空题(7×3分) 1、2 2、 3、 4、 5、6、07、 三、计算题(5×9分) 1、解:令则,故 2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:=== 4、解:令,则

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 本大题有 小题 每小题 分 共 分 )( 0),sin (cos )( 处有则在设=+=x x x x x f ( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα ( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小; ( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若 ()()()02x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ) ( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值; ( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 ) ( )( , )(2)( )(1 0=+=?x f dt t f x x f x f 则是连续函数,且设 ( )22x ( )2 2 2x +( )1x - ( )2x + 二、填空题(本大题有 小题,每小题 分,共 分) = +→x x x sin 2 ) 31(lim ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则

lim (cos cos cos )→∞-+++= 2 2 2 21n n n n n n ππ π π = -+? 2 12 1 2 211 arcsin - dx x x x 三、解答题(本大题有 小题,每小题 分,共 分) 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .d )1(17 7 x x x x ?+-求 .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 设函数)(x f 连续, =?1 ()()g x f xt dt ,且→=0 () lim x f x A x ,A 为常数 求'()g x 并讨论 '()g x 在=0x 处的连续性 求微分方程2ln xy y x x '+=满足 =- 1 (1)9y 的解 四、 解答题(本大题 分) 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点 M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍 与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分) 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成平面图形 求 的面积 ; 求 绕直线 旋转一周所得旋转体的体积 六、证明题(本大题有 小题,每小题 分,共 分)

大一高数同济版期末考试题(精) - 副本

高等数学上(1) 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(l i m . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++=2 2 221 n n n n n n π π ππ . 8. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

大一下学期高等数学考试题

大一下学期高等数学考试 题 This manuscript was revised by the office on December 10, 2020.

一、单项选择题(6×3分) 1、设直线,平面,那么与之间的夹角为() 、二元函数在点处的两个偏导数都存在是在点处可微的() A.充分条件 B.充分必要条件 C.必要条件 D.既非充分又非必要条件 3、设函数,则等于() . C. D. 4、二次积分交换次序后为() . . 5、若幂级数在处收敛,则该级数在处() A.绝对收敛 B.条件收敛 C.发散C.不能确定其敛散性 6、设是方程的一个解,若,则在 处() A.某邻域内单调减少 B.取极小值

C.某邻域内单调增加 D.取极大值 二、填空题(7×3分) 1、设=(4,-3,4),=(2,2,1),则向量在上的投影 = 2、设,,那么 3、D为,时, 4、设是球面,则= 5、函数展开为的幂级数为 6、= 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(4×7分) 1、设,其中具有二阶导数,且其一阶导数不为1,求。 2、求过曲线上一点(1,2,0)的切平面方程。 3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。 5、求级数的和。

四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。 五、证明题(6分) 设收敛,证明级数绝对收敛。 一、单项选择题(6×3分) 1、A 2、C 3、C 4、B 5、A 6、D 二、填空题(7×3分) 1、2 2、 3、 4、 5、6、07、 三、计算题(5×9分) 1、解:令则,故 2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:=== 4、解:令,则 当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则

大一下高等数学期末试题_(精确答案)

一、单选题(共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D .00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则 (),,(=???Ωdxdydz z y x f ) . 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θ θθθ? ? ? 212 00 cos . (cos ,sin ,)B d rdr f r r z dz π θ θθθ? ? ? 2120 2 cos .(cos ,sin ,)C d rdr f r r z dz π θ πθθθ-?? ? 21 0cos .(cos ,sin ,)x D d rdr f r r z dz π θθθ?? ? 4. 4.若 1 (1) n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线22 2 x y z z x y -+=??=+? 在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 1.设220x y xyz +-=,则'(1,1)x z = . 2.交 换ln 1 (,)e x I dx f x y dy = ? ? 的积分次序后,I =_____________________. 3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 . 4. 已知0! n x n x e n ∞ ==∑,则x xe -= . 5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分) 1.(本小题满分6分)设arctan y z y x =, 求z x ??,z y ??. 2.(本小题满分6分)求椭球面222 239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的 法线方程. 3. (本小题满分7分)求函数2 2 z x y =+在点(1,2)处沿向量1322 l i j =+ 方向的方向导数。 4. (本小题满分7分)将x x f 1 )(=展开成3-x 的幂级数,并求收敛域。 5.(本小题满分7分)求由方程088222 22=+-+++z yz z y x 所确定的隐函数),(y x z z =的极值。 6.(本小题满分7分)计算二重积分 1,1,1,)(222 =-=--=+??y y y x D d y x D 由曲线σ及2-=x 围成.

相关文档
相关文档 最新文档