文档库 最新最全的文档下载
当前位置:文档库 › 激光干涉仪使用方法

激光干涉仪使用方法

激光干涉仪使用方法
激光干涉仪使用方法

用激光干涉仪系统进行精确的线性测量

最佳操作及实践经验

1 简介

本文描述的最佳操作步骤及实践经验主要针对使用激光干涉仪校准机床如车床、铣床以及坐标测量机的线性精度。但是,文中描述的一般原则适用于所有情况。与激光测量方法相关的其它项目,如角度、平面度、直线度和平行度测量不包括在内,用于实现0.1微米即

0.1 ppm以下的短距离精度测量的特殊方法(如真空操作)也不包括在内。

微米是极小的距离测量单位。(1微米比一根头发的1/25还细。由于太细,所以肉眼无法看到,接近于传统光学显微镜的极限值)。可实现微米级及更高分辨率的数显表的广泛使用,为用户提供了令人满意的测量精度。尽管测量值在小数点后有很多位数,但并不表明都很精确。(在许多情况下精度比显示的分辨率低10-100倍)。实现1微米的测量分辨率很容易,但要得到1微米的测量精度需要特别注意一些细节。本文描述了可用于提高激光干涉仪测量精度的方法。

2 光学镜组的位置

光学镜的安放应保证其间距变化能够精确地反映待校准机器部件的线性运动,并且不受其它误差的影响。方法如下:

2.1 使Abbe(阿贝)偏置误差降至最低

激光测量光束应当与需要校准的准线重合(或尽量靠近)。例如,要校准车床Z轴的线性定位精度,应当对测量激光光束进行准直,使之靠近主轴中心线。(这样可以极大降低机床俯仰 (pitch) 或扭摆 (yaw) 误差对线性精度校准数据的影响。

2.2 将光学镜组固定牢靠

要尽量减小振动影响并提高测量稳定性,光学镜组应牢牢固定所需的测量点上。安装支柱应尽可能短,所有其它紧固件的横截面都应尽量牢固。磁力表座应直接夹到机床铸件上。

避免将其夹到横截面较薄的机器防护罩或外盖上。确保紧固件表面平坦并没有油污和灰尘。

2.3 将光学镜组直接固定在相关的点上

材料膨胀补偿通常只应用在与测量激光距离等长的材料路径长度上。如果测量回路还包括附加的结构,该“材料死程”的任何热膨胀或收缩或因承载而发生的偏斜都将导致测量误差。为尽量减少此类误差,最好将光学镜组直接固定到所需的测量点上。在机床校准中,一个光学镜通常固定在工件夹具上,而另一个光学镜组则固定在刀具夹具上。激光测量将会精确地反映刀具和工件之间发生的误差。即使机器防护系统和机器盖导致难于接近,也一定要尽量将干涉镜和角锥反射镜都固定到机器上。不要将一个光学镜安装在机器内部而另一个安装在外部如支在机器外地面的三脚架上,因为整台机器在地基上的移动可能导致校准无效。然而,是否拆下导轨防护罩时需仔细考虑,因为这可能改变机器性能。

2.4 使干涉镜保持静止不动

在安放激光头和光学镜的位置时,尽量使干涉镜在测量时处于静止状态。这样可以避免由于移动干涉镜可能使光束发生偏转而出现的误差。

2.5 光学镜应在运动轴的一端尽可能靠近

调整光学镜组的位置,使干涉镜和角锥反射镜在运动轴的一端靠近。这样调光更容易,并极大降低空气死程(见下文)。

2.6 避免局部热源

避免使光学镜组或激光束靠近任何局部热源。热源可能造成光学镜组膨胀或激光光束中出现空气扰动。

2.7 使用转向镜

在某些复杂的设定中,用转向镜将激光光束发送到需要的位置。确保位于激光头和干涉镜之间的所有光学镜只将光束转向平行轴或垂直轴,以避免干扰激光光束的偏振状态。还要确保任何位于测量光路上的光学镜都安装牢固,以避免出现测量误差。

3 光束准直

为了尽可能减低余弦误差,必须将激光测量光束调整为与运动轴平行。在长于1米的轴上,通过肉眼就比较容易实现。对于较短的轴难度会相应增大。要将余弦误差降到

0.5 ppm以下,需要将光束准直到1毫米/米以下。可采用下述方法优化准直光路,并使

余弦误差降至最低:

3.1 将干涉镜放置于测量位置进行准直

将干涉镜放置于测量位置进行准直。这样在准直光路时可以确保照顾到干涉镜引起的任何光束偏转。它的另一个优势是可以通过系统光强显示器显示不同光强来协助准直过程。

3.2 先使光学镜组彼此靠近

如果首先将干涉镜和角锥反射镜放到轴的一端比较靠近的位置,准直会更容易。这样就可通过肉眼使光学镜组外壳的外表面准直,然后开始精确的激光光束准直。余下的准直工作仅需调整激光头。

3.3 不要完全依赖光强读数

不要以为在整个轴行程上光强保持不变就意味着准直已臻完美。大多数光强显示器的灵敏度和分辨率不足以保证短轴的精确准直。

3.4 再次检查激光头处的准直情况

检查移动角锥反射镜处的准直情况后,再次检查激光头处返回光束(的准直情况)。任何光束的光路未准直误差所造成的影响都在激光头处加倍,因此比较容易检测到。另外还可以核实返回到激光头上参考光束和测量光束间的重合程度。

3.5 使用小直径输出光束

如果激光头有一个允许选择小直径输出光束的光闸,则应利用它进行短轴准直。光束的直径越小,越容易发现任何光路未准直的情况。另外一个优势是把光强降到低于100%,因此更容易发现光强变化。

3.6 实现最大激光测量读数

如果激光测量存在余弦误差,激光读数将比应有读数小。因此,在短轴上消除余弦误差是行得通的,方法是:仔细调整激光头的俯仰和扭摆,直到获得最大激光读数。具体步骤如下:

a) 通过肉眼沿运动轴准直光束。

b) 移动轴,使光学镜组之间间隔最近,并将激光读数清零。

c) 移动轴,使光学镜组之间间隔最远。

d) 仔细调整激光头的俯仰和扭摆,以获得最大(绝对)激光测量值。

注:此步骤要求精细操作,但会非常有效。如果激光头放在三脚架上,可能需要做一系列的精细调整,做完每次调整需要将手从三脚架调节螺钉上拿开,然后观察对激光读数的影响。也可能需要平移激光头以保持准直。最好重复以上步骤,确认已经准直。在此过程中,也可能需要选择激光读数的最高分辨率,并将“平均”设定为“开”。

3.7 使用激光准直传感器

激光准直传感器可用于检查光束准直。有各种类型的适用传感器,包括四象限光敏元件(“Quad cell”)、位置传感器(PSD)、光电耦合器件或CCD摄像头。一定要确保与光束直径、波长和功率相适应。还要注意干涉镜上的散射光束反射和环境光散射的影响。

3.8 自动反射法

如果机器轴很短并且已知有平面与运动轴正好垂直或平行(在0.05°之内),则自动反射法很有用。具体步骤如下:

a) 通过肉眼沿运动轴检查光束准直。

b) 将钢质块规放到激光光束路径上(在干涉镜之后)并紧靠一个或多个平面上。

c) 调整激光头进行俯仰和扭摆准直,使块规表面反射的光束回到激光头的输出光孔中。

当激光头与干涉镜相隔一定的距离时,这种方法尤其有效。

3.9 使干涉镜滚摆、俯仰和扭摆误差降至最低

大多数干涉镜包含极化分光面,必须根据激光光束状态精确准直。如果准直不正确,信号之间可能出现混淆。这可能导致精度降低,并可能因光束被阻挡而导致检测失败。一般说来,在滚摆、俯仰和扭摆方向上,最好使干涉镜的准直角度小于±2°。这通常可以通过目测完成,不过使用上述的自动反射法也很有效。详情请参阅激光系统手册。要检验干涉镜准直是否令人满意,值得进行这样一项测试,即阻挡干涉镜和角锥反射镜之间的光束,确认系统显示“光束阻挡错误”标记。

4 波长补偿

激光速度和波长取决于光束经过的空气的折射率。空气折射率主要随气温、压力和相对湿度的变化而变化。如果不对波长的变化进行补偿,激光线性测量误差可能达到50 ppm。

测量俯仰、扭摆或直线度时,通常不使用补偿。

4.1 使用波长补偿

若不使用波长补偿,在大气中采用激光干涉法进行线性距离测量不会准确。即使在温控室内,日常的空气压力变化也可能使波长变化达20 ppm以上。大多数激光系统,或提供手动或提供自动的补偿功能,取决于其不同制造商,该功能叫作“环境、波长或VOL(光速)补偿”。要在大气中用激光干涉仪实现精确的线性测量,必须使用此功能。

4.2 自动波长补偿

大部分激光系统使用传感器测量气温、气压和湿度,然后通过埃德伦公式计算空气的折射率(及激光波长)。有些激光系统使用空气折射计直接测量折射率。这样,激光读数自动得到调整,对激光波长的任何变化进行补偿。自动系统的优点是无需用户干预而且经常进行补偿更新。

4.3 手动波长补偿

在手动补偿中,使用者从各个仪器上读取空气温度、压力和湿度数值,然后用键盘或控制开关将这些值手工输入激光校准软件中。然后系统开始进行补偿。由于系统为手动操作,一般情况下经常进行补偿更新是不切实际的。

4.4 选择手动传感器

如果要手动进行补偿,必须选择具有适当测量精度的环境传感器。要确保每一个传感器的波长补偿误差都小于±0.5 ppm,推荐使用表1中所列的传感器精度。

表1

注:

补偿所需的气压值并非气象学家所指的海平面压力,而是在当前海拔高度上的实际压力。

如果压力取自普通气压计或当地天气报告,必须修正至当地海拔高度。(在0-1000米内,气压大约下降0.115毫巴/米)。

温传感器元件应具有较低热质,确保对气温变化迅速做出反应。

湿度变化对激光测量几乎没有影响(尤其气温较低时)。在某些情况下,可能不需要传感器,手工估计可能足以满足需要。

4.5 自动补偿与手动补偿间的对比

如果校准环境的空气条件很可能在测试过程中发生变化,我们强烈建议进行自动补偿。如果可以快速校准或在温控室内进行校准,手动补偿是可以接受的。

4.6 空气传感器的放置位置

对于精确的波长补偿,空气传感器(或折射仪)必须放在靠近激光光束的位置。通常空气温度传感器(或折射仪)大致处于运动轴的中间位置即可。压力传感器和湿度传感器的位置不那么重要。避免把传感器安装在局部热源例如电机或冷气流附近。在测量长轴时,应检查是否存在气温梯度的情况。如果沿轴方向的气温变化超过1°C,应使用风扇使空气流通。(测量长垂直轴尤其应该注意,因为在这种情况下更可能存在气温梯度)。在校准长度超过10米的垂直轴时,我们也建议将压力传感器放在运动轴的中间位置。请遵照制造商针对传感器方向给出的建议。(某些传感器可能包含有源电子装置,使用时某个方向必须朝上,以确保电子装置产生的热量不影响读数)。避免让传感器信号导线靠近大的电子干扰源,例如高功率电机或直线电机。

5 材料热膨胀补偿

材料热膨胀补偿不当是导致在非温控环境中激光距离测量误差的主要原因之一。这是因为与空气折射误差和准直误差有关的因数相比,普通工程材料的膨胀系数所带来的误差相对较大。因此了解材料膨胀及其补偿的原理非常重要。

5.1 什么是热膨胀补偿?

校准行业使用的国际基准温度是20°C (68°F)。在理想环境下,所有机器均在此温度下校准和使用。然而,大多数机器都放置在普通车间环境(无法进行精确的温度控制),因此校准通常在其它温度下进行。由于大多数机器会随温度而膨胀或收缩,因此可能导致校准误差。

为避免此类校准误差,被称为热膨胀补偿或“归一化”的数学修正值被应用到线性激光校准读数中。这个修正值的目的是假定在20°C (68°F) 温度下进行机器校准时能得到预期的激光校准结果。

注:此补偿结果必须视为一个预估值,因为最终精度高度依赖对材料热膨胀系数和机器温度的了解程度。

5.2 什么是材料热膨胀系数?

大多数材料随温度变化而膨胀或收缩的量很小。因此,热膨胀系数的单位通常为百万分之一/摄氏度或华氏度(ppm/°C或ppm/°F)。这些系数指定了温度上升或下降1度时材料的膨胀或收缩量。

例如,假定热膨胀系数为+11 ppm/°C。这意味着材料温度每上升1摄氏度,材料将膨胀

11 ppm,相当于每米材料膨胀11微米,或者每英寸材料膨胀11微英寸

(0.000011 ")。

5.3 应使用什么膨胀系数?

在用激光进行线性精度校准过程中,一定要特别注意使用正确的膨胀系数。在大多数情况下,可使用该轴反馈系统的膨胀系数。在每次校准开始前,一定要确保选择了正确的系数。

表2列出了制造机床及其位置反馈系统所用的不同材料的典型膨胀系数。

注:因为材料膨胀系数会随材料成分和不同处理方式而变化,这些值仅供参考,并且应当只在不知道制造商所用资料的情况下使用。

表2

注:

1. 在确定膨胀系数时,对于两种膨胀系数不同的材料固定在一起的地方要特别注意。例如,对于机架

和小齿轮反馈系统,膨胀系数可能更接近于固定在机架上的铸铁轨。对于带有地板安装式轨道的大型龙门机床,轨道的膨胀系数可能因混凝土地基的限制作用而降低。

2. 材料膨胀系数因材料成分和热处理方式的不同而各异。因此通常要获得高精确值很困难。然而,校

准环境的温度离20°C越远,此系数的精度就越重要。要尽可能降低这些误差,请尝试找出正确的膨胀系数。如有可能,在接近20°C的温度下校准。

3. 如果一台机床总是加工膨胀系数与反馈系统相差很大的工件材料,例如铝合金、碳合成材料、陶瓷

等,使用工件的膨胀系数可能比使用机床反馈系统的膨胀系数更合适。(尽管此校准不能代表机床在20°C下的性能,但是当工件返回到20°C时测量时能够提高工件精度)。

5.4 选择材料传感器

材料传感器需要的精度取决于相关材料的热膨胀系数以及归一化所需要的精度。但是,一般说来,建议材料温度传感器精度为0.1°C (0.2°F) 或更高。

5.5 安装材料传感器

在激光校准过程中材料传感器放置在机床的什么位置一直是个争议颇多的话题。

首先要确定进行材料膨胀补偿的主要目标。它通常是以下四个可能目标中的一个。

目标1—按国家或国际机器验收标准规定进行校准。

目标2—估计在20°C环境温度下操作机器时可获得的线性定位精度。这通常是机器制造、签核、调试或重新校准时的目标,在很大程度上与“目标1”相同。

目标3 —估计机器反馈系统处于20°C (68°F) 环境温度时,机器反馈系统可能达到的线性定位精度。这对诊断反馈系统故障很有用。

目标4 —估计当机器制造的工件返回20°C环境下进行检测时的工件精度。这对在非温控车间制造精密有色金属零件尤其重要,因为机器反馈和工件膨胀系数相差很大。

这些目标之间通常有很大差异,尤其是在机器运行期间(例如滚珠丝杠)机器位置反馈系统变热的情况下,或者在工件膨胀系数与位置反馈系统膨胀系数相差明显的情况下,例如铝工件和玻璃直线光栅的膨胀系数相差非常大。正确的材料热膨胀修正值是决定激光校准有效性的最重要因素之一。因此,正确理解此处所述的目标和方法非常关键。以下描述了针对上述不同目标所应采取的相应措施。

目标1—按照国家或国际标准规定校准机器的精度。应该遵照标准中规定的步骤。这应当包括放置材料传感器的位置、需使用的膨胀系数和要执行的机器预热循环等。如果标准中还规定了热漂移测试,它也应包括在内。

目标 2 —预测机床在20°C环境温度下运行时的精度。要实现这一目标,材料温度传感器应放置在机床工作台上或其它不靠近热源(例如电机、齿轮箱等)的机器大结构部件上。材料膨胀系数应设为与反馈系统的相同。

注:通常有一种误解,认为一定要将材料传感器放在滚珠丝杠或反馈系统上。但情况未必总是如此,如下举例说明。

假定机器校准时的车间温度是25°C,由于机器运行产生的热量,滚珠丝杠的温度将提高5°C,即达到30°C。如果材料传感器放置(或紧靠)在滚珠丝杠上,将对激光读数进行补偿,以预测滚珠丝杠在20°C下运行时可能得到的激光读数。但是,如果机器是在20°C环境下运行,则滚珠丝杠的温度将不是20°C。螺杆和电机运行产生的热量仍然存在,因此滚珠丝杠的温度仍将比周围温度高5°C (25°C)。因此,材料传感器放在滚珠丝杠上将导致过度补偿。比较理想的方法是,将传感器放在机器的大部件上,以提供与过去几个小时内机器平均环境温度相关的温度读数。

目标3 —估计机器反馈系统在20°C温度下运行时的精度。此程序常用作诊断用途。机器校准可能无法达到目标1或2,那么现在需要检查反馈系统在20°C时的精度。要实现此目标,应当准直激光光束,使之尽量靠近反馈系统的轴(以尽量降低Abbé偏置误差)。材料温度传感器应当放在(或紧靠)反馈系统上,膨胀系数应当设定为与反馈系统的一样。

目标4—在精确到20°C的环境温度下制造有色金属零件。材料热膨胀系数应当设定为与工件的一样。材料温度传感器应当放在能够测量到类似工件预期温度的位置上。(这个位置通常是在机床工作台上,但是还需要考虑其它因素,例如所使用的冷却系统类型和金属切削速度。)还应注意的是,要在典型条件下进行此类校准,而且只有在温度和各个工件的膨胀系数相对稳定的情况下才真正有效。

其它注意事项

一定要保证材料温度传感器与被测材料之间具有良好的热接触。

如果气温与机器温度有明显差异,很可能材料的表面温度与中心温度也有明显差异。在此情况下,应当仔细安排材料温度传感器的位置,使其能够测量中心温度。在操作过程中机床的温度通常会升高。建议您在开始校准前执行移动的预热步骤,以使校准中包括这种影响。

6 空气扰动

6.1 确认空气扰动

当在正常车间环境中测量超常距离、角度或直线度时,激光读数中可能有明显的不稳定量。如果这种不稳定性表现为激光读数非常慢的随机“跳动”,则可能是激光光束正在受到空气扰动的影响。如果这种不稳定性只表现为读数的高频率“闪烁”,则更有可能是机械振动(见下一节)对测量造成了影响。

还有一种方法可确认存在扰动或振动,就是利用激光系统的“动态”测量功能(如有的话)记录几分钟内高频率 (1000 Hz) 下的激光读数。机械振动通常显示为介于1 – 1000循环/秒之间的一两个明确定义的频率。另一方面,空气扰动不会正常显示任何明确定义的频率,但显示为读数中的随机波动,频率从1-0.001个循环/秒。

6.2 空气扰动为何造成激光读数的不稳定性?

移动的暖气团和冷气团会造成空气扰动。当这些暖气团和冷气团移动通过测量激光光束,气团中的激光波长也随之变化。假设从激光光束中冒出一个暖气团“气泡”。如果这个气泡的温度比周围空气高0.1°C,宽1米,将会导致线性激光读数变化大约0.1微米。(请注意:如果此时激光系统正在测量长距离直线度,那么直线度读数变化将会因为激光读数经处理后计算直线度的方式而高出100倍)。这些气温波动通常太快或太局限于特定区域而无法被空气折射补偿系统检测到。

6.3 如何降低空气扰动的影响?

在均匀温度下在非常静止的空气中(此时没有扰动),或空气剧烈搅动时或通过风扇循环时非常适合进行干涉测量法。(干涉测量的最差条件介于这两种大暖气团和冷气团可以慢慢漂移进及漂移出激光光束的极端条件之间)。因此,要提高激光读数的稳定性,最好将环境修改为接近任一个极端条件。

实现静止空气的方法包括关门、关窗、关闭电扇和加热器以及把激光光束封入塞子、管道或导管中。在短的测量距离上容易获得静止、均匀温度的空气,而在长距离上则可能不切实际。

通过把电扇放在测量路径上可获得搅动空气。此方法有两种实现方式。首先,空气搅动会将暖气和冷气混合到一起,减小气团大小和温度变化。第二,这些气团由于体积变小而且移动更快,因此穿过激光光束的速度加快了。这两种影响降低了振幅,提高了激光读数种任何变化的频率,因此可以更有效地使用读数平均功能。为了实现最佳测量结果,选择激光系统读数上可用的最长期平均(滤波),或在每一个目标位置上执行多次测量。

避免使激光光束经过任何热源如加热器或电机之上。从这些热源发出的热气可能导致激光读数发生剧烈变化,甚至可能导致光束严重偏离,使光强消失。

当进行短距离线性测量(<1米)时,空气折射计也可能提高度数稳定性。这是因为某些空气折射计可以快速补偿空气折射误差。只有在暖气团或冷气团同时穿过折射计样品腔和激光测量光束时这种方法才会有效。折射计应尽量靠近激光光束的测量路径。遗憾的是,折射计在较长距离上优势甚微,不适用于角度和直线度测量,在这种情况下空气扰动影响通常很难解决。

7 其它误差源

下节中描述了其它几种可能降低激光测量精度的误差源。

7.1 机械振动

如果有机械振动,无论是源自机器自身,还是相邻机器或交通,或光学镜组安装很差,激光读数均可能会表现为不稳定和不可重复。要确定此类振动源,用系统的“动态测量”功能(如有的话)记录高频率 (1000 Hz) 下的激光读数可能会有用。

如果有振动,使用激光上的平均或滤波读数模式通常会稳定读数。不过,应谨慎使用平均功能,因为它可能隐藏振动对机器精度和重复精度的影响,并对机床性能作出错误评价。

如果振动源自机器内部或在机床运行时出现,可能导致表面光洁度差或触发式测头的测量重复性误差。

7.2 热漂移及机械爬行

如果激光光学镜组刚装配并安装到机器上,或从一个环境移动到另一个环境,最好稍等片刻使其稳定下来。要求的时间长度因环境和测量精度要求而异。可能需要数小时光学镜组及其安装件才能适应几摄氏度的温度变化,每一度的温度变化可能造成约1微米的移动。

请勿将锁紧螺钉和螺栓拧得过紧。过度的压力可能导致螺纹塑性变形,而且当压力缓慢释放时出现读数的漂移。

7.3 精密测量场合不适合有人在场!

遗憾的是,在校准环境下即使只有一位操作人员在场也会影响测量精度。

人体是热源。为获得最精确的测量结果,处理测量光学镜组时应戴棉手套或使用布,而且在校准过程中不要对着光学镜组或激光光束呼吸。

人员在场或移动可能导致空气扰动和噪音。避免在测量光束附近走动,走动时动作要轻,不要用力关门等。

在小的温控室内,现场人太多可能导致温度上升。(在极恶劣条件下这可能提高二氧化碳浓度,进而改变空气折射率)。

7.4 溶剂洗净剂

高浓度溶剂蒸气可能会略微改变空气折射率。测量前从被清洁表面蒸发的溶剂可能导致局部冷却和热收缩。

8 校准步骤

下节介绍了与校准程序包含步骤相关的若干指导原则,以期实现最佳测量结果。这些指导原则的叙述顺序与实际操作顺序一致。

8.1 选择校准目标位置和顺序

当选择目标位置和数据采集顺序时,应考虑以下因素:

a) 目标位置通常应分布在整个轴的工作区域。

b) 不等距间隔或随机间隔的目标位置有助于检测周期误差要素。

c) 机器应检测每一个目标位置若干次,以便评估测量以及机器轴的重复性。若要将结果作为

统计分析,通常至少需检测每一个目标五次。

机器应从正反向交替朝目标位置前进,以便评估轴的反向间隙。有多种测量顺序可供选择。通常每个目标被轮流从正向检测,然后每个目标被反向重新检测。重复几次相同的动作。但是,还有其它顺序,如摆动定位方式和阶梯式定位方式,这两种方式会极大缩短校准时间,但可能不易觉察到机器的热漂移所导致的重复性误差。

8.2 检查环境补偿

检查环境补偿是否正在进行中,而且材料膨胀系数应输入正确。

8.3 检查符号规约

正向移动机床,确认激光读数也在正向发生变化。否则需改变激光读数的方向。

8.4 预热机器

一些机器校准标准要求机器达到标准运行速度才开始校准。通常采用预热运动的步骤来完成。

8.5 极大降低空气死程误差

在校准过程中当激光读数清零、大气条件变化时,如果光学镜组位置不靠近,在线性测量期间将出现空气死程误差。有三种方法可使空气死程误差降至最低。

a) 使光学镜组彼此靠近,将激光清零。当系统清零时,如果光学镜组彼此距离在10毫米以

内,正常条件下空气死程误差可忽略不计。

b) 调整光学镜组,使激光读数清零时干涉镜的测量光束和参考光束长度相同(10毫米以

内)。

c) 使用激光系统的空气死程功能(如可用)。这将要求把光学镜之间的大致距离(精确到

10毫米以内)输入系统软件中。应确保符号规约正确(请参阅激光系统手册)。

8.6 预设激光读数,使其与机器读数相对应。

如果机器尚未处于校准将要开始的位置,则移动机器。如果机器读数与激光读数不吻合,则可使用预设功能相应调整激光读数。

8.7 极大缩短校准时间

不要打断校准顺序。校准一旦开始,就应稳定地进行直到完成。

8.8 检查校准曲线。谨防稳定斜度。

线性校准曲线上最常见的误差呈现为稳定斜度或斜坡。遗憾的是,光束准直差(仅限短轴),或环境补偿不当、或机器轴俯仰或扭摆很容易造成此类误差。如果校准图呈现为稳定斜坡,请检查激光光束准直、环境补偿、材料膨胀系数以及传感器位置。还要对轴的俯仰及扭摆进行校准。

Yeton company limited

Kayjiang

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图1-基本线性配置 SJ6000全套镜组:

图2-SJ6000全套镜组 镜组附件: 图3-SJ6000 镜组附件 镜组安装配件: 图4-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图5-线性测量构建图 图6-水平轴线性测量样图图7-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析 激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准 图9-激光干涉仪应用于三坐标机校准 SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

激光干涉仪操作规程

激光干涉仪操作规程 一、操作步骤 1.系统的相互连接 ·将PC10计算机系统与ML10 激光干涉仪用通讯电缆连接。 ·如果需要,将PC10计算机系统与EC10 环境补偿单元用通讯电缆连接。 ·将PC10、ML10、EC10分别接上电源线,再接到电源插板上。·通过稳压电源,将总电源线接到220V接地电源上。 2.激光的预热 闭合激光干涉仪开关,使激光预热大约15~20分钟,等激光指示灯出现绿色后,表明激光已稳定。 3.测量软件的启动 打开计算机,在“C”提示符下依次键入: ·CD/RENISHAW (RETURN) ·RCS (RETURN) ·a (RETURN) ·b (RETURN) 完成以上步骤后,测量软件已被启动。 4.光学镜的安装 ·将反射镜用夹紧块、安装杆、磁性表座固定在机床运动部件上。

·将反射镜和分光镜组合组成干涉镜;将干涉镜用夹紧块、安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。 5.激光调整 ·调整激光,使其与测量方向一致。调整时,首先用粗光束调,然后用细光束调,保证信号强度达到测量精度要求并恒定(由计算机上信号强度指示确定)。 ·调整透射光线和折射光线重合。 6.目标值设定 根据测量要求,设定目标值,目标值的设定应尽可能的覆盖整个行程范围。 7.数据采集 ·按目标值设定要求编制数控测量程序,在每个测量点必须有足够的延时设定(由机床操作人员完成)。 ·设定数据采集参数,主要包括;线性/圆周、测量次数、单向/双向、测量信息等。 ·按“ALI+D”进行数据采集。 ·数据采集完后,按“ESC”终止采集过程。 8.数据分析 选择“数据分析”菜单,按相关标准要求进行数据分析,分别给出双向定位精度、重复性、反向偏差等精度指标。

激光干涉仪应用原理(八)——激光干涉测量

Radiation Harsh Application | 强辐射环境应用 强辐射环境下FPS3010激光干涉测量 Laser Interferometry in Radiation Harsh Environments using the FPS3010 介绍 目前,同步辐射应用已经扩展到多种邻域中,如生物科技(蛋白质晶体),医药研究(微生物),工程应用(高分辨率裂缝演变成像),高级材料研究(纳米结构材料)。在纳米领域许多应用中,如透镜组,布拉格反射器,狭缝以及目标定位等都需要非常高的分辨率。机械结构需要高集成度,高稳定性,并且要减小温漂以及定位误差的影响。另外,运动部件的质量需要严格控制到最低,从而提高机械特性,并且减小位置误差。 针对以上讨论,这意味着编码必须在待测物附近,也就是说,编码器即使不是在X光或者粒子束中,也需要安置在辐射区内。 FPS3010激光干涉仪最大的特点是皮米级分辨率,兼容真空环境,并且在此类应用中,可以采用远程控模块。因此,FPS3010可以工作在强辐射环境下,也就是将干涉仪系统以及子系统安装在同步辐射光源或者束线附近,以及其他高辐射的环境中。 在目前的传感器选型中,“M12”传感器探头可以工作在高达10MGy的辐射环境下。这个研究主要针对这些新型传感器的耐辐射强度。实验主要工作在60Co源下(1.17 MeV / 1.33 MeV γ- and 0.31 MeV β-rays)。实验证明在3MGy辐射强度下传感头的读数没有明显偏差。在第二步骤测试中,对比传感器头放置在10MGy强辐射环境前后,对固定目标的测量值。对比结果为传感器所得目标值没有明显偏差。将两个UHV真空兼容 M12传感头(一个是带AR膜透镜,一个是不带AR膜透镜),安装到聚酰亚胺光纤上,放置在1Gy/s辐射区域中。两个探测头都安装在铝支架上,实验过程中将会有20 nm/°C的温漂。为避免曝光情况,采用镀了金膜的耐辐射镜子,搭建3m反射腔。FPS3010控制器放置在探头测试腔体外,另一个带温控无辐射腔内。在整个测量周期内,腔内温度稳定性高于1℃。测试的最后,总累积量达3.024MGy。 测量 图2a显示在测试过程中,测得的位置值。编码器位置采样率为1kHz。在图中,每一个点为100次独立测量平均值。位置漂移观察周期为34天,采用镀膜传感器测量,3MGy累积量为150nm;未镀膜传感器3MGy累积量为400nm。由于信号保持性较好,所以测得位置值的不确定性(标准偏差)优于10nm。 在未镀膜传感器头,在累积总量达2MGy之后,漂移会略微增大(22.5天)。达到这点之后,可进行两个传感器头性能比较。图2b显示编码器(红线)以及控制器位置(蓝线)的温漂情况。整个周期中,温度漂移小于1℃。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

激光干涉仪使用方法

用激光干涉仪系统进行精确的线性测量 — 最佳操作及实践经验 1 简介 本文描述的最佳操作步骤及实践经验主要针对使用激光干涉仪校准机床如车床、铣床以及坐标测量机的线性精度。但是,文中描述的一般原则适用于所有情况。与激光测量方法相关的其它项目,如角度、平面度、直线度和平行度测量不包括在内,用于实现0.1微米即 0.1 ppm以下的短距离精度测量的特殊方法(如真空操作)也不包括在内。 微米是极小的距离测量单位。(1微米比一根头发的1/25还细。由于太细,所以肉眼无法看到,接近于传统光学显微镜的极限值)。可实现微米级及更高分辨率的数显表的广泛使用,为用户提供了令人满意的测量精度。尽管测量值在小数点后有很多位数,但并不表明都很精确。(在许多情况下精度比显示的分辨率低10-100倍)。实现1微米的测量分辨率很容易,但要得到1微米的测量精度需要特别注意一些细节。本文描述了可用于提高激光干涉仪测量精度的方法。 2 光学镜组的位置 光学镜的安放应保证其间距变化能够精确地反映待校准机器部件的线性运动,并且不受其它误差的影响。方法如下: 2.1 使Abbe(阿贝)偏置误差降至最低 激光测量光束应当与需要校准的准线重合(或尽量靠近)。例如,要校准车床Z轴的线性定位精度,应当对测量激光光束进行准直,使之靠近主轴中心线。(这样可以极大降低机床俯仰 (pitch) 或扭摆 (yaw) 误差对线性精度校准数据的影响。 2.2 将光学镜组固定牢靠 要尽量减小振动影响并提高测量稳定性,光学镜组应牢牢固定所需的测量点上。安装支柱应尽可能短,所有其它紧固件的横截面都应尽量牢固。磁力表座应直接夹到机床铸件上。 避免将其夹到横截面较薄的机器防护罩或外盖上。确保紧固件表面平坦并没有油污和灰尘。 2.3 将光学镜组直接固定在相关的点上 材料膨胀补偿通常只应用在与测量激光距离等长的材料路径长度上。如果测量回路还包括附加的结构,该―材料死程‖的任何热膨胀或收缩或因承载而发生的偏斜都将导致测量误差。为尽量减少此类误差,最好将光学镜组直接固定到所需的测量点上。在机床校准中,一个光学镜通常固定在工件夹具上,而另一个光学镜组则固定在刀具夹具上。激光测量将会精确地反映刀具和工件之间发生的误差。即使机器防护系统和机器盖导致难于接近,也一定要尽量将干涉镜和角锥反射镜都固定到机器上。不要将一个光学镜安装在机器内部而另一个安装在外部如支在机器外地面的三脚架上,因为整台机器在地基上的移动可能导致校准无效。然而,是否拆下导轨防护罩时需仔细考虑,因为这可能改变机器性能。

实验二 双频激光干涉实验

实验二 双频激光干涉实验 一、 实验目的 了解双频激光干涉测量原理,设计测量长度与角度的干涉系统,并且比较一般干涉测量与双频激光干涉测量的异同。 二、 实验原理 1. 测长原理如图1所示: 其中L1 为稳频的激光器,Mm 、Mr 为两个全反射组件,P1、P2 为检偏器,D1、D2 为光电探测 器。Mm 固定在被测物体上。 输出激光含频差为f ?的两正交线偏振光分量1f 、2f 。输出光经分光镜 BS 后,一 部分光被反射,经检偏器 P 1, 两频率分量干涉产生拍频,该信号被光电探测器D1 接 收,形成参考信号 Sr 。透射光经线性干涉仪后,1f 、2f 被分开, 1f 进入参考臂,2f 进入测量臂,由两角锥棱镜反射返回后,在线性干涉仪上会合,经检偏器 P2 后发生干 涉,光电探测器 D2 接收干涉信号,形成测量信号 Sm 。 此时如果测量镜以速度v 移动,则1f 的返回光频率发生变化,成为1D f f +?,D f ?为多普勒频差,1D f f +?通过线性干涉仪与2f 的返回光会合,经检偏后,其拍频被光电 探测器 D2 接收,Sr ,Sm 经前置放大后进入计算机进行计数。 计算机对两路信号进行比较,计算其差值±D f ?。进而按下式计算动镜的速度?和移动的距离得出所测的长度 L 。 设在测量中动镜的移动速度v (这里v 可以随时间变化),则由多普勒效应引起的频差变化为: 122 D v v f f c λ?== (1-1) 式中:1f 激光频率,c 光速,λ波长,D f ?为动镜移动时,由它反射回来的光频率 的

变化量,也就是经计算机比较计算出来的两路信号的差值。 设动镜的移动距离为D ,时间为t 则: 000()222 t t t D D D vdt f dt f dt N λλλε==??=??=+??? (1-2) N ε+为测量过程中动镜下的条纹数(N 为整数部分,ε为小数部分)。 00()t t D D N f dt f dt ε+=??=??∑? (1-3) 所以,位移D 的计算公式为: ()2D N λε= + (1-4) 2. 测角原理如图2所示: 如图,基于正弦尺的原理,利用角度干涉仪和角度靶镜,双频激光干涉仪就可以进行角度测量。其干涉光路的工作原理和测长的相似,只不过测量的位移变成了两个角锥棱镜的相对位置变化—D 。于是,在小角度的情况下,我们得到角度测量结果(弧度)为: D L α= (1-5) 三、 实验步骤 1. 在实验箱中找出需要用的零部件(不用的不要拿出): (1) P T-1105C 激光头、(2)PT-1303C 高速接收器、(3)PT-1201A 线性干涉仪、(4) PT-1202A 全反射组件、(5)PT-1210A 角度干涉组件、(6)角度靶镜、(7) PT-1801B 通用调节架、(8)连接电缆 各部件外形图如下所示:

激光干涉仪软硬件介绍讲解

激光干涉仪软硬件介绍 本次试验我们使用的仪器为:Renishaw 激光器测量系统。 这个系统由“软件”与“硬件”两个部分组成,所以我们认识他,就是搞清楚各是什么硬件和软件。 看到这个章节时,可定有人会问还有什么硬软件之分的吗?答案是肯定的! 先问大家一个问题:只有躯体的人就是一个正常的人吗?答案是否定的! 一个正常的人不但须要一个实实在在的躯体,还需要由看不见的意识性的东西——思想的存在! 3.1 激光干涉仪是由什么硬件组成 3.1.1 什么是硬件? 硬件:硬件就是我们看到的一堆由金属、塑料等材料堆成的被称之为“Renishaw 激光干涉仪”的东西(事实上,它是由一些机壳和电路板等物构成)。因为是一些看得见、摸得着的东西,又因为都是“硬”的,所以被人们形象地称为“硬件”。 3.1.2具体硬件名称以及各自的用途是什么? 一、本次使用激光检测仪主要检测螺距误差,因此我们主要使用到以下的仪器: (1)ML10 激光器 Renishaw ML10 Gold Standard 激光器

以上四个图案为激光罩在不同的状态下的作用 A)无光束射出 B)缩小横截面光束及目标 C)最答光束及目标 D)标准测量位置射出最大光来的横截面以及反射光束的探测器孔Renishaw ML10 Gold Standard 激光器:

ML10 是一种单频 HeNe 激光器,内含对输出激光束稳频的电子线路及对由测量光学镜产生的干涉条纹进行细分和计数处理。 其主要作用简单概括为:发射红外线以及返收红外线供特定的软件做分析,记录相关的数据。 (2)三脚架

三脚架及云台可用来安装 ML10 激光器,将 ML10 激光器设置在不同的高度,并充分控制 ML10 激光束的准直。对于大多数机床校准设置,建议将 ML10 激光器安装在三脚架和云台上。 三脚架、安装云台和 ML10 激光器三合一体,可为 ML10 光束准直提供下列调整:高度调整 水平平移调整 角度偏转偏转调整 角度俯仰调整 其中高度调整是由图9上显示的高度曲柄控制的,水平平移是由图2上显示的平移控制旋钮控制,角度偏转偏移是由图2上显示的旋转微调旋钮控制。图2后的两个示意图为水平平移和角度偏移的使用方法。 (3)EC10 环境补偿装置

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

激光干涉仪检测方法

FANUC、OKUMA机床的激光干涉仪检测方法 一、光的相干性 二、激光干涉法测距原理 三、FANUC螺补参数的设定 四、关于FANUC系统正负方向补偿号的计算方法 五、FANUC的检测用程式 六、OKUMA螺补参数的设定 七、OKUMA检测程式 八、检测值输入的方法

一、光的相干性 相長性干涉 當兩個波長相同的光束波形同步射出時,其波峰位置會如下圖 2 一般重合,固稱為“相長性干涉”。在相長性干涉的情況下,輸出波的振幅等於兩個輸入波的振幅之和。 ?相消性干涉 當兩個相干光束波形以180°的相位差異步射出時,一個輸入光束的波峰位置會如下圖3 一般與另一個輸入光束的波谷重合,固稱為“相消性干涉”。在相消性干涉的情況下,兩個輸入波會互相抵消而產生暗淡的光

二、激光干涉法测距原理 图片: 根据光的干涉原理,两列具有固定相位差,而且有相同频率、相同的振动方向或振动方向之间夹角很小的光相互交叠,将会产生干涉现象,如图所示。由激光器发射的激光经分光镜A分成反射光束S1和透射光束S2。两光束分别由固定反射镜M1和可动反射镜M2反射回来,两者在分光镜处汇合成相干光束。若两列光S1和S2的路程差为Nλ(λ为波长,N为零或正整数),实际合成光的振幅是两个分振幅之和,光强最大。当S1和S2的路程差为λ/2(或半波长的奇数倍)时,合成光的振幅和为零,此时光强最小。 激光干涉仪就是利用这一原理使激光束产生明暗相间的干涉条纹,由光电转换元件接收并转换为电信号,经处理后由计数器计数,从而实现对位移量的检测。由于激光的波长极短,特别是激光的单色性好,其波长值很准确。所以利用干涉法测距的分辨率至少为λ/2,

激光干涉仪讲解

第一章、前言 一、本次我们主要研究:如何检测机床的螺距误差。因此我们主要的任务在于: 1. 应该使用什么仪器进行测量 2. 怎么使用测量仪器 3. 怎么进行数据分析 4. 怎么将测量所得的数据输入对应的数控系统 二、根据第一点的要求,我们选择的仪器为:Renishaw 激光器测量系统,此仪器检测的范围包括: 1. 线性测量 2. 角度测量 3. 平面度测量 4. 直线度测量 5. 垂直度测量 6. 平行度测量 线性测量:是激光器最常见的一种测量。激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。 三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。因此,我们此次使用的检测方法——线性测量。 总结以上我们的核心在于:如何操作Renishaw 激光器测量系统结合线性测量的方法进行检测,之后将检测得到的数据进行分析,最后将分析得到的数据存放到数控系统中。这样做的目的在于——提高机床的精度。 - 1 - 第二章、 2.1 什么是螺距误差? 基础知识 开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知: 螺距误差是指由螺距累积误差引起的常值系统性定位误差。 2.2 为什么要检测螺距误差? 根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。 2.3 怎么检测螺距误差? (1)安装高精度位移检测装置。 (2)编制简单的程序,在整个行程中顺序定位于一些位置点上。所选点的数目及距离则受数控系统的限制。 (3)记录运动到这些点的实际精确位置。 (4)将各点处的误差标出,形成不同指令位置处的误差表。(5)多次测量,取平均值。 (6)将该表输入数控系统,数控系统将按此表进行补偿。 2.4 什么是增量型误差、绝对型误差? ①增量型误差 增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差 绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5 螺距误差补偿的原理是什么? 螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将

激光干涉仪在检测数控机床精度方面的应用

激光干涉仪在检测数控机床精度方面的应用 1.前言 随着大型数控机床应用的日见广泛,对大型机械两条导轨间平垂直度检测要求也越来越多。传统的垂直度检测方法如大理石角尺配合干分表方法受标准角尺大小的限制只能应用于小型机器:另外采用四象限等传感器方法,则因传感器的精度漂移和读数稳定性容易受到环境变化的影响,使得其应用范围大大受限。 激光干涉仪是通过激光波长溯源的原理来实现数控机床几何精度及定位精度检测,激光干涉仪主要可以对数控机床进行线性、角度、直线度、垂直度、转轴测量等,下面就来一一讲解。 2.测量应用 2.1.线性测量 2.1.1.线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 线性测量构建图

水平轴线性测量样图垂直轴线性测量样图 2.1.2.线性测量的应用 激光干涉仪可用于精密机床定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。 激光干涉仪应用于机密机床校准 2.2角度测量 2.2.1.角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,测试时角度反射镜 和角度干涉镜必须有一个相对旋转,相对旋转后两束光的光程差就会发生变化,而光程 差的变化会被激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化 显示出来。

角度测量原理及测量构建 水平轴俯仰角度测量样图水平轴偏摆角度测量样图 2.2.2.角度测量的应用 机床准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。

激光干涉仪分类及应用

激光干涉仪分类及应用 激光干涉仪以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量。激光干涉仪有单频的和双频的两种。 激光干涉仪的分类: 单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 双频激光干涉仪 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应,激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算(乘1/2激光波长)后即可得出可动反射镜的位移量。双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直

雷尼绍XL80激光干涉仪操作手册

镭射干涉仪操作手册

手册内容 一.RENISHAW 公司简介 1 二.镭射干涉仪原理 2 (1)波的速度 3 (2)干涉量测原理 3 (3)镭射干涉仪 4 (4)镭射干涉仪一般量测项目 4 三.注意事项 5 四.镭射干涉仪防止误差及保养 5 (1)镭射干涉仪防止误差 5 (2)镭射干涉仪保养方法 6 五.安全及注意事项 6 六.镭射光原理及特性7 七.镭射硬件介绍8 八.镭射架设流程图15 九.定位量测原理及操作16 (1)线性定位量测原理16 (2)量测方式17 十.镭射易发生之人为架设误差20 (1)死径误差20 (2)余弦误差21 (3)阿倍平移误差21 十一.镭射操作之步骤22 (1)软件安装之步骤22 (2)执行量测软件22 (3)定位量测硬件架设之操作23 (4)镜组架设前之注意事项24 (5)镜组架设之步骤24 十二.定位量测之程序范例29 十三.定位量测之软件操作步骤30 热漂移量测38 快速功能键44 十四.动态软件量测之操作45 (1)动态量测硬件之架设45 (2)执行量测之软件46 (3)位移与时间48 (4)速度与时间49 (5)加速度与时间50 十五.角度量设之操作52 (1)注意事项52 (2)镜组架设的种类53 (3)镜组架测之步骤54 (4)角度量测之软件操作步骤57 十六.RX10旋转轴之量测62 (1)说明62

(2)硬件配件之介绍62 (3)硬件操作之步骤64 (4)软件操作之步骤67 十七.直度量测之操作75 (1)直度之分类75 (2)直度量测之硬件架设75 (3)镜组架设之步骤75 (4)直度软件之操作步骤80 十八.Z轴直度镜组织架设方法85 十九.垂直度量测之操作89 (1)垂直度镜组架设之步骤89 (2)软件操作之步骤95 二十.平面度量测之原理与操作101 (1)硬设备101 (2)操作之原理102 (3)镜组架设之步骤102 (4)软件操作之步骤110

激光干涉仪用途

简介 以激光波长为已知长度、利用迈克耳逊干涉系统(见激光测长技术)测量位移的通用长度测量工具。激光干涉仪有单频的和双频的两种。单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。双频激光干涉仪是1970年出现的,它适宜在车间中使用。激光干涉仪在极接近标准状态(温度为20℃、大气压力为101325帕、相对湿度59%、C O2含量0.03%)下的测量精确度很高,可达1×10?7。 工作原理 一个角锥反射镜紧紧固定在分光镜上,形成固定长度参考光束。另一个角锥反射镜相对于分光镜移动,形成变化长度测量光束。 从激光头射出的激光光束(1)具有单一频率,标称波长为0.633μm,长期波长稳定性(真空中)优于0.05ppm。当此光束到达偏振分光镜时,被分成两束光—反射光束(2)和透射光束(3)。这两束光被传送到各自的角锥反射镜中,然后反射回分光镜中,在嵌于激光头中的探测器中形成干涉光束。 如果两光程差不变化,探测器将在相长干涉和相消干涉的两端之间的某个位置观察到一个稳定的信号。如果两光程差发生变化,每次光路变化时探测器都能观察到相长干涉和相消干涉两端之间的信号变化。这些变化(条纹)被数出来,用于计算两光程差的变化。测量的长度等于条纹数乘以激光波长的一半。 应当注意到,激光波长将取决于光束经过的空气的折射率。由于空气折射率会随着气温、压力和相对湿度的变化而变化,用于计算测量值的波长值可能需要对这些环境参数的变化进行补偿。在实践中,对于技术指标中的测量精度,只有线性位移(定位精度)测量需要进行此类补偿,在这种情况下两束光的光程差变化可能非常大。

产品用途 1.激光干涉仪是检定数控机床、坐标测量机位置精度的理想工具。检定时可按照规定标准处理测量数据并打印出误差曲线,为机床的修正提供可靠依据。 2.激光干涉仪配有各种附件,可测量小角度、平面度、直线度、平行度、垂直度等形位误差,在现场使用尤为方便。 2.1.线性测量 要对线性测量进行设定,使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上。这个组合装置称为“线性干涉镜”,它形成激光光束的参考光路。线性干涉镜放置在激光头和线性反射镜之间的光路上,如下图所示。

激光干涉仪用途【详细】

激光干涉仪的作用 内容来源网络,由深圳机械展收集整理 更多激光设备,就在深圳机械展 (1)CO2激光干涉仪 CO2激光器是一种非常适合无导轨激光测量的光源,它在10.6μm波段具有丰富的谱线,相邻谱线的波长差分布也比较均匀,构成的“合成波长链”的波长可从10.6μm到25m,因此,CO2激光干涉仪一直是无导轨激光干涉仪的研究重点。从1979年开始,由直流干涉系统到各种形式的光外差系统,CO2激光干涉仪历经多次改进,其中一种典型方案是上世纪九十年代澳大利亚研制的外差干涉仪,它通过激光器的腔长控制,顺序输出6种波长,用声光调制器的零级衍射作为本振光,构成外差系统,测量精度可达4×10-8。 (2)Ne-Xe激光干涉仪 Ne-Xe激光器可以输出3.53μm和3.37μm两个波长,合成波长为84.2μm。从“合成波长链”的角度考虑,波长过短难以保证测量结果的唯一性,为此,系统加入了He-Ne激光器的3.39μm谱线,将“合成波长链”延伸到464μm。Ne-Xe激光干涉仪的最大优点是结构简单,测量精度可达1.8×10-7。 (3)He-Ne激光干涉仪 中国计量科学研究院研制的纵向塞曼He-Ne激光干涉仪,与成都工具研究所开发的双频激光干涉仪不同,其稳频点选在两条激光增益曲线之间,产生一对频差为1080MHz的左、右旋偏振光(这两个偏振光不在同一增益曲线上),合成波长为278mm。利用光栅测量干涉的剩余相位。系统测量长度可达100m,测量精度为±(40+1.5×10-6)。 He-Ne激光器在3.39μm处谱线丰富,但其中3.3922μm谱线的自发辐射系数比其它谱线大很多,抑制了其它谱线的发射。清华大学利用甲烷在3.3922μm附近的一条吸收谱线,抑制了He-Ne激光这条谱线的强度,成功研制出了3.39μm波段双波长激光干涉仪,其“合成波长链”从3.39μm到1m,单波稳定性为1×10-8。 (4)变波长激光干涉仪 变波长激光干涉仪采用两个激光器,利用谐振腔长与输出频率的关系,构成“无级”的波长

激光干涉仪应用介绍(三)——高速长距离位移测量

基于FPS3010长行程高速位移测量 Long distance and high-speed displacement measurements using the FPS3010 基于光学法珀腔传感器FPS3010干涉仪可以测量目标相对位移,测量精度达到亚纳米分辨率,实时位置输出带宽达10MHz。在工业,科研以及研发等多种应用中需要高速以及长行程精密测量。如下面所示,FPS3010可以测量距离高达3m,并且速度达2m/s。 在这些测试中,FPS3010干涉仪采用的是M12探测头,并且在被测目标安装了反射器。图1中为整体设备,包括探测头和反射器。采用商用线性电机平台,可实现目标位置多次重复测量。另外,通过采用反射器取代平面镜,安装过程更为简易快捷:反射器相对于探测方向角度4度内都可以测出信号。反射器内部采用了3个正交式反射镜组成的几何结构。信号的高稳定性保证了FPS3010可以在全行程任意位置下进行标定,整套设备的使用方法非常友好,简易。 第一次测试,目标距离传感器头1m。包含振动目标的0.9m振动幅度以及达1.0m/s 速度。图2(a)显示的是在振动过程中,目标位置测量和速度。 图2(b)描述了在高速运动中的测量,距离为0.5m,速度为2.0m/s。从红色曲线中可见,平台最大加速度是一个限制:在到达位置B之前,需要10毫秒才能达到2m/s速度,同时也需要10ms减速。在图2(b)中,当运动到B点位置时,FPS3010也可以记录线性位移平台的位置误差,从图中可以看到超调值为5微米。 这个应用证明了FPS3010干涉仪测量位移3m,测量速度达2.0m/s时,可以达到亚纳米的重复精度。如果需要更多的资料,请联系我们! 图1:测量旋转物体运动误差机构。当轴旋转是,采用两个干涉传感器探头测量垂直于其转轴的两个方向上的运动误差。不同的被测物体采用不同尺寸的传感器探头。

基于激光干涉效应的传感器

目录 一、激光干涉的基本原理 (2) 二、激光干涉传感器的类型 (3) 2.1单频激光干涉传感器 (3) 2.2 双频激光干涉传感器 (3) 三、常用激光干涉传感器及介绍 (4) 3.1CO2激光干涉仪 (4) 3.2Ne-Xe激光干涉仪 (4) 3.3 He-Ne激光干涉仪 (5) 3.4 变波长激光干涉仪 (5) 3.5线性调频半导体激光干涉仪 (5) 四、激光干涉传感器的应用 (5) 五、激光干涉传感器的功能特点 (6) 六、参考文献 (7)

基于激光干涉效应的传感器 摘要:以激光波长为已知长度、利用迈克耳逊干涉系统测量位移的通用长度测量工具。激光干涉传感器有单频的和双频的两种。单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。双频激光干涉仪是1970年出现的,它适宜在车间中使用。激光干涉传感器在极接近标准状态下的测量精确度很高,可达1×10-7。 关键词:激光干涉;传感器;精密测长 一、激光干涉的基本原理 两频率相同,振动方向相同的光波叠加 I=I 1+I 2+221I I COS δ =δλπ?2 λ为光波波长,Δ为光程差。 Δ =n 1l 1- n 2l 2 n 1,n 2为两光波所通过介质的折射率; l 1,l 2为两光波传播的距离。 计算光程差时要注意从光疏媒质到光密媒质,光反射时(近于垂直入射)的“半波损失”,反射光振动方向与入射光相反,光程附加λ/2(相位为π)。 ①=δ2πm 即 Δ= m λ (m 为整数) 当光程差为波长的整数倍,干涉条纹为亮条纹 (极大值) ②=δ(2m+1)π 即 Δ= (2m+1)λ/2 当光程差为半波长的奇数倍,干涉条纹为暗条纹 (极小值)。 COS δ δ 2π π 0

激光干涉仪原理【深度解析】

激光干涉仪原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 激光干涉仪是以干涉测量法为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(俯仰扭摆角度、直线度、垂直度等)进行精密测量的精密测量仪器。激光具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。目前常用来测量长度的干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。 英文名称:laser interferometer(激光干涉仪) 激光干涉仪原理如下图所示:

一个角锥反射镜紧紧固定在分光镜上,形成固定长度参考光束。另一个角锥反射镜相对于分光镜移动,形成变化长度测量光束。 从激光头射出的激光光束①具有单一频率,标称波长为633nm,长期波长稳定性(真空中)优于0.05ppm。当此光束到达偏振分光镜时,被分成两束光——反射光束②和透射光束③。这两束光被传送到各自的角锥反射镜中,然后反射回分光镜中,在嵌于激光头中的探测器中形成干涉光束④。 如果两光程差不变化,探测器将在相长干涉和相消干涉的两端之间的某个位置观察到一个稳定的信号。 如果两光程差发生变化,每次光路变化时探测器都能观察到相长干涉和相消干涉两端之间的信号变化。这些变化(条纹)被数出来,用于计算两光程差的变化。测量的长度等于条纹数乘以激光波长的一半。 激光干涉仪种类:激光干涉仪有单频的和双频的两种。

双频激光干涉仪测量-14页文档资料

激光干涉仪测长原理 典型的激光干涉仪由激光器L、偏振分光镜PBS、测量反射镜M、参考反射镜R、光电检测器D、检偏器P和三个λ/4波片Q1、Q2和Q3组成。激光为线偏振光,经偏振分光镜分为E1和E2两线偏振光。当两干涉臂中λ/4波片快轴(或慢轴)与X轴夹角相等且为45度时,两束光通过λ/4波片后均成为圆偏振光,反射后再次通过λ/4波片,又转换为线偏振光,但其振动方向相对原振动方向旋转了90度,且由于两干涉臂光程产生了相位差φ,根据公式: φ=2θ=φ=4πL/λ 式中:λ为激光波长,干涉光路的作用是把位移L转变为合成光振动方向的旋转角θ,进而转换成光电信号的相位φ,信号处理器的作用就是 测量出φ,从而计算出位移L。 垂直度的测量工具在一台机器 施工实例:多轴系统

双频激光干涉仪的工作 原理 双频激光干涉仪其双频激 光测量系统由氦氖双频遥置激 光干涉仪和电子实时分解系统 所组成。它具有以下优点:稳 定性好,抗干扰能力强,可在 较快的位移速度下测量较大的距离,使用范围广,使用方便,测量精度高。 基本原理:如图11-2所示,激光双频干涉仪的氦氖激光管,在外加直流轴向磁场 的作用下, 产生塞曼效 应,将激光 分成频率为 f 1和f 2 ,旋 向相反的两圆偏振光, 经λ/4波片变为线偏振光。调整λ/4玻片的旋转角度,使f l 和f 2 的振动 平面相 互垂直,以互垂直, 以作激光干涉

图11-2 双频激光干涉仪的工作原理图 1.激光管 2.λ/4波片 3. 参考分光镜 4. 偏振分光棱境 5. 基 准锥体棱镜6.移动测量棱体7.10.12.检偏振镜8.9.11.光电管13.光电调制器 仪的光源。当两个线偏振光经过参考分光镜3时(见图11-2),大部分则由偏振分光棱境4分成两束。偏振面垂直入射面的f 2全反射到与分光镜固定在一起的基准锥体棱镜上;偏振面在入射面内的f l 则全部通过而射到移动测量棱体6上。由这两个锥体棱镜反射回来的光束在偏振分光镜上合并,并在检偏振镜上混频。当移动锥体棱镜时,由于多普勒效应,f 1变成f 1 +△f,因而光电元件8所得到的信号是(f 1+△f)-f 2。在可逆计数器中与参考信号(f 1-f 2)相减,棱镜每移动半个波长,光程变化是整个波长。测得的位移是l=λ/2×N ,经计算机处理,所测得的位移值可在计算机显示器上读出。位移量测量原理如图11-3所示。 图11-3 位移量测量原理图 四、实验内容及步骤 1.使机床各轴回参考点 2.按图所示摆放仪器。 图11-4 激光干涉仪的使用示意图 3.决定反射镜(Linear retroreflector )安放位置,并固定在机床上。 4.选择透射镜(Interferometer )安放位置,使反射镜和透射镜保持在同一高度。

相关文档
相关文档 最新文档