文档库 最新最全的文档下载
当前位置:文档库 › 高考数学椭圆与双曲线重要规律定理

高考数学椭圆与双曲线重要规律定理

高考数学椭圆与双曲线重要规律定理
高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论)

清华附中高三数学备课组

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的

两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

是00221x x y y a b +=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点

角形的面积为122

tan

2

F PF S b γ

?=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦

点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2

2OM AB b k k a ?=-,

即020

2y a x b K AB -=。

12. 若000(,)P x y 在椭圆22

221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.

13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y

x y a b a b

+=+.

双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长

轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y

a b -=.

6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则

切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,

则双曲线的焦点角形的面积为122

t

2

F PF S b co γ

?=.

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--

9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别

交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.

10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于

点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则

0202y a x b K K AB OM =?,即020

2y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

-=-. 13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是

22002222x x y y x y a b a b

-=-.

椭圆与双曲线的对偶性质--(会推导的经典结论)

高三数学备课组

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时

A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

2. 过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,

则直线BC 有定向且20

20BC b x k a y =(常数).

3. 若P 为椭圆22

221x y a b

+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,

21PF F β∠=,则

tan t 22

a c co a c αβ

-=+. 4. 设椭圆

2

2

22

1x y

a b +=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.

5. 若椭圆

2

2

22

1x y

a b +=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e

1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则

2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

7. 椭圆

22

0022

()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 8. 已知椭圆22

221x y a b

+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)

2222

1111||||OP OQ a b

+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ?的最小值是2222a b a b +. 9. 过椭圆22

221x y a b

+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x

轴于P ,则

||||2PF e

MN =. 10. 已知椭圆22

221x y a b

+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点

0(,0)P x ,则2222

0a b a b x a a ---<<.

11. 设P 点是椭圆22

221x y a b

+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则

(1)2122||||1cos b PF PF θ=+.(2)122

tan 2

PF F S b γ?=.

12. 设A 、B 是椭圆22

221x y a b

+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,

PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有

(1)22222|cos |||s ab PA a c co αγ=-.(2)2

tan tan 1e αβ=-.(3)222

2

2cot PAB a b S b a

γ?=-. 13. 已知椭圆22

221x y a b

+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交

于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线

垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

椭圆与双曲线的对偶性质--(会推导的经典结论)

高三数学备课组

双曲线

1. 双曲线22

221x y a b

-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于

P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

+=.

2. 过双曲线22

221x y a b

-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于

B,C 两点,则直线BC 有定向且20

20BC b x k a y =-(常数).

3. 若P 为双曲线22

221x y a b

-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=,

21PF F β∠=,则

tan t 22c a co c a αβ-=+(或tan t 22

c a co c a βα

-=+). 4. 设双曲线

2

2

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin (sin sin )c

e a αγβ==±-. 5. 若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e

1

时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则

21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.

7. 双曲线

22

221x y a b

-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.

8. 已知双曲线22

221x y a b

-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.

(1)2222

1111||||OP OQ a b

+=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ?的最小值是2222a b b a -. 9. 过双曲线22

221x y a b

-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂

直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知双曲线22

221x y a b

-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相

交于点0(,0)P x ,则220a b x a +≥或22

0a b x a

+≤-.

11. 设P 点是双曲线22

221x y a b

-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,

则(1)2122||||1cos b PF PF θ=-.(2)122

cot 2PF F S b γ?=.

12. 设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,

PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)222

22|cos |

|||s |

ab PA a c co αγ=-. (2)2

tan tan 1e αβ=-.(3)22

22

2cot PAB

a b S b a γ?=+. 13. 已知双曲线22

221x y a b

-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与

双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线

必与切线垂直.

15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂

直.

16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

职高高考数学公式(最全)

职高高考数学公式(最 全) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

职高高考数学公式 预备知识:(必会) 1. 相反数、绝对值、分数的运算 2. 因式分解 (1) ?十字相乘法 如:)2)(13(2532-+=--x x x x (2) 两根法 如:)2 5 1)(251(12--+- =--x x x x 3. ?配方法 如:8 25 )41(23222-+=-+x x x 4. 分数(分式)的运算 5. 一元一次方程、一元二次方程、二元一次方程组的解法 (1) 代入法 (2) 消元法 6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7.平方差公式:))((22b a b a b a -+=- 8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 9. ?注:所有的公式中凡含有“=”的,注意把公式反过来运用。 第一章 集合 1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。 2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。 注:?描述法 },| 取值范围 元素性质元素 {?∈?=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正 整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“?”的关系。 (2) 集合与集合是“?” “”“=”“?/”的关系。 注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑φ是否满足题意)

高中高考数学公式大全

高中高考数学公式大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考基础知识(公式) 一、集合 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ? ?≠? 子集:一般地,,A A A ???,若,A B B C ??则A C ? 真子集:一般地,A ??,若,A B B C ?? 则A C ? 交集:一般地,A A A =,A B B A =,A A ?=?=? 并集:一般地,A A A =,A B B A =,A A A ?=?= 集合12{,,,}n a a a 的子集个数共有2n 个子集(包括空集);非空子集有 21n -个;即真子集有21n -个;非空的真子集有22n -个. 充要条件:1、p q ?,则p 是q 的充分条件;反之(若q p ?),q 是p 的必要条件; 2、p q ?,且q p ?,则p 是q 的充要条件; 3、p q ?,且q ≠>p ,则p 是的q 充分不必要条件; 4、p ≠>q ,且q p ?,则p 是q 的必要不充分条件; 5、p ≠>q ,且q ≠>p ,则是p 是q 的既不充分又不必要条 件。 二、指数与对数 指数性质:(1)1、1 p p a a -= ; (2)、01a =(0a ≠) ; (3)、()mn m n a a = (4)、(0,,)r s r s a a a a r s Q +?=>∈ ;(5)、n a =(0,,a m n N *>∈, 1n >)(6)、m n a =0,,a m n N *>∈,且1n >) (7)当n a =; 当n ,0 ||,0a a a a a ≥?==?-≠>>∈且2n ≥则

高考数学 双曲线

第51讲 双曲线 1.双曲线的定义 平面内与两个定点F 1,F 2的__距离的差的绝对值__等于常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做__双曲线的焦点__,两焦点间的距离叫做__双曲线的焦距__. 集合P ={}M ||| ||MF 1-||MF 2=2a ,||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0. (1)当__a <c __时,点P 的轨迹是双曲线; (2)当__a =c __时,点P 的轨迹是两条射线; (3)当__a >c __时,点P 不存在. 2.双曲线的标准方程和几何性质 x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R

3.常用结论(1)双曲线的焦点到渐近线x a 2-y b 2=0(a >0,b >0)的距离为b .如右图△OFH 是分别以边a ,b ,c 为边长的直角三角形. (2)如下图: x 2a 2+y 2b 2=1(a >b >0) x 2a 2-y 2 b 2=1(a >0,b >0) 则有:P 1,P 2两点坐标都为????c ,b 2 a ,即||FP 1=||FP 2=b 2 a . 1.思维辨析(在括号内打“√”或“×”). (1)平面内到点F 1 (0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( × ) (2)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (3)方程x 2m -y 2 n = 1(mn >0)表示焦点在x 轴上的双曲线.( × ) (4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n = 0.( √ ) 解析 (1)错误.由双曲线的定义知,应为双曲线的一支,而非双曲线的全部. (2)错误.因为||||MF 1-||MF 2=8=||F 1F 2,表示的轨迹为两条射线. (3)错误.当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

(完整版)高职高考数学主要知识点最新版

高职高考数学主要知识点: 1.集合的子集个数: 集合{a1,a2,a3, ,a n}的子集个数为2n个;子集个数为2n个;真子集个数为2n1个。满足{a1,a2,a3, ,a m} A {a1,a2,a3, , a n }关系的集合A有2n m个。 2.集合的运算: 交集;A B {x| x A且x B} 并集:A B {x| x A或x B} 补集:C U A {x| x U,A U且x A} 3.命题的充分条件:、原命题成立,逆命题不成立命题的必要条件:逆命题成立,原命题不成立。命题的充要条件:原命题成立,逆命题成立。 4.函数的定义域的求法:分式要保证分母不为0;开二次方根要保证补开方数大于或等于0;对数的真数大于0,底数大于0 且不等于1。值域的求法:二次函数用配方法、换元法、一次分式函数用求反函数的定义域的方法、二次分式函数用判别式法。二次根式函数要保证函数值大于或等于0,指数函数值大于0 等等。 5.增函数:函数值随自变量的增大而增大,减少而减小。减函数:函数值随自变量的增大而减小,减少而增大。 奇函数:定义域关于原点对称,自变量取相反值时函数值与原函数值相反。图象关于原点对称。 偶函数:定义域关于原点对称,自变量取相反值时函数值与原函数值相同。图象关于y 轴对称。

反函数:原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。图象关于直线y=x 轴对称 指数的运算法则: m n m n m n m n a a a ,a a a m n mn m m m (a ) a ,(ab ) a b b b m m (b)m b m,a n n a m(n a )m a a m m 1 0 a m m,a 01(a 0) a 8. 对数的运算法则: 1如果a b N,那么b叫做以a为底N的对数,记为 b log N 2 a loga N N 3 log a a b b 4 log a x n nlog a x y 5 log a ( xy) log a x log a y 6 log a log a y log a x 1 log c b 7 log a b 8 log a b c log b a log c a 9. 指数函数的图象及性质:

高考数学双曲线

2021年新高考数学总复习第九章《平面解析几何》 双曲线 1.双曲线定义 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. (1)当2a<|F1F2|时,P点的轨迹是双曲线; (2)当2a=|F1F2|时,P点的轨迹是两条射线; (3)当2a>|F1F2|时,P点不存在. 2.双曲线的标准方程和几何性质 标准方程 x2 a2- y2 b2=1 (a>0,b>0) y2 a2- x2 b2=1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 渐近线y=± b a x y=± a b x 离心率e= c a,e∈(1,+∞),其中c=a 2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双 曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做 双曲线的虚半轴长 a,b,c 的关系 c2=a2+b2 (c>a>0,c>b>0) 概念方法微思考

1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么? 提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在; 当2a =0时,动点的轨迹是线段F 1F 2的中垂线. 2.方程Ax 2+By 2=1表示双曲线的充要条件是什么? 提示 若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0. 3.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0b >0时,10时, e =2(亦称等轴双曲线),当0 2. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × ) (3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n =0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) (5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22 =1(此条件中两条双曲线称为共轭双曲线).( √ ) 题组二 教材改编 2.若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 答案 A 解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±y b =0,即bx ±ay =0,

高中数学《立体几何》重要公式、定理

高中数学《立体几何》重要公式、定理 1.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 3.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 4.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 5.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 7.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a . (2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb . 8.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ?存在实数λ使a=λb . P A B 、、三点共线?||AP AB ?AP t AB =?(1)OP t OA tOB =-+. ||AB CD ?AB 、CD 共线且AB CD 、不共线?AB tCD =且AB CD 、不共线. 9.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 10.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角 线所表示的向量. 11.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1 k ≠

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

(完整word版)高职高考数学主要知识点最新版

高职高考数学主要知识点: 1. 集合的子集个数: 个。真子集个数为个子集个数为个的子集个数为集合12;2;2},,,,{321-?????n n n n a a a a 个。有关系的集合满足m n n m A a a a a A a a a a -????????????2},,,,{},,,,{321321 2. 集合的运算: 交集;}|{B x A x x B A ∈∈=?且 并集:}|{B x A x x B A ∈∈=?或 补集:},|{A x U A U x x A C U ??∈=且 3. 命题的充分条件:、原命题成立,逆命题不成立 命题的必要条件:逆命题成立,原命题不成立。 命题的充要条件:原命题成立,逆命题成立。 4. 函数的定义域的求法:分式要保证分母不为0;开二次方根要保证补开 方数大于或等于0;对数的真数大于0,底数大于0且不等于1。 值域的求法:二次函数用配方法、换元法、一次分式函数用求反函数的定义域的方法、二次分式函数用判别式法。二次根式函数要保证函数值大于或等于0,指数函数值大于0等等。 5. 增函数:函数值随自变量的增大而增大,减少而减小。 减函数:函数值随自变量的增大而减小,减少而增大。 奇函数:定义域关于原点对称,自变量取相反值时函数值与原函数值相反。图象关于原点对称。 偶函数:定义域关于原点对称,自变量取相反值时函数值与原函数值相同。图象关于y 轴对称。

反函数:原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。图象关于直线y =x 轴对称。 6. 二次函数的图象及性质 7. 指数的运算法则: ) 0(1,1)(,)()(,)(,0≠========÷=?--+a a a a a a a a b a b b a ab a a a a a a a a m m m n n m n m m m m m m m mn n m n m n m n m n m 8. 对数的运算法则: ()()()()()()()()a b b a b x y x y y x xy x n x b a N a N b N a b N a c c a b a a a a a a a a n a b a N a b a log log log 8log 1 log 7log log log 6log log )(log 5log log 4log 32log 1log = =-=+======的对数,记为为底叫做以,那么如果 9. 指数函数的图象及性质:

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

高中数学公式定理大集中

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα 2cotα=1 sinα 2cscα=1 cosα 2secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα 2tanβ tanα-tanβ tan(α-β)=—————— 1+tanα 2tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

关于高职高考数学公式

关于高职高考数学公式 This manuscript was revised on November 28, 2020

重点公式 第零章 1、222)(2b a b ab a ±=+± 2、))((22b a b a b a -+=- 3.一元二次方程的求根公式:a ac b b x 242-±-= (042≥-a c b ) 4.韦达定理:a b x x -=+21;a c x x =?21 第一章 第二章 一、不等式的性质 1、不等式两边同时加减一个数,不等号不变:如:,a b >则有,a c b c ->- 2、不等号两边同时乘除以一个正数,不等号不变;不等号两边同时乘除以一个负数,不等号变如:(1),0a b c >>,则有,ac bc >(2),0a b c ><,则有,ac bc < 二、均值定理 时取等号当且仅当其中b a R b a ab b a =∈≥++,,,2 三、不等式的解法 1.一元一次不等式(0)ax b a >≠: 解题步骤: (1)当0a >时,解集为|b x x a ??>???? (2)当0a <时,解集为|b x x a ? ?< ??? ? 2.二次函数20(0)ax bx c a ++>≠ 解题步骤:(1)令20ax bx c ++=,解出其根 (2)根据a 及所求出的根画图 (3)由图像及符号确定解集 3.分式不等式 0000()() ,()() f x f x a a g x g x >≥

解题步骤:(1)把不等式化为分式不等式的标准形式,即 ()() 0,0()() f x f x g x g x >≥ ()(2) 0()()0() f x f x g x g x ????→>>←????正正得正负负得负,()0()()0()f x f x g x g x ????→<<←????正负得负负正得负 (3)()0()()0g()0()f x f x g x x g x ?????→≥≥≠←?????分母不能为零且 4、绝对值不等式()()f x a f x a <>或(其中a >0) 解题步骤:(1)在数轴上a a -描出和的点,原则上小于号取中间,大于号两边 (2) ()()()()()a a a a f x a a f x a f x a f x a f x a -?????→<-<<←????? ?????→><->←????? 取和的中间 取-和两边 或 5、无理不等式 (1 ()0,()0()() {f x g x f x g x ≥≥>????→>←???? 根号里式子大于等于零 (2 ()0,()0 ()2 ()[()]()0, ()()0 12{(){{ f x g x g x f x g x f x g x g x g x ≥≥>≥当大于等于零时 当小于零时 、、型 (3 2 ()0,()0([()](){f x g x f x g x g x ≥>≠=k k k kx x f 2.一次函数 时为减函数时为增函数,当当00),0()(<>≠+=k k k b kx x f ),0()(.3≠=k x k x f 反比例函数)上是减函数, ,)和(,函数在区间(时当∞+∞->00,0k )上是增函数,)和(,时,函数在区间(当∞+∞-<000k

高考数学专题复习:双曲线(含解析)

【学习目标】 1.理解双曲线的定义、几何图形和标准方程以及它的简单几何性质. 2.理解数形结合的思想. 3.了解双曲线的实际背景及其简单应用. 【高考模拟】 一、单选题 1.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则() A. B. C. D. 【答案】B 【解析】 【分析】 根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可. 【详解】

【点睛】 本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键. 2.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点, , ,, 为坐标原点,则 A . B . C . D . 【答案】D 【解析】 【分析】 先求出双曲线的方程为,再求出点P 的坐标,最后求 . 【详解】 【点睛】 (1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些

知识的掌握水平和分析推理计算能力.(2) 双曲线的通径为. 3.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为() A. B. C. D. 【答案】D 【解析】 【分析】 根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率. 【详解】 直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴, 根据双曲线的对称性,设点,, 则,即,且, 又直线的倾斜角为, 直线过坐标原点,, ,整理得,即,解方程得,(舍) 故选D. 【点睛】 本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题. 圆锥曲线离心率的计算,常采用两种方法: 1、通过已知条件构建关于的齐次方程,解出. 根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.

相关文档
相关文档 最新文档