文档库 最新最全的文档下载
当前位置:文档库 › Renishaw LaserXL(激光干涉仪应用)

Renishaw LaserXL(激光干涉仪应用)

Renishaw LaserXL(激光干涉仪应用)
Renishaw LaserXL(激光干涉仪应用)

ML10 Gold Standard laser QC10 ballbar system

MCG machine checking gauge

Laser

The ultimate metrology tool for traceable machine tool and motion system analysis

MCG

A simple check of CMM volumetric performance and repeatability

Ballbar

Check machine positioning performance and

diagnose machine errors automatically

Metrology is our business

Real metrology solutions

With over 30 years of experience in the field of engineering metrology,

Renishaw has an international reputation for producing high quality measuring systems. From the touch trigger probe to the complex Raman imaging microscope, Renishaw brings real solutions to real problems.

2

ML10 laser

Research and

development facility (Scotland)

Renishaw has established subsidiary

companies around the globe to support all major markets, with appointed distributors for other key areas. They offer extensive after sales support through training, technical support, repair and recalibration services.

Meeting the challenges of modern industry The demands of modern industry to meet ever tighter tolerances, and the requirements of international quality standards, mean that the performance of manufacturing machinery has never been more important. T o meet this demand, Renishaw’s measurement systems assess, monitor and improve machine performance. These systems combine the best available mechanical, electronic and optical technologies for easy use, flexibility and portability.

Systems normally reserved for research

laboratories and standards rooms can now be

used directly on the shop-floor.

When you purchase a laser or ballbar

system from Renishaw, you are buying into a

worldwide support network that understands

machine metrology, machine service and

the demands of maintaining accuracy in a production environment.

Renishaw’s measurement systems are

accepted throughout the world as the industry

standard for machine performance testing.

After sales support

Renishaw designs, manufactures and supplies metrology systems of the highest quality and reliability to enable customers worldwide to carry out dimensional measurements to traceable standards.

Our product offerings enhance quality and productivity, and we strive for total customer satisfaction through superior customer service.

Our aim is to provide leading edge technology

by encouraging innovation to address our

customers’ needs.

We are committed to sustained growth

through continued investment in product

development and manufacturing methods.

Renishaw wishes to be recognised as a

leader and contributor in our field and our

community.

We wish to achieve our aims in a way that is caring, open and honest.Renishaw is an environmentally conscious and responsible company. We strive to ensure that all aspects of the business have the least

harmful effect on the environment.

The Renishaw mission

Assessing machine performance

Servicing and repair (USA)The industry “standards”

3

Table of contents

Metrology is our business .................................................................Real metrology solutions .....................................................................Control machine performance ........................................................ML10 Gold Standard...........................................................................QC10 system .......................................................................................Machine checking gauge .....................................................................Understanding machine performance .........................................The benefits ......................................................................................Integrated use of QC10 and ML10 https://www.wendangku.net/doc/b29586844.html,ser measurement system ........................................................System architecture .......................................................................Measurement options .........................................................................The laser and environmental compensation ......................................The world’s leading laser measurement system ................................Specifications and accuracy to be proud of .......................................More applications using the ML10 laser system https://www.wendangku.net/doc/b29586844.html,ser measurement software ........................................................

Linear measurement .....................................................................Angular measurement ...................................................................Straightness measurement ...........................................................Squareness measurement ............................................................Flatness measurement .................................................................Rotary measurement ....................................................................Dynamic measurement ................................................................System accessories .....................................................................System interfacing .........................................................................QC10 ballbar system ...................................................................The 6 steps to machine confidence...............................................Ballbar accessories........................................................................ Ballbar measurement software....................................................... Machine checking gauge ............................................................Service and support ....................................................................Website ..........................................................................................

236-4137-3842-4344-4534-3528-2930-3132-3326-2724-2522-2320-2115141010-358-96-76-95544-521211ML10 laser and EC10

environmental compensator

QC10 ballbar system

The optics family

1316-1718-1940-4146

39

The ML10 Gold Standard laser measurement system

Used for comprehensive accuracy assessment of machine tools, CMMs and other

position-critical systems, the ML10 laser measurement system is by far the best tool for the job.

Control machine performance

ML10 Gold Standard laser system

PCB drilling machine

(photo courtesy of Exitech Ltd)

CMM calibration

4

The facts speak for themselves....

? The most accurate system of its

type – system accuracy of ± 0.7 ppm is maintained throughout its operating range of 0 °C – 40 °C (32 °F – 104 °F), a standard level of performance that NO OTHER competitive system can match.

? Interferometry is traceable –

all Renishaw’s laser measurements, including straightness and angular, are interferometric, and therefore based on the internationally traceable standard wavelength of laser light.

? Quick and safe alignments with a tripod

mounted laser – all alignment can be undertaken comfortably and safely outside the machine. No need to lose axis travel or suffer the effects of cable drag on the measurement.

? Optics designed for the shop user –

all optics housings are made from hard anodised aluminium, resulting in light, durable optical components that thermally acclimatise to a shop environment 10 times quicker than steel optics housings. The new patented LS350 beam steerer makes alignment simple, even for beginners.

? Long range measurement – linear

measurements can be taken on axes up to 80 metres (3200 inches) in length, with the option to SIMULTANEOUSL Y measure the parallel axes of dual drive machines.

? Rotary axis calibration – the combination

of the ML10 laser with RX10 rotary indexer provides the only FULL Y AUTOMATIC

method of rotary axis calibration on CMMs and machine tools.

? Pioneers of error compensation software

– packages that correct for linear positioning errors of an axis are available for most machine controllers.

? Dynamic analysis - of motion, vibration,

acceleration and velocity to give a full understanding of real dynamic motion characteristics.

Conformance to international standards: As manufacturing industry is constantly

evolving, it is important that data is captured and assessed according to recognised

standards. Renishaw understands this need and supports its systems and users with data capture and analysis to both national and international standards.

Remember that while single measurements (such as laser diagonal) can give indicative values for changes in machine metrology, only a comprehensive measurement of each parameter and axis can yield the detailed

information needed for a full understanding.

Pick and place

(photo courtesy of Probetest)

The QC10 ballbar system

The QC10 ballbar system is recognised in major international standards, and by thousands of users worldwide, as the best tool for quickly checking CNC machine tool positioning performance on a regular basis.The system is easy to set-up, simple to run and is an essential tool for all machine shops, service companies and machine tool builders.

? Helps to cut costs – regular use of

the QC10 ballbar results in reduced

maintenance, reduced machine downtime and reduced scrap.

? Easy set-up – patented centering design

makes set-up simple and quick.

? Simple to run – Ballbar 5 software uses an

intuitive step-by-step approach to test set up, data capture and auto diagnosis, all with point and click navigation.

? Very quick testing – 10 minutes is all

that is typically needed to assess the performance of your machine.

? Understand changes in machine

performance – the unique diagnostic software turns the captured data into a prioritised list of ways to improve a machine’s performance.

? Aids predictive maintenance – through

regular use, it will be clear which machines need attention, and when.

? Strongly recommended for machine tools

using inspection probing.

? An ideal verification tool between

laser calibrations.

? Compliance with standards – ISO, ANSI,

QS and AT A.

Quick and powerful testing

The machine checking gauge

? Exclusively for CMMs – for assessing

volumetric performance.

? Quick to set up and run. It is an

ideal verification tool between CMM recalibrations.

? Identify changing machine performance – if

the volumetric numbers are changing, so is the machine.

? Full diagnosis of results available using

online results service.

? Flexible set-up – supplied with a range of

extensions, the MCG can be adapted to test all sizes of CMM.

? Compliance to standards – this

measurement method complies with BS EN ISO 10360-2.

5

Windows ? and Internet Explorer are the registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Zerodur ? is a registered trademark of Schott Glass Technologies Incorporated.

Trademark acknowledgements

QC10 ballbar

QC10 ballbar kit

Machine checking gauge

As a machine builder you benefit from . . .

As a machine user you benefit from . . .

Understanding machine performance to . . .

?Minimise scrap and improve accuracy of cut parts: By ensuring that a machine is working to specification, the chance of scrap will be minimised. It also enables tighter tolerances to be held on jobs, improving overall accuracy and quality.

?Minimise machine downtime: Gain a detailed picture of how each characteristic of a machine’s performance is varying over time, predict when maintenance work will be required for a specific machine, and establish contingency plans in advance.

?Win machining contracts from your competitors: When customers need confidence in the quality of your machining, calibration graphs and regular performance evaluation results of your machines are excellent proof. These can give you a valuable competitive advantage over other machining contractors, who may not perform such tests.

?Comply with the ISO 9000 series of standards: It is a requirement of the ISO 9000 series of quality standards that manufacturing and inspection equipment is calibrated, monitored and controlled.

?Grade the performance of all your machines: By calibrating all your machines, you will be able to grade them according to their relative machining ability. Assigning specific toleranced jobs to machines capable of holding these tolerances, ensures that they are fit for the required purpose and less likely to produce scrap.

?Extend the life of your machine: Certain types of machine errors can lead to excessive wear in the drive system and guideways of machines. By pinpointing and eliminating these errors at an early stage, you can improve the working life of a machine.

?Validate the quality of a new machine upon delivery: Often shipping and site installation can have a detrimental effect

on a machine’s accuracy. A performance check on the machine immediately after installation, confirms its readiness to begin work.

7

Annual calibrations

T ypically, laser calibrations are performed on an annual

basis. Using the ML10 laser measurement system to gather a comprehensive view of all the geometric and dynamic characteristics of a machine, means that information obtained can direct any machine maintenance that may be required. However, machine performance can vary significantly throughout a year, particularly if the machine has crashed or has been moved. Therefore, annual calibrations should ideally be supplemented by regular machine performance checks.

2007200

6

2005

Understanding machine performance -

integrating performance testing and calibration using QC10 and ML10

Perform a full laser calibration test, measuring all geometric, positioning and motion characteristics for each axis. Compensate or repair as appropriate.

1. Perform full laser calibration Immediately benchmark the calibration with the QC10 ballbar test on machine tools, or MCG test on CMMs. The quick tests are now linked to the comprehensive laser calibration.

2. Benchmark with a ballbar

8

Regular performance tests

The QC10 ballbar can evaluate machine tool performance

quickly and simply, with a fully automated test procedure. In

only 10 minutes*, the positional data obtained can identify and

quantify a wide variety of errors on a machine, from machine

geometry to controller related problems.

Re-check the machine with the QC10 ballbar

or MCG at regular weekly or monthly intervals,

following machine relocation or machine crash,

or when parts begin to drift from tolerance.

Regular pre-planned checks enable a machine’s

performance to be charted over time and future

accuracy problems to be intelligently predicted

through trend analysis.

3. Regularly re-check machine

After maintenance work, the machine can be

re-calibrated using the ML10 laser measurement

system. At this point it is possible to refer back to

stage 2 to repeat the cycle.

If overall machine accuracy falls below an

acceptable level, use the QC10 diagnostic

software to analyse and pinpoint problem

areas. On CMMs, it is advisable to perform a

laser test to identify the specific location of

an error.

5. Repair, and re-calibrate with a laser

4. Pinpoint problem areas

*Based on typical feedrates and test radius

9

Maintenance can then be quickly focused on the identified

problem areas, adjustments made and the results confirmed

by performing a further QC10 ballbar test or ML10 laser

measurement. Similarly, the MCG can establish a benchmark

volumetric accuracy value for CMMs from which trends can be

ascertained at regular intervals.

Using Ballbar 5 HPS software users can

review a series of tests via the machine history

function.

Week 3

X X X

X X X

W e e

k2

X X

X

X

X

X

X W e e k

1

X X

X

X X

X

X

Laser measurement system - system architecture

The Renishaw laser measurement system is an ideal solution for the complete calibration of machines, enabling the

measurement of a wide range of geometric and dynamic characteristics. It employs a flexible, modular system architecture ensuring that it can best fit your specific measuring requirements, and grow as they grow.

page 13

page 12

page 34EC10 Gold Standard compensation unit

ML10 Gold Standard laser

Laser measurement system -

the laser and environmental compensation measurement system

comparisons with competitor opposite).

13

The world’s leading laser measurement system

The EC10 Gold Standard compensation unit

The world’s leading laser measurement system Environmental temperature (°C)

Competitor’s linear measurement accuracy**

Including material compensation effects

Excluding material compensation effects

Environmental temperature (°C)

Renishaw linear measurement accuracy*

* Environmentally compensated linear measurement accuracy. **Data as of March 2005

? Performance specifications. - Renishaw’s accuracy

specification is derived in accordance with recognised

procedures for the calculation of measurement uncertainty (EA - 4/02) for laser stability, sensor output, and all key parameters and calculations affecting the final measurement.

Overall system accuracy is quoted to the internationally recognised 95% confidence level (k=2) and includes allowance for drift in service. Fully documented calculations of the error budget for ML10 and EC10 are available for review. Calculations are also available to support the specification of individual measuremant accuracies (eg. angular and straightness).

? Field performance - With an installed base of thousands

of units worldwide operating over 18 years, our track record shows that Renishaw’s laser systems continue to meet specifications day-in day-out, under a wide

variety of conditions. This level of performance has been repeatedly verified by third party testing (including national laboratories).

? Accuracy for all measurements - Laser linear

measurement accuracy is only part of the metrology

solution. Y ou can also capture and analyse linear, angular, straightness, squareness, flatness and rotary axis motion with your ML10 Gold Standard system, all using traceable linear measurement as a basis.

This compensated wavelength is combined with the fringe count from the ML10 laser to give compensated distance measurements with guaranteed accuracy.

To compensate for a machine’s thermal expansion, the EC10 unit can also receive data from up to three material temperature sensors which can be placed in strategic positions on the machine under test. This normalises all

readings to a reference temperature of 20 °C (68 °F). Thermal compensation is particularly important when performing linear measurements, especially on large machines or machines made of high expansion materials.

The accuracy of a laser distance measurement system is primarily dependant on how well the system can compensate for the effects of air refraction changes on the wavelength of the laser. Without this compensation, accuracy of any system is significantly compromised. Recognising this fact, Renishaw has designed its environmental compensation unit (EC10) to be extremely accurate.

The EC10 compensation unit continually monitors the surrounding environment by collecting data from highly

accurate sensors which measure the ambient air temperature, pressure and humidity. From this data, the unit calculates the true laser wavelength using Edlen’s equation.

Published linear system accuracy, Renishaw competitor

Specifications and accuracy to be proud of

Environmental compensation (EC10)

14

Applications using the ML10 laser measurement system

Problem:

? LVDT sensors and gauges have a non-linear output versus displacement response

? Product requires calibration for traceability

and improved accuracy

? Traditional calibration methods used

manual “barrel micrometers” which were slow and expensive to maintain

The Renishaw ML10 laser interferometer can LVDT sensor calibration

*More details are available at https://www.wendangku.net/doc/b29586844.html,

More applications using the ML10 laser system

Software designed with the

user in mind

The user interface to the ML10 laser uses

dedicated Windows compatible software

exclusively developed by Renishaw.

The Laser10 software provides the capability

for static and dynamic measurement of

a machine’s linear, angular, straightness,

squareness and rotary accuracy. It is supplied

with dynamic, dual axis, digital indicator,

electronic level, universal error compensation

and on-line help capability as standard.

Flexibility of data collection

To meet the requirements of different

applications, the laser software employs an

array of automatic and manual data

capture methods:

Manual:

Keyboard, remote hand switch.

Automatic:

Time and position based, dynamic, encoder

triggered (via the TB10 trigger box).

Simultaneous dual measurement

Data can be collected from two axes

simultaneously and then analysed

independently.

Laser measurement software -

Laser10 software

16

Laser data is analysed to the

following standards: ISO 230-2, ANSI B5.54,

ANSI B89, VDI 3441, VDI 2617, JIS-B6330

and GB-10931-89.

Data analysis to international standards

Linking to other instruments

The software is extremely flexible, enabling

the capture, storage and presentation of data

from supported electronic levels and digital

indicators. The captured data can then be

analysed in accordance with national and

international standards.

Minimum computer

requirements

? Windows? XP operating system*

? 1 Ghz processor and

256 MB RAM,

? Minimum screen resolution

1024 x 768 pixels,

? CD-ROM drive for

software installation,

? DX10 interface kit (USB) required

for data communications with

notebooks or desktop PCs.

? An RS232 port or USB-serial

adapter will be required if using

accessories such as error

compensation software, RX10

rotary axis calibrator or the

digital indicator interface (ask for

details).

? Laser measurement software

is supplied on CD-ROM in the

following languages:-

English, German, French, Italian,

Spanish, Japanese, Chinese,

Taiwanese, Russian and Korean

Note: *PCM20 available for

notebooks using older Windows

operating systems.

on a “stand alone” basis.

Operating within the Windows environment,

data can be exported into other applications

in raw format. Alternatively, analysed data can

be cut and pasted into other applications,

thus enabling professional presentation of

test results.

*Note that some language versions have a system manual

with the key sections translated, all other sections in English.

17

Laser measurement software -

QuickView? software

Minimum computer requirements

? Windows ? XP ? 1 GHz processor and 256 MB RAM

? Minimum Screen resolution 1024 x 768 pixels,? CD-ROM drive for software installation,? 1 free USB port

? DX10 interface kit (USB) required for data communications for both notebooks and desktop PC.? QuickView? software is supplied on CD-ROM in the following languages:- English, German, French, Italian, Spanish, Japanese, Chinese, Taiwanese, Russian and Korean.

QuickView? is a simple to use, intuitive

software package to capture, review and save dynamic data acquired via the ML10 laser measurement system.

In conjunction with the DX10 interface kit - a new laser to PC interface - QuickView? enables users to determine dynamic

characteristics of machine tools, CMMs and other motion systems and structures and

provides users with the following functionality:

? Live data display in an oscilloscope style format

? Data capture rate of 5 kHz

? Supports measurement with linear, angular or straightness measurement optics

? Three modes of data capture: free running, single shot trigger and multi-shot trigger ? Distance, velocity and acceleration display modes

? User selectable filters of 0, 1, 2, 5, 10, 20, 50 and 100 ms response

? Cursors for measurement of amplitude, time and frequency

? Manual scale, pan and zoom functions

allowing ‘close up’ analysis of selected data ? Auto scale option Captured data can easily be loaded into supporting applications such as MathCAD, Mathmatica and Excel for further analysis using CSV file format. It can also be loaded into Renishaw’s Laser10 software allowing FFT analysis.

Laser measurement systems have become

common place, not just for equipment

calibration but also for use as an investigative and analytical tool during development and build processes. Increasingly stringent quality assurance programmes, continued development of higher speed machining processes and the demand for increased reliability and repeatability have all influenced this.

Technological developments within industries such as microelectronics, semiconductor, biomedical and digital imaging have identified a new level of positional and dynamic

requirements on a diverse range of machines such as PCB drillers, wafer dicers, pick and place and XY motion stages.

Knowledge of a position sensitive machine’s dynamic characteristics - acceleration,

velocity, vibration, settle time, resonance and damping - is critical in many applications. These characteristics will influence

operational capabilities such as positional accuracy, repeatability, surface finish, throughput and wear.

Recognising the need to identify the dynamic behaviour of machines in a wide range of industries, Renishaw’s new QuickView? software will instantly be recognised as an important and valuable diagnostic tool.

Wafer dicing machine calibration (photograph courtesy of Manufacturing Technology Inc)DX10 interface (USB)

w

Laser measurement system - linear measurement

This is the most common form of measurement performed on machines. The system measures

linear positioning accuracy and repeatability by comparing the position displayed on a machine’s readout with the true

position measured by the laser. These values can then be viewed, printed and statistically analysed by the system’s software to national and international standards. On many of today’s machine tools, it is also possible to take this process one step further and automatically download the measured data to a compensation table in the machine’s controller. In this way, a machine’s positioning accuracy can be verified and significantly improved, quickly and easily.

Set-up

The components used in this measurement comprise:

? Linear beam-splitter ? Retro-reflectors

? Targets (for easy optical alignment)

In linear measurement, one retro-reflector is secured to the beam-splitter, to form the fixed length reference arm of the interferometer. The other retro-reflector moves relative to the beam-splitter and forms the variable length measurement arm. The laser system tracks any change in the separation between the measurement arm retro-reflector and beam-splitter.

To mount the optics on a machine, a range of accessories and fixtures is available. There are additional accessories which can be supplied to help measurement set-up and data capture. These are described on the

system accessories section on page 32.

X axis linear positioning measurement on a VMC

Long range retro-reflector and periscope

Linear optics

18

With the addition of a linear error

compensation package, the data obtained from a calibration cycle is used to calculate compensation values, which can then be fed into a machine’s controller. Once the compensation has been completed,

a final laser check ensures that a machine’s positioning accuracy has been significantly improved. The software is used in

combination with the Laser10 calibration software and now includes a “wizard” to make axis compensation even https://www.wendangku.net/doc/b29586844.html,pensation packages are available to interface with many of today’s machine controllers* including:

? Fanuc OM and OT

? Fanuc 10 - 12, 15, 16, 18, 20 & 21 ? NUM 750, 760, 1060.? Mazak M2, M32, M PLUS

? Siemens 810, 810D, 820, 840, 840C,

840D, 850, 880

? Acramatic 2100

? Cincinnati A850, A850SX, A950? Combination package (includes all

the above)

*Note that error compensation software may not work with “customised” controller specifications.

? Highly durable optics –

the aluminium optics housings, including threads, are all

hard-anodised, corrosion proofed and shock resistant.

? Improved dynamic response –

with less than half the weight of steel optics housings, machine loading is reduced.

? Quick thermal acclimatisation –

aluminium optics acclimatise 10 times quicker than steel optics.

? No thermal drift problems –

the interferometer is remote from the heat of the laser head, with the laser heat source remaining outside the machine.

? Easier set-up –

the remote interferometer can be fitted to specific areas of interest on a machine, without loss of axis travel. This also allows for multiple axis measurements to be made from one position, without the need to re-align the laser.

? External laser alignment –

tripod mounted laser makes for easy alignment outside the machine.

? Easier long-range alignment –

the larger retro-reflector gives an easy target to hit and returns more laser light, even in turbulent air.

The power of automatic linear error compensation

Before

After

19

System advantages

kits. Laser measurement system -

angular measurement

Pitch and yaw

angular errors are

among the largest

contributory factors to

positioning inaccuracy

in machine tools

and measurement

accuracy errors on

CMMs.

Set-up

The components used in this

measurement comprise:

?Angular beam-splitter

?Angular retro-reflector

? Targets (for easy optical alignment)

For measurement set-up, the angular

beam-splitter optic is best mounted

in a fixed position on a machine, for

example, the spindle on a moving

bed machine tool or granite table on a

CMM. The retro-reflector optic is then

mounted to the moving part of the

machine, for example, the moving bed

of a machine tool or probe-head of a

CMM. The measurements are made by

monitoring the change in relative angle

between the beam-splitter optic and

the reflector optic.

X axis pitch measurement on a moving bed VMC

Angular optics 20

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图1-基本线性配置 SJ6000全套镜组:

图2-SJ6000全套镜组 镜组附件: 图3-SJ6000 镜组附件 镜组安装配件: 图4-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图5-线性测量构建图 图6-水平轴线性测量样图图7-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析 激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准 图9-激光干涉仪应用于三坐标机校准 SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

激光干涉仪操作规程

激光干涉仪操作规程 一、操作步骤 1.系统的相互连接 ·将PC10计算机系统与ML10 激光干涉仪用通讯电缆连接。 ·如果需要,将PC10计算机系统与EC10 环境补偿单元用通讯电缆连接。 ·将PC10、ML10、EC10分别接上电源线,再接到电源插板上。·通过稳压电源,将总电源线接到220V接地电源上。 2.激光的预热 闭合激光干涉仪开关,使激光预热大约15~20分钟,等激光指示灯出现绿色后,表明激光已稳定。 3.测量软件的启动 打开计算机,在“C”提示符下依次键入: ·CD/RENISHAW (RETURN) ·RCS (RETURN) ·a (RETURN) ·b (RETURN) 完成以上步骤后,测量软件已被启动。 4.光学镜的安装 ·将反射镜用夹紧块、安装杆、磁性表座固定在机床运动部件上。

·将反射镜和分光镜组合组成干涉镜;将干涉镜用夹紧块、安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。 5.激光调整 ·调整激光,使其与测量方向一致。调整时,首先用粗光束调,然后用细光束调,保证信号强度达到测量精度要求并恒定(由计算机上信号强度指示确定)。 ·调整透射光线和折射光线重合。 6.目标值设定 根据测量要求,设定目标值,目标值的设定应尽可能的覆盖整个行程范围。 7.数据采集 ·按目标值设定要求编制数控测量程序,在每个测量点必须有足够的延时设定(由机床操作人员完成)。 ·设定数据采集参数,主要包括;线性/圆周、测量次数、单向/双向、测量信息等。 ·按“ALI+D”进行数据采集。 ·数据采集完后,按“ESC”终止采集过程。 8.数据分析 选择“数据分析”菜单,按相关标准要求进行数据分析,分别给出双向定位精度、重复性、反向偏差等精度指标。

激光干涉仪应用原理(八)——激光干涉测量

Radiation Harsh Application | 强辐射环境应用 强辐射环境下FPS3010激光干涉测量 Laser Interferometry in Radiation Harsh Environments using the FPS3010 介绍 目前,同步辐射应用已经扩展到多种邻域中,如生物科技(蛋白质晶体),医药研究(微生物),工程应用(高分辨率裂缝演变成像),高级材料研究(纳米结构材料)。在纳米领域许多应用中,如透镜组,布拉格反射器,狭缝以及目标定位等都需要非常高的分辨率。机械结构需要高集成度,高稳定性,并且要减小温漂以及定位误差的影响。另外,运动部件的质量需要严格控制到最低,从而提高机械特性,并且减小位置误差。 针对以上讨论,这意味着编码必须在待测物附近,也就是说,编码器即使不是在X光或者粒子束中,也需要安置在辐射区内。 FPS3010激光干涉仪最大的特点是皮米级分辨率,兼容真空环境,并且在此类应用中,可以采用远程控模块。因此,FPS3010可以工作在强辐射环境下,也就是将干涉仪系统以及子系统安装在同步辐射光源或者束线附近,以及其他高辐射的环境中。 在目前的传感器选型中,“M12”传感器探头可以工作在高达10MGy的辐射环境下。这个研究主要针对这些新型传感器的耐辐射强度。实验主要工作在60Co源下(1.17 MeV / 1.33 MeV γ- and 0.31 MeV β-rays)。实验证明在3MGy辐射强度下传感头的读数没有明显偏差。在第二步骤测试中,对比传感器头放置在10MGy强辐射环境前后,对固定目标的测量值。对比结果为传感器所得目标值没有明显偏差。将两个UHV真空兼容 M12传感头(一个是带AR膜透镜,一个是不带AR膜透镜),安装到聚酰亚胺光纤上,放置在1Gy/s辐射区域中。两个探测头都安装在铝支架上,实验过程中将会有20 nm/°C的温漂。为避免曝光情况,采用镀了金膜的耐辐射镜子,搭建3m反射腔。FPS3010控制器放置在探头测试腔体外,另一个带温控无辐射腔内。在整个测量周期内,腔内温度稳定性高于1℃。测试的最后,总累积量达3.024MGy。 测量 图2a显示在测试过程中,测得的位置值。编码器位置采样率为1kHz。在图中,每一个点为100次独立测量平均值。位置漂移观察周期为34天,采用镀膜传感器测量,3MGy累积量为150nm;未镀膜传感器3MGy累积量为400nm。由于信号保持性较好,所以测得位置值的不确定性(标准偏差)优于10nm。 在未镀膜传感器头,在累积总量达2MGy之后,漂移会略微增大(22.5天)。达到这点之后,可进行两个传感器头性能比较。图2b显示编码器(红线)以及控制器位置(蓝线)的温漂情况。整个周期中,温度漂移小于1℃。

激光干涉仪使用方法

用激光干涉仪系统进行精确的线性测量 — 最佳操作及实践经验 1 简介 本文描述的最佳操作步骤及实践经验主要针对使用激光干涉仪校准机床如车床、铣床以及坐标测量机的线性精度。但是,文中描述的一般原则适用于所有情况。与激光测量方法相关的其它项目,如角度、平面度、直线度和平行度测量不包括在内,用于实现0.1微米即 0.1 ppm以下的短距离精度测量的特殊方法(如真空操作)也不包括在内。 微米是极小的距离测量单位。(1微米比一根头发的1/25还细。由于太细,所以肉眼无法看到,接近于传统光学显微镜的极限值)。可实现微米级及更高分辨率的数显表的广泛使用,为用户提供了令人满意的测量精度。尽管测量值在小数点后有很多位数,但并不表明都很精确。(在许多情况下精度比显示的分辨率低10-100倍)。实现1微米的测量分辨率很容易,但要得到1微米的测量精度需要特别注意一些细节。本文描述了可用于提高激光干涉仪测量精度的方法。 2 光学镜组的位置 光学镜的安放应保证其间距变化能够精确地反映待校准机器部件的线性运动,并且不受其它误差的影响。方法如下: 2.1 使Abbe(阿贝)偏置误差降至最低 激光测量光束应当与需要校准的准线重合(或尽量靠近)。例如,要校准车床Z轴的线性定位精度,应当对测量激光光束进行准直,使之靠近主轴中心线。(这样可以极大降低机床俯仰 (pitch) 或扭摆 (yaw) 误差对线性精度校准数据的影响。 2.2 将光学镜组固定牢靠 要尽量减小振动影响并提高测量稳定性,光学镜组应牢牢固定所需的测量点上。安装支柱应尽可能短,所有其它紧固件的横截面都应尽量牢固。磁力表座应直接夹到机床铸件上。 避免将其夹到横截面较薄的机器防护罩或外盖上。确保紧固件表面平坦并没有油污和灰尘。 2.3 将光学镜组直接固定在相关的点上 材料膨胀补偿通常只应用在与测量激光距离等长的材料路径长度上。如果测量回路还包括附加的结构,该―材料死程‖的任何热膨胀或收缩或因承载而发生的偏斜都将导致测量误差。为尽量减少此类误差,最好将光学镜组直接固定到所需的测量点上。在机床校准中,一个光学镜通常固定在工件夹具上,而另一个光学镜组则固定在刀具夹具上。激光测量将会精确地反映刀具和工件之间发生的误差。即使机器防护系统和机器盖导致难于接近,也一定要尽量将干涉镜和角锥反射镜都固定到机器上。不要将一个光学镜安装在机器内部而另一个安装在外部如支在机器外地面的三脚架上,因为整台机器在地基上的移动可能导致校准无效。然而,是否拆下导轨防护罩时需仔细考虑,因为这可能改变机器性能。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

激光干涉仪软硬件介绍讲解

激光干涉仪软硬件介绍 本次试验我们使用的仪器为:Renishaw 激光器测量系统。 这个系统由“软件”与“硬件”两个部分组成,所以我们认识他,就是搞清楚各是什么硬件和软件。 看到这个章节时,可定有人会问还有什么硬软件之分的吗?答案是肯定的! 先问大家一个问题:只有躯体的人就是一个正常的人吗?答案是否定的! 一个正常的人不但须要一个实实在在的躯体,还需要由看不见的意识性的东西——思想的存在! 3.1 激光干涉仪是由什么硬件组成 3.1.1 什么是硬件? 硬件:硬件就是我们看到的一堆由金属、塑料等材料堆成的被称之为“Renishaw 激光干涉仪”的东西(事实上,它是由一些机壳和电路板等物构成)。因为是一些看得见、摸得着的东西,又因为都是“硬”的,所以被人们形象地称为“硬件”。 3.1.2具体硬件名称以及各自的用途是什么? 一、本次使用激光检测仪主要检测螺距误差,因此我们主要使用到以下的仪器: (1)ML10 激光器 Renishaw ML10 Gold Standard 激光器

以上四个图案为激光罩在不同的状态下的作用 A)无光束射出 B)缩小横截面光束及目标 C)最答光束及目标 D)标准测量位置射出最大光来的横截面以及反射光束的探测器孔Renishaw ML10 Gold Standard 激光器:

ML10 是一种单频 HeNe 激光器,内含对输出激光束稳频的电子线路及对由测量光学镜产生的干涉条纹进行细分和计数处理。 其主要作用简单概括为:发射红外线以及返收红外线供特定的软件做分析,记录相关的数据。 (2)三脚架

三脚架及云台可用来安装 ML10 激光器,将 ML10 激光器设置在不同的高度,并充分控制 ML10 激光束的准直。对于大多数机床校准设置,建议将 ML10 激光器安装在三脚架和云台上。 三脚架、安装云台和 ML10 激光器三合一体,可为 ML10 光束准直提供下列调整:高度调整 水平平移调整 角度偏转偏转调整 角度俯仰调整 其中高度调整是由图9上显示的高度曲柄控制的,水平平移是由图2上显示的平移控制旋钮控制,角度偏转偏移是由图2上显示的旋转微调旋钮控制。图2后的两个示意图为水平平移和角度偏移的使用方法。 (3)EC10 环境补偿装置

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

一文弄懂激光干涉仪与激光平面干涉仪

一文弄懂激光干涉仪与激光平面干涉仪 很多朋友弄不清激光干涉仪与激光平面干涉仪的区别,主要是很多时候,客户把激光平面干涉仪简称为激光干涉仪,到网上一搜,发现激光干涉仪全是用来检测导轨运动精度的,不是自己需要的激光平面干涉仪,今天小编就告诉大家如何区分这两种激光干涉仪。 激光干涉仪 1.测量原理

▲线性测量的光路原理构建图 (1)从SJ6000激光干涉仪主机出射的激光束(圆偏振光)通过分光镜后,将分成两束激光 (线偏振光); (2)两束激光分别经由角锥反射镜A和角锥反射镜B反射后平行于出射光(红色线条)返回, 通过分光镜后进行叠加,由于两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件; (3)角锥反射镜B每移动半个激光波长的距离,将会产生一次完整的明暗干涉现象。测量距 离等于干涉条纹数乘以激光半波长。 2.功能 SJ6000激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。 3.应用 激光干涉仪可广泛用于数控机床、直线电机、电动滑台、线性模组、三坐标、自动化加工设备等运动精度检测。

▲SJ6000激光干涉仪检测数控机床 ▲SJ6000激光干涉仪检测线性模组

▲SJ6000激光干涉仪用于自动化设备装调 激光平面干涉仪 1.测量原理

激光干涉仪检测方法

FANUC、OKUMA机床的激光干涉仪检测方法 一、光的相干性 二、激光干涉法测距原理 三、FANUC螺补参数的设定 四、关于FANUC系统正负方向补偿号的计算方法 五、FANUC的检测用程式 六、OKUMA螺补参数的设定 七、OKUMA检测程式 八、检测值输入的方法

一、光的相干性 相長性干涉 當兩個波長相同的光束波形同步射出時,其波峰位置會如下圖 2 一般重合,固稱為“相長性干涉”。在相長性干涉的情況下,輸出波的振幅等於兩個輸入波的振幅之和。 ?相消性干涉 當兩個相干光束波形以180°的相位差異步射出時,一個輸入光束的波峰位置會如下圖3 一般與另一個輸入光束的波谷重合,固稱為“相消性干涉”。在相消性干涉的情況下,兩個輸入波會互相抵消而產生暗淡的光

二、激光干涉法测距原理 图片: 根据光的干涉原理,两列具有固定相位差,而且有相同频率、相同的振动方向或振动方向之间夹角很小的光相互交叠,将会产生干涉现象,如图所示。由激光器发射的激光经分光镜A分成反射光束S1和透射光束S2。两光束分别由固定反射镜M1和可动反射镜M2反射回来,两者在分光镜处汇合成相干光束。若两列光S1和S2的路程差为Nλ(λ为波长,N为零或正整数),实际合成光的振幅是两个分振幅之和,光强最大。当S1和S2的路程差为λ/2(或半波长的奇数倍)时,合成光的振幅和为零,此时光强最小。 激光干涉仪就是利用这一原理使激光束产生明暗相间的干涉条纹,由光电转换元件接收并转换为电信号,经处理后由计数器计数,从而实现对位移量的检测。由于激光的波长极短,特别是激光的单色性好,其波长值很准确。所以利用干涉法测距的分辨率至少为λ/2,

激光干涉仪讲解

第一章、前言 一、本次我们主要研究:如何检测机床的螺距误差。因此我们主要的任务在于: 1. 应该使用什么仪器进行测量 2. 怎么使用测量仪器 3. 怎么进行数据分析 4. 怎么将测量所得的数据输入对应的数控系统 二、根据第一点的要求,我们选择的仪器为:Renishaw 激光器测量系统,此仪器检测的范围包括: 1. 线性测量 2. 角度测量 3. 平面度测量 4. 直线度测量 5. 垂直度测量 6. 平行度测量 线性测量:是激光器最常见的一种测量。激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。 三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。因此,我们此次使用的检测方法——线性测量。 总结以上我们的核心在于:如何操作Renishaw 激光器测量系统结合线性测量的方法进行检测,之后将检测得到的数据进行分析,最后将分析得到的数据存放到数控系统中。这样做的目的在于——提高机床的精度。 - 1 - 第二章、 2.1 什么是螺距误差? 基础知识 开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知: 螺距误差是指由螺距累积误差引起的常值系统性定位误差。 2.2 为什么要检测螺距误差? 根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。 2.3 怎么检测螺距误差? (1)安装高精度位移检测装置。 (2)编制简单的程序,在整个行程中顺序定位于一些位置点上。所选点的数目及距离则受数控系统的限制。 (3)记录运动到这些点的实际精确位置。 (4)将各点处的误差标出,形成不同指令位置处的误差表。(5)多次测量,取平均值。 (6)将该表输入数控系统,数控系统将按此表进行补偿。 2.4 什么是增量型误差、绝对型误差? ①增量型误差 增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差 绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5 螺距误差补偿的原理是什么? 螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将

激光干涉仪在检测数控机床精度方面的应用

激光干涉仪在检测数控机床精度方面的应用 1.前言 随着大型数控机床应用的日见广泛,对大型机械两条导轨间平垂直度检测要求也越来越多。传统的垂直度检测方法如大理石角尺配合干分表方法受标准角尺大小的限制只能应用于小型机器:另外采用四象限等传感器方法,则因传感器的精度漂移和读数稳定性容易受到环境变化的影响,使得其应用范围大大受限。 激光干涉仪是通过激光波长溯源的原理来实现数控机床几何精度及定位精度检测,激光干涉仪主要可以对数控机床进行线性、角度、直线度、垂直度、转轴测量等,下面就来一一讲解。 2.测量应用 2.1.线性测量 2.1.1.线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 线性测量构建图

水平轴线性测量样图垂直轴线性测量样图 2.1.2.线性测量的应用 激光干涉仪可用于精密机床定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。 激光干涉仪应用于机密机床校准 2.2角度测量 2.2.1.角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,测试时角度反射镜 和角度干涉镜必须有一个相对旋转,相对旋转后两束光的光程差就会发生变化,而光程 差的变化会被激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化 显示出来。

角度测量原理及测量构建 水平轴俯仰角度测量样图水平轴偏摆角度测量样图 2.2.2.角度测量的应用 机床准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。

激光干涉仪分类及应用

激光干涉仪分类及应用 激光干涉仪以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量。激光干涉仪有单频的和双频的两种。 激光干涉仪的分类: 单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 双频激光干涉仪 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应,激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算(乘1/2激光波长)后即可得出可动反射镜的位移量。双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直

雷尼绍XL80激光干涉仪操作手册汇总

镭射干涉仪操作手册

手册内容 一.RENISHAW 公司简介 1 二.镭射干涉仪原理 2 (1)波的速度 3 (2)干涉量测原理 3 (3)镭射干涉仪 4 (4)镭射干涉仪一般量测项目 4 三.注意事项 5 四.镭射干涉仪防止误差及保养 5 (1)镭射干涉仪防止误差 5 (2)镭射干涉仪保养方法 6 五.安全及注意事项 6 六.镭射光原理及特性7 七.镭射硬件介绍8 八.镭射架设流程图15 九.定位量测原理及操作16 (1)线性定位量测原理16 (2)量测方式17 十.镭射易发生之人为架设误差20 (1)死径误差20 (2)余弦误差21 (3)阿倍平移误差21 十一.镭射操作之步骤22 (1)软件安装之步骤22 (2)执行量测软件22 (3)定位量测硬件架设之操作23 (4)镜组架设前之注意事项24 (5)镜组架设之步骤24 十二.定位量测之程序范例29 十三.定位量测之软件操作步骤30 热漂移量测38 快速功能键44 十四.动态软件量测之操作45 (1)动态量测硬件之架设45 (2)执行量测之软件46 (3)位移与时间48 (4)速度与时间49 (5)加速度与时间50 十五.角度量设之操作52 (1)注意事项52 (2)镜组架设的种类53 (3)镜组架测之步骤54 (4)角度量测之软件操作步骤57 十六.RX10旋转轴之量测62 (1)说明62

(2)硬件配件之介绍62 (3)硬件操作之步骤64 (4)软件操作之步骤67 十七.直度量测之操作75 (1)直度之分类75 (2)直度量测之硬件架设75 (3)镜组架设之步骤75 (4)直度软件之操作步骤80 十八.Z轴直度镜组织架设方法85 十九.垂直度量测之操作89 (1)垂直度镜组架设之步骤89 (2)软件操作之步骤95 二十.平面度量测之原理与操作101 (1)硬设备101 (2)操作之原理102 (3)镜组架设之步骤102 (4)软件操作之步骤110

激光干涉仪用途

简介 以激光波长为已知长度、利用迈克耳逊干涉系统(见激光测长技术)测量位移的通用长度测量工具。激光干涉仪有单频的和双频的两种。单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。双频激光干涉仪是1970年出现的,它适宜在车间中使用。激光干涉仪在极接近标准状态(温度为20℃、大气压力为101325帕、相对湿度59%、C O2含量0.03%)下的测量精确度很高,可达1×10?7。 工作原理 一个角锥反射镜紧紧固定在分光镜上,形成固定长度参考光束。另一个角锥反射镜相对于分光镜移动,形成变化长度测量光束。 从激光头射出的激光光束(1)具有单一频率,标称波长为0.633μm,长期波长稳定性(真空中)优于0.05ppm。当此光束到达偏振分光镜时,被分成两束光—反射光束(2)和透射光束(3)。这两束光被传送到各自的角锥反射镜中,然后反射回分光镜中,在嵌于激光头中的探测器中形成干涉光束。 如果两光程差不变化,探测器将在相长干涉和相消干涉的两端之间的某个位置观察到一个稳定的信号。如果两光程差发生变化,每次光路变化时探测器都能观察到相长干涉和相消干涉两端之间的信号变化。这些变化(条纹)被数出来,用于计算两光程差的变化。测量的长度等于条纹数乘以激光波长的一半。 应当注意到,激光波长将取决于光束经过的空气的折射率。由于空气折射率会随着气温、压力和相对湿度的变化而变化,用于计算测量值的波长值可能需要对这些环境参数的变化进行补偿。在实践中,对于技术指标中的测量精度,只有线性位移(定位精度)测量需要进行此类补偿,在这种情况下两束光的光程差变化可能非常大。

产品用途 1.激光干涉仪是检定数控机床、坐标测量机位置精度的理想工具。检定时可按照规定标准处理测量数据并打印出误差曲线,为机床的修正提供可靠依据。 2.激光干涉仪配有各种附件,可测量小角度、平面度、直线度、平行度、垂直度等形位误差,在现场使用尤为方便。 2.1.线性测量 要对线性测量进行设定,使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上。这个组合装置称为“线性干涉镜”,它形成激光光束的参考光路。线性干涉镜放置在激光头和线性反射镜之间的光路上,如下图所示。

激光干涉仪性能对比

性能对比:雷尼绍XL80——Lasertex HPI 3D激光干涉仪测量系统 雷尼绍 XL80激光测量系统Lasertex HPI-3D(高性能激光干涉 仪系统) Sl. No. 规格参数(XL80)参数(HPI-3D) 1线性定位测量单频零差激光测量系统,激光干涉仪 测量原理 双频激光测量系统,频率外插 1GHz,远程干涉测量原理,对环境 光影响不敏感 1.1测量软件激光器软件标准模块包含最新的测量 分析功能 ? 软件模块分为线性,角度,旋转轴, 平面度,直线度和垂直度测量。 ? 动态测量能力是可选配置,需要另外 购买 ?标准报告选项,比如ISO,ASME, VDI,JIS 和 GB等等。 ?生成补偿值来提高机床定位精度。 机床补偿软件需要单独报价购买激光器软件包含所有内置测量分析标准模块。 ? 包含测量直线度、夹角、旋转轴、平面度、直线度以及垂直度软件模块。 ?具备动态测量能力,采样频率可单独设定。 ?生成标准报告功能如:ISO,ASME,VDI,JIS 和GB等等。 ?生成补偿值列表提高机床定位精度。 此外: 在标准配置中包含用于直接与机床通讯的G代码生成模块。 用于旋转工作台的G代码生成工具。 价格内包含机床补偿软件。 1.11激光界面集成USB端口,没有独立界面。集成USB端口以及蓝牙通讯。 1.12开关触发信号支持支持 1.13信号强度LED指示有有 另外: 激光器倾角显示,有助于调整轴 向。 1.14动态参数实时图形显 示软件支持,按不同模块区分。在标准软件配置里包含所有适合的 软件功能。 1.15量程 0-80米(标准配置0-40米)(40-80 米使用远程组件)0-80米(标准配置0-40米)(40-80米使用远程组件) 1.16快速光路调节激光射出角度控制,区分快速、慢速 调试。有激光束角度偏摆调整机构,拥有电子精调功能(双十字)。外壳有水平泡,确保手动调节快速准确。 1.161偏转角度范围+/- 35 mm/m +/- 50 mm/m 1.162轴向范围0 - 10 m0-40 m 1.17分辨率0.001?m0.0001 ?m –市场上分辨率最高1.18精度± 0.5 PPM 按常规室温环境补偿± 0.41 PPM按常规室温环境补偿

激光干涉仪用途【详细】

激光干涉仪的作用 内容来源网络,由深圳机械展收集整理 更多激光设备,就在深圳机械展 (1)CO2激光干涉仪 CO2激光器是一种非常适合无导轨激光测量的光源,它在10.6μm波段具有丰富的谱线,相邻谱线的波长差分布也比较均匀,构成的“合成波长链”的波长可从10.6μm到25m,因此,CO2激光干涉仪一直是无导轨激光干涉仪的研究重点。从1979年开始,由直流干涉系统到各种形式的光外差系统,CO2激光干涉仪历经多次改进,其中一种典型方案是上世纪九十年代澳大利亚研制的外差干涉仪,它通过激光器的腔长控制,顺序输出6种波长,用声光调制器的零级衍射作为本振光,构成外差系统,测量精度可达4×10-8。 (2)Ne-Xe激光干涉仪 Ne-Xe激光器可以输出3.53μm和3.37μm两个波长,合成波长为84.2μm。从“合成波长链”的角度考虑,波长过短难以保证测量结果的唯一性,为此,系统加入了He-Ne激光器的3.39μm谱线,将“合成波长链”延伸到464μm。Ne-Xe激光干涉仪的最大优点是结构简单,测量精度可达1.8×10-7。 (3)He-Ne激光干涉仪 中国计量科学研究院研制的纵向塞曼He-Ne激光干涉仪,与成都工具研究所开发的双频激光干涉仪不同,其稳频点选在两条激光增益曲线之间,产生一对频差为1080MHz的左、右旋偏振光(这两个偏振光不在同一增益曲线上),合成波长为278mm。利用光栅测量干涉的剩余相位。系统测量长度可达100m,测量精度为±(40+1.5×10-6)。 He-Ne激光器在3.39μm处谱线丰富,但其中3.3922μm谱线的自发辐射系数比其它谱线大很多,抑制了其它谱线的发射。清华大学利用甲烷在3.3922μm附近的一条吸收谱线,抑制了He-Ne激光这条谱线的强度,成功研制出了3.39μm波段双波长激光干涉仪,其“合成波长链”从3.39μm到1m,单波稳定性为1×10-8。 (4)变波长激光干涉仪 变波长激光干涉仪采用两个激光器,利用谐振腔长与输出频率的关系,构成“无级”的波长

激光干涉仪进行角度测量

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪角度测量方法

1.1.1. 角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,并且角度反射镜和角度干涉镜必须有一个相对旋转。相对旋转后,会导致角度测量的两束光的光程差发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。 图 16-角度测量原理及测量构建 图 17-1水平轴俯仰角度测量样图图 17-2水平轴偏摆角度测量样图1.1.2. 角度测量的应用 1.1. 2.1. 小角度精密测量 激光干涉仪角度镜能实现±10°以内的角度精密测量。

图 18-小角度测量实例 1.1. 2.2. 准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。 图 19-水平方向角度测量 图 20-垂直方向角度测量 在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析导轨的直线度信息,实现角度镜组测量直线度功能。

激光干涉仪

上海第二工业大学 激光干涉仪 ----双频激光干涉仪 学号: 20124814141 姓名:仇郑南 班级: 12工业A1 院系:机电工程学院 二零一三年六月十二日

激光干涉仪 ----双频激光干涉仪 摘要:激光干涉仪的发明使激光干涉仪最终摆脱了计量室的束缚,更为广泛的应用于工业生产和科学研究中。随着航空航天、重型机械、发电设备、船舶工业的发展,对大尺寸测量的要求越来越高。所以,双频干涉仪在未来将起到重要作用。本文主要介绍双频激光干涉仪的特点,进步,应用和发展。 关键词:激光干涉仪双频原理应用发展。 Abstract: The invention of the laser interferometer laser interferometer measuring chamber eventually get rid of the shackles of a more widely used in industrial production and scientific research. As aerospace, heavy machinery, power generation equipment, shipbuilding industry, for large-size measurements have become increasingly demanding. Therefore, the dual interferometer will play an important role in the future. This paper describes the characteristics of dual-frequency laser interferometer, progress, application and development. Keywords: laser interferometer double frequency principle application development. 1.定义 激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量。激光具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。目前常用来测量长度的干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。 双频激光干涉仪是激光在计量领域中最成功的应用之一,是工业中最具权威的长度测量仪器。它可用于精密机床、大规模集成电路加工设备等的在线在位测量、误差修正和控制。双频激光干涉仪采用外差干涉测量原理[1],克服了普通单频干涉仪测量信号直流漂移的问题,具有信号噪声小、抗环境干扰、允许光源多通道复用等诸多优点,使得干涉测长技术能真正用于实际生产。 2.工作原理 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应, 激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2 ±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人 C.J.多普勒提出的,即波的频率在波源或接受器运

激光干涉仪应用介绍(三)——高速长距离位移测量

基于FPS3010长行程高速位移测量 Long distance and high-speed displacement measurements using the FPS3010 基于光学法珀腔传感器FPS3010干涉仪可以测量目标相对位移,测量精度达到亚纳米分辨率,实时位置输出带宽达10MHz。在工业,科研以及研发等多种应用中需要高速以及长行程精密测量。如下面所示,FPS3010可以测量距离高达3m,并且速度达2m/s。 在这些测试中,FPS3010干涉仪采用的是M12探测头,并且在被测目标安装了反射器。图1中为整体设备,包括探测头和反射器。采用商用线性电机平台,可实现目标位置多次重复测量。另外,通过采用反射器取代平面镜,安装过程更为简易快捷:反射器相对于探测方向角度4度内都可以测出信号。反射器内部采用了3个正交式反射镜组成的几何结构。信号的高稳定性保证了FPS3010可以在全行程任意位置下进行标定,整套设备的使用方法非常友好,简易。 第一次测试,目标距离传感器头1m。包含振动目标的0.9m振动幅度以及达1.0m/s 速度。图2(a)显示的是在振动过程中,目标位置测量和速度。 图2(b)描述了在高速运动中的测量,距离为0.5m,速度为2.0m/s。从红色曲线中可见,平台最大加速度是一个限制:在到达位置B之前,需要10毫秒才能达到2m/s速度,同时也需要10ms减速。在图2(b)中,当运动到B点位置时,FPS3010也可以记录线性位移平台的位置误差,从图中可以看到超调值为5微米。 这个应用证明了FPS3010干涉仪测量位移3m,测量速度达2.0m/s时,可以达到亚纳米的重复精度。如果需要更多的资料,请联系我们! 图1:测量旋转物体运动误差机构。当轴旋转是,采用两个干涉传感器探头测量垂直于其转轴的两个方向上的运动误差。不同的被测物体采用不同尺寸的传感器探头。

相关文档
相关文档 最新文档