文档库 最新最全的文档下载
当前位置:文档库 › 轴流式水轮机的结构

轴流式水轮机的结构

轴流式水轮机的结构
轴流式水轮机的结构

第二节 轴流式水轮机的结构

一、概述

轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。

特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。

图2-15 轴流式水轮机

1— 1—? 1—? 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。

转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比1D dh

d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。

二、转轮体

轴流式水轮机的转轮体上装有全部叶片和操作机构,在安放叶片处转轮体的外形有圆柱形和球形两种。大中型转桨式水轮机的转轮体多数采用球形,它能使转轮体与叶片内缘之间的间隙在各种转角下都保持不大于2~5mm ,达到减少漏水损失的目标。另外环形转轮体增大了放置叶片处的轮毂直径,有利于操作机构的布置。但是相同的轮毂直径下,球形转轮体减小了叶片区转轮的过水面积,水流的流速增加,使球形转轮体的空蚀性能比圆柱形差。

圆柱形转轮体其形状简单,同时水力条件和空蚀性能均比球形转轮体好。但转轮体与叶片内缘之间的间隙是根据叶片在最大转角时的位置来确定的,而当转角减小时,转轮体与叶片之间的间隙显着增大,叶片在中间位置时,一般间隙达几十毫米,增加了通过间隙的漏水量,效率下降,所以圆柱形转轮体的效率低于球形转轮体。

转轮体的具体结构要根据接力器布置与操作机构的形式而定。小型水轮机转轮,定桨式水轮机转轮一般都采用圆柱形转轮体。转轮体一般用ZG30或ZG20MnSi 整体铸造,为了支承叶片,转轮体开有与叶片数相等的孔,并在孔中安置叶片轴。随着工艺、材料和结构的改进,转轮体球面直径与转轮直径之

比,即轮毂比1/D d d B B =逐步减少。转轮体和叶片的安放角位置,可以按叶片法兰面上0=?标记线

对照。当0°线标记与转轮体轴孔的水平线重合时,叶片安放角?=0?,与轴孔外圆的弦长1S 相对应处为max ?+,与2S 相对应处为max ?-,见图2-17所示,其中:

2sin 2sin

max

2max 1??-=+=D S D S (2-5)

图2-16 ZZ-LH-1130水轮机

1—转轮室;2—底环;3—固定导叶;4—活动导叶;5—顶盖;6—支持盖;7—连杆;8—控制环;

9—轴承支架;10—接力器;11—安全销;12—真空破坏阀;13—扶梯;14—排水泵;

15—水轮机导轴承;16—冷却器;17—轴承密封;18—转轮体;19—桨叶;20—桨叶连杆;

21—接力器活塞;22—泄水锥;23—主轴;24、25—操作油管

图2-17 叶片安放角位置

三、叶片

轴流式水轮机的比转速1000

~450=S n ,随着比转数的增高,转速流道的几何形状相应发生变化。为了适应水轮机过流量的增大,同时既要保证水轮机具有良好的能量转换能力和空化性能,又要保持叶片表面的平滑不产生扭曲,轴流式转轮取消了混流式转轮的上冠和下环,叶片数目相应减少,一般为3~8片,叶片轴线位置变为水平,使得转轮流道的过流断面面积增大,提高了轴流式水轮机的单位流量和单位转速。

轴流式转轮叶片由叶片本体和枢轴两部分组成。对于尺寸较小的水轮机,一般采用整体轴,因为这样可以减少零件数目,铸造、加工、安装的困难也不大。但当水轮机尺寸大时,采用分开成叶片本体和枢轴两部分就比较有利。这是因为(1)分成叶片本体和枢轴两部分,每一部分的重量和尺寸都减少了,对于铸造,加工和安装都带来方便。(2)因为叶片易受空蚀损坏,分开的结构可单独地拆卸某个叶片进行检修。(3)分开的结构有可能对两个部件采用不同的材料,例如叶片本体采用不锈钢,而枢轴采用优质铸钢。但是分开结构对转轮的强度是有所削弱的,因为为了布置叶片,枢轴和转臂的连接螺钉,分件式叶片法兰和枢轴法兰的外径都要比整体时大(见图2-18),这一缺点对于高水头的转轮可能就是致命的,因为水头高,叶片数目就多,转轮上相邻叶片轴孔之间的宽度本来就很小,如果采用分开式结构,转轮体就无法满足要求。

图2-18 叶片枢轴结构 )(a 叶片与枢轴整体;)(b 叶片与枢轴用螺栓连接

1—叶片;2—枢轴

轴流式转轮的叶片一方面承受其正背面水压差所形成的弯曲力矩,另一方面承受水流作用的扭转力矩,同时还要承受离心力作用。受力最大位置在叶片根部,叶片的断面是外缘薄,逐渐增厚,根部断面最厚。叶片根部有一法兰,这是为了叶片与转轮体的配合。叶片本体末端是枢轴,枢轴上套有转臂。这样,把枢轴插在转轮体内,通过转臂,连上叶片操作机构就可以转动叶片了。

叶片的材质要求与混流式相同,目前多采用ZG30或ZG20MnSi 铸钢,并根据电站运行条件,在叶片正面铺焊耐磨材料,背面铺焊抗空蚀材料。许多电站运行实践表明,铺焊不如堆焊效果好。有的机组采用不锈钢整铸叶片效果更理想。

四、叶片操作机构和接力器

叶片操作机构由接力器、活塞杆、曲柄连杆机构等零件构成,安装在转轮体内,用来变更叶片的转角,使其与导叶开度相适应,从而保证水轮机运行在效率较高的区域,叶片操作机构是由调速器进行自动控制的,其叶片操作机构示意图见图2-19。

图2-19 叶片操作机构示意图

1— 1—?? 1—?? 叶片;2—桨叶转轴;3、4—轴承;5—转臂;6—连杆;7—操作架;8—接力器活塞;9—活塞

根据接力器布置方式不同,叶片操作机构的形式很多,目前应用比较普遍的型式有带操作架传动的直连杆机构,带操作架的斜连杆机构和不带操作架的直连杆机构。采用一个操作架来实现几个叶片同时

转动的机构称为操作架式叶片转动机构。当叶片转角在中间位置时,转臂水平,连杆垂直的称带操作架直连杆机构。

转轮接力器的布置方式很多,通常把接力器布置在转轮体叶片中心线上部,也有把接力器布置在叶片下部泄水锥的空腔内。

如图2-20所示是目前采用比较普遍的结构,接力器布置在叶片中心线上部,活塞和活塞杆的连接方式有两种。如图2-20的Ⅰ和Ⅱ。Ⅰ为不带操作架的结构,Ⅱ为带操作架的结构。控制转轮接力器活塞作往复运动的压力油通过操作油管输入,操作油管由不同管径的无缝钢管组成,并安装在主轴内。操作油管上部与受油器相连,从油压装置输送来的压力油和回油都通过受油器进入和流出操作油管。

图2-20 转轮接力器结构

五、叶片密封装置

由于转桨式水轮机在运行中需要转动叶片以适应不同的工况,当叶片操作机构工作时,一些转动部件与其支持面间需要进行润滑,因此在转轮体内是充满油的。转轮体内的油是具有一定压力的压力油,这是因为一部分主轴中心孔的油,最后排入受油器,而受油器布置在发电机的顶上,所以转轮体内的油有相当于发电机的顶部至转轮体这段油柱高度的压力,另外由于转轮旋转,油的离心力使油产生一定的压力。在另一方面,转轮体外是高压水流,为了防止水流进入转轮体内部和防止转轮体内部的油向外渗漏,在叶片与转轮体的接触处必须安装密封装置。从电站的运行实践看,转桨式水轮机转轮叶片密封结构性能的好坏对保证机组正常运行关系很大。

密封的型式很多,如图2-21所示是目前国内水轮机厂采用较普遍的“λ”型转轮叶片密封结构。通过试验和运行表明,它具有良好的密封性能、结构紧凑、制造和装拆方便。

近年来有的机组采用V型橡胶环双向密封,结构简单,安装方便,更换密封不需要拆卸叶片,优点较多。

图2-21 “λ”型转轮叶片密封

1—1—? 1—? 螺钉;2—压盖;3—“λ”密封圈;4—顶起环;5—弹簧;6—叶片枢轴

7—限位螺钉;8—转轮体

六、泄水锥

泄水锥的外形尺寸由模型试验确定。中小型机组的泄水锥大多采用ZG30铸造,图2-22是泄水锥与转轮体的连结结构。图2-22所示的结构中,泄水锥上部周围开有带筋的槽口,用螺钉把合,除加保险垫圈外,装配后螺幅还应和锥体点焊,防止机组在运行中泄水锥脱落。

图2-22 泄水锥连接结构

1—转轮体;2—螺钉;3—保险垫圈;4—护盖;5—泻水锥

七、转轮室

图2-23所示为转轮室结构图,转轮室的上端与底环相连,下端与尾水管里衬相连。转轮室的形状要求与转轮叶片的外缘相吻合,以保证在任何叶片角度时叶片和转轮室之间都有最小的间隙。

在水电站运行中,发现转轮室臂受到强烈的振动,可能造成可卸段的破坏,有时整个可卸段被拉脱。因此转加强转轮室的刚度和改善转轮室与混凝土的结合,是应该重视的一个问题。

图2-23 转轮室结构

在叶片出口处的转轮室内表面上,常出现严重的间隙空蚀和磨损现象,需要采取抗磨抗空蚀的措施。

八、支承盖和顶盖

大型的轴流式水轮发电机组,顶盖和支持盖是分开的。支持盖通过法兰与顶盖连接,并支承在顶盖上。顶盖为箱型结构固定在座环上。机构的推力轴承由固定在支持盖上的轴承支架来支承。水轮机导轴承支持在支持盖下部的引水锥内。顶盖上装有控制环,导水机构传动部件等。

支持盖的下翼板为水轮机过流通道表面的一部分,应做成流线型,该过流表面有承受转轮前水流压力的作用。当推力轴承安置在支持盖上时,支持盖还承受着作用在转轮上的轴向水推力和转动部分重量。

中小型轴流式水轮机常将顶盖和支持盖合为一件,总称顶盖。

第五章反击式水轮机的基本结构

第二节:轴流式水轮机的基本结构

概述

轴流式水轮机又分为轴流定桨式和轴流转桨式两种

水轮机用于开发较低水头,使用水头和出力相同时,轴流式水轮机由于过流能力比混流式大,可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。

在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。

水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。

ZZ-LH-1130水轮机

二、转轮

1.转轮体

轴流式水轮机的转轮体上装有全部叶片和操作机构,在安放叶片处转轮体的外形有圆柱形和球形两种。

大中型转桨式水轮机的转轮体多数采用球形,它能使转轮体与叶片内缘之间的间隙在各种转角下都保持不大于2~5mm,达到减少漏水损失的目标。

圆柱形转轮体其形状简单,同时水力条件和空蚀性能均比球形转轮体好。

转轮他的具体结构奥根据接力器布置与操作机构的形式而定。

为了适应水轮机过流量的增大,同时既要保证水轮机具有良好的能量转换能量和空化性能,又要保持叶片表面的平滑不产生扭曲,轴流式转轮取消了混流式转轮的上冠和下环,叶片数目相应减少,一般为3~8片,叶片轴线位置变为水平,使得转轮流道的过流断面面积增大,提噶了轴流式水轮机的单位流量和单位转速。

轴流式转轮叶片由叶片本体和枢轴两部分组成。

见叶片枢轴结构图

轴流式转轮的叶片一方面承受其正背面水压差所形成的弯曲力矩,另一方面承受水流作用的扭转力矩,同时还要承受离心力作用。受力最大位置在叶片根部,叶片的断面是外缘薄,逐渐增厚,根部断面最厚。

3.叶片操作机构和接力器

叶片操作机构由接力器、活塞杆、曲柄连杆机构等零件构成,安装在转轮体内,用来变更叶片的转角,使其与导叶开度相适应,从而保证水轮机运行在效率较高的区域,叶片操作机构是由调速器进行自动控制的,见叶片操作机构示意图。目前应用比较普遍的型式有带操作架传动的直连杆机构,带操作架的斜连杆机构和不带操作架的直连杆机构。目前普遍结构图。

三、叶片密封装置

转轮体内的有是具有一定压力的压力油,在另一方面,转轮体外是高压水流,为了防止水流进入转轮体内部和防止转轮体内部的油向外渗漏,在叶片与转轮体的接触处必须安装密封装置。

密封的型式很多,目前国内水轮机厂采用较普遍的“”型转轮叶片密封结构。它具有良好的密封性能、结构紧凑、制造和装拆方便。

“”型转轮叶片密封图

四、泄水锥

泄水锥的外形尺寸由模型试验确定。中小型机组的泄水锥大多采用ZG30铸造,如泄水锥与转轮体的连结结构图。

泄水锥上部周围揩油带筋的槽口,用螺钉把合,除加保险垫圈外,装配后螺幅还应和椎体点焊,防止机组在运行中泄水锥脱落。

五、转轮室

转轮室结构图

转轮室的上端与底环相连,下端与尾水管里村相连。转轮室的形状要求与转轮叶片的外缘相吻合,以保证在任何叶片角度时叶片合转轮室之间都有最小的间隙。在水电站运行中,发现转轮室臂收到强烈的振动,可能造成可卸段的破坏,有时整个可卸段被拉托。因此转加强轮室的刚度合改善转轮室与混凝土的结合,室应该重视的一个问题。

六、支承盖和顶盖

大型的轴流式水轮发电机组,顶盖合支持盖室分开的。支持盖通过法兰与顶盖连接,并支撑在顶盖上。顶盖为箱型结构固定在座环上。机构的推力轴承由固

定在支持盖上的轴承支架来支撑。水轮机导轴承支持在支持盖下部的引水锥内。顶盖上装有控制环,导水机构传动部件等。

支持盖的下翼板为水轮机讨流通道表面的一部分,应做成流线性,该过流表面有承受转轮前水流压力的作用。当推力轴承安置在支持盖上时,支持盖还承受着作用在转轮上的轴向水推力和转动部分重量。

中小型轴流式水轮机常将顶盖和支持盖合为一件,总称顶盖。

轴流式水轮机转轮算例

题目:ZZ440水轮机转轮的水力设计 方法:奇点分布法 已知参数: ZZ440 —100转轮水力设计 一.确定计算工况 由模型综合特性曲线得到n110=115 (r/min ) ,Q110=820 ( l/s) zz440属于ns=325~875范围,为了使设计的转轮能在预期的最优工况下效 率最高,计算工况与最优工况的关系按下式确定: n1l=(1.2~1.4)n 110 =138~161 (r/min) n= n.,^ H / D1(1.2 ~ 1.4)n110寸百/ D r 721.3 ~ 841.5 ( r/min) 故选定n=750 ( r/min ) 则实际n11= ^D1143.49 V H Q11=(1.35~1.6)Q110=1.4 Q110=1148<1650 (l/s) Q Q11D2JH1.4Q110D W H 6.0 m3/s 二.确定各断面叶栅稠密度l/t 据P213页(-)pj ~ n s关系,当ns=440时,得t 综合考虑一下关系: (二」 t "pi3 取D1=1000mm,取6 个断面R1~R6 依次为255、303、351、399、447、495 水力设计内容: (1) (2) (3) (4) (5) (6) (7) 确定计算工况 确定各断面叶栅稠密度l/t 选定进出口轴面速度Cz沿半径的分布规律,确定各断面的选定 进出口环量r沿半径的分布规律,确定各断面的r 计算各断面进 出口速度三角形,求知、2 第一次近似计算及绘图 第二次近似计算 Cz1、Cz2 1、 n =91%, a om=18mm D1 a。 _ a0m 1m —18 39.13mm 0.46 (0.85~0.95片)Pj K 3(t)n (1.2 ~ 1.25 )n (\ K卩小的打

轴流式水轮机埋件安装工艺导则

轴流式水轮机埋件安装工艺导则 Guide for installation technology of embedded components of axial turbine DL/T5037—94 1994-11-14发布1995-03-01实施 中华人民共和国电力工业部发布 1总则 1.1本工艺导则是根据《水轮发电机组安装技术规范》(GB8564—88),并结合常用典型结构而编制。 1.2本工艺导则适用于大中型轴流式水轮机埋件安装施工,采用分瓣就位组合的安装方式。如起重机起重量足够大时,也可采用分段或整体就位。 2一般规定 2.1设备安装前应进行全面清扫、检查,并复核设备高度尺寸。 2.2设备基础板的埋设,应用钢筋或角钢与混凝土钢筋焊牢,其高程偏差一般不超过-5mm,中心和分布位置偏差一般不大于10mm。水平偏差不大于1mm/m。 2.3调整用楔子板成对使用,搭接长度应在2/3以上。 2.4设备组合面和法兰连接面,应光洁无毛刺,合缝间隙用0.05mm塞尺检查,应不能通过;允许有局部间隙,用0.10mm塞尺检查,深度不应超过合缝宽度的1/3,总长不应超过周长的20%;连接螺栓及销钉周围不应有间隙。组合缝处的安装面错牙一般不超过 0.01mm。为防止漏水过水面组合缝应该封焊。 2.5安装用X、Y基准线标点及高程点,测量误差不应超过±1mm。中心测量所使用的钢琴线直径一般为0.3~0.40mm,其拉应力应不小于1200MPa。 2.6设备过水表面应平滑,焊缝应磨平。埋件与混凝土表面相接,应平滑过渡。 2.7根据设备尺寸选用测量工具和测量方法。 中心及圆度测量,一般选用带千分尺头的测杆,使用电测法(即带耳机的干电池回路。下同)。高程测量选用三级水准仪。 水平测量,尺寸较小时选用水平梁和合象水平仪,大中型支柱式座环选用带铟钢尺的一级水准仪。 2.8根据设备结构和土建施工程序,选择埋件加固方案,并随一期混凝土施工,埋设相应基础板和地锚。 2.9设备安装应在基础混凝土强度达到设计值的70%后进行。 2.10大中型轴流式水轮机埋件结构如图1、图2、图3所示。安装工艺流程如图4所示。若因施工需要,也可选用其他安装工艺流程(见附录A和附录B)。

(完整word版)水轮机结构

水轮机结构 一、简介 (一)、简介水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型利用水 流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式:水流从四周沿径向进入转轮,近似轴向流出应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式水流在导叶与转轮之间由径向运动转变为轴向流动应用水头:3~80m 特点:适用于中低水头,大流量水电站分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类 二、水轮机主要基本参数 1、水轮机主要基本参数

水头:Hg、H、Hmax、Hmin、Hr (设计水头) 流量:Q 转速:f=np/60 出力:N=9.81QH n(Kw) 效率:n 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL :代表混流式水轮机 100:转轮型号(也称比转速) LJ:立式金属蜗壳 210:转轮直径(210 厘米)

4、轴流式水轮机 ZZ560—LH —1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH :立式混凝土蜗壳1130:表示转轮直径为1130 厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W :卧轴 170:转轮直径170cm 2: 2 个喷嘴 15.0:射流直径三、水轮机主要部件(一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。 2、导水部件 组成:导叶及其操作机构、顶盖、底环 作用:调节进入转轮的流量和形成转轮所需的环量 3、工作部件

水轮机的基本结构及其主要部件的作用

水轮机的基本结构及其主要部件的作用 水轮机总体由引水、导水、工作和排水四大部分组成。 1、水轮机的引水部件: 主要指蜗壳及座环等,水流由蜗壳引进,经过座环后才进入导水机构。蜗壳的作用是使进入导叶以前的水流形成一定的旋转,并轴对称地、均匀地将水流引入导水机构;座环的作用是:承受整个机组及其上部混凝土的重量以及水轮机的轴向水推力;以最小的水力损失将水流引入导水机构;机组安装时以它为基准。所以,座环既是承重件,又是过流件,也是基准件。因此,要求座环必须有足够的强度、刚度和良好的水力性能。 2、水轮机的导水机构: 导水机构主要由操纵机构(推拉杆、接力器及其锁锭装置)、导叶传动机构(包括控制环、拐臂、连杆和连接板等)、执行机构(导叶及其轴套等)和支撑机构(顶盖、底环等)四大部分组成。其作用使进入转轮前的水流形成旋转,并可改变水流的入射角度,当发电机负荷发生变化时,用它来调节流量,正常与事故停机时,用它来截断水流。 导水机构的操纵机构 导水机构的操纵机构的作用是:在压力油的作用下,克服导叶的水力矩及传动机构的摩擦力矩,形成对导叶在各种开度下的操作力矩。导水机构的操纵机构分为直缸式和环形接力器两大类。 调速环或接力器锁锭装置 锁锭装置的作用是:当导叶全关闭后,锁锭投入,可阻止接力器活塞向开侧移动;一旦关侧油压消失,又可防止导叶被水冲开。 导水机构的传动机构 导水机构的传动机构的作用:是将操纵机构的操作力矩传递给导叶轴并使之发生转动。其型式主要有叉头式和耳柄式两种。太站为耳柄式,长站为叉头式。正常运行时应着重检查控制环、拐臂、连杆和连接板之间的连接销有无串出或脱落。剪断销及引线是否完好。 导水机构的执行机构

论混流式水轮机各部件功能及其安装程序和要求

论混流式水轮机各部件功能及其安装程序和要求 导叶:由导叶体和导叶轴两部分组成。为减轻导叶重量,常做成中空导叶。导叶的断面形状为翼型。导叶轴颈通常比连接处的导叶体厚度大,在连接处采用均匀圆滑过渡形状,以避免应力集中。 导叶轴承:上、中、下轴套,高水头机组为防止导叶上浮力超过导叶自重,保证导叶上端面间隙,在导叶套筒的法兰上一般设有止推装置(止推压板或止推块)。 导叶传动机构:导叶传动机构由控制环、连杆、导叶臂三部分组成,用于传递接力器操作力矩,使导叶转动,调节水轮机流量。该机构形式有叉头式受力情况较好和耳柄式受力情况相对较差。导水叶外围,座环的蝶形边与蜗壳相连,并被蜗壳包围。导轴承位于顶盖上,控制环口通过推拉环与接力器相连。在座环下发布置有基础环,通过锥形环与尾水管相连。混流式水轮机附属装置还有布置在顶盖上的真空破坏阀、吸力补气阀和放水阀等。 水轮机的导水机构是有导叶、传动机构(转臂、连杆、控制环)、接力器、和推拉杆等组成。 水轮机的底环是由上环、下环、和固定导叶三部分组成,它既是水轮机的通水部件,机组安装时的基准部件,又是机组运行的承重部件。要求具有水力损失小,具有一定的强度和刚度。 混流式水轮机的转轮主要由上冠、叶片、下环、止漏环、泄水锥和减

压装置等组成。 水轮机的转轮包括转体、叶片、泄水锥等。 立轴混流式水轮机引水室采用金属焊接蜗壳,其进口与压力水管相连接,其余各节与座环相连。为了便与检修,在蜗壳上开有专门进人孔(蜗壳人孔门),其底部并有排水孔和阀门,以便排出蜗壳积水。 座环位于蜗壳里,布置导水机构,它是水轮机的承重部分,又是过流部件在安装时它还是一个主要基准件,因此它要符合水力,强度和刚强等诸方面的要求。 基础环埋在混凝土内,是转轮室的组成部分,早机组安装和检修拆卸转轮时,用来支撑水轮机转轮。混流式转轮上叶片(24),呈空间扭曲状,断面为流线型,是直接将谁能转换为机械能的最主要部件。止漏装置 止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,止漏环又称迷宫环,作用是阻止水流从转轮上、下间隙处漏出,分转动和固定部分。 水轮机导轴承的作用:一是承受机组在各种工况下运行时由主轴传来

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

ZZ560轴流式水轮机结构设计_毕业设计设计说明书

2013届热能与动力工程专业毕业设计(论文) 毕业设计(论文) 题目ZZ560轴流式水轮机 结构设计 专业热能与动力工程 1

摘要 葛洲坝电站是我国代表性的低水头大流量、径流式水电站,兼具发电、改善航道等综合效益。本次设计主要是通过查阅相关设计手册,对葛洲坝电站型号为ZZ560-LH-1130的轴流转桨式水轮机结构进行设计,主要内容包括水轮机总体结构设计、导水机构及其传动系统设计,水轮机部分零部件,例如主轴,导叶等零件的设计。 通过使用CAD绘图,本次设计过程更加便捷,设计成果更加精确。关键词:葛洲坝水电站,轴流式水轮机,转轮设计,结构设计, ABSTRACT

2013届热能与动力工程专业毕业设计(论文) Gezhouba Dam power plant is China's representative low head and largeDischarge,runoff hydropower stations,power generation,wita comprehensive benefits improve navigation etc.This design is mainly through access to relevant design manual,design of the Kaplan turbine structure of Gezhouba Dam power plant model for ZZ560-LH-1130,The main contents include design of water mechanism and its transmission system overall structure design of hydraulic turbine,guide,some parts of hydraulic turbine,such as the spindle,the design of guide vane and other parts. Using the CAD,the process of design is more convenient and the result is more accurate. KEY WORDS:GeZhouBa hydropower station,Kaplan turbine, station,runner,Structural design. 3

轴流式水轮机基本结构

轴流式水轮机基本结构 轴流式水轮机与混流式水轮一 样属于反击式水轮机,二者结构上 最明显的差别是转轮,其次是导叶 高度。根据转轮叶片在运行中能否 调节,轴流式水轮机又分为轴流定 桨式和轴流转桨式两种型式。轴流 式水轮机用于开发较低水头 (3m~55m),较大流量的水能资源。 它的比转速大于混流式水轮机,属 于高比转速水轮机。在低水头条件 下,轴流式水轮机与混流式水轮机 相比较具有较明显的优点,当它们 使用水头和出力相同时,轴流式水 轮机由于过流能力大(图5-13), 可以采用较小的转轮直径和较高的 转速,从而缩小了机组尺寸,降低了 投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的功率。但在相对高水头条件下,轴流式水轮机除了空化系数较大,厂房要有较大开挖量外,飞逸转速和轴向水推力较混流式水轮机高。 轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,是一种值得广泛使用的优良机型。 限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量和单位转速都比较大,转轮中水流的相对流速比相同直径 的混流式转轮中的高,所以它具有较大的空化系数。在相同水头下,轴流式水轮机由于桨叶数少,桨叶单位面积上所承受的压差较混流式叶片的大,桨叶正背面的平均压差较混流式的大,所以它的空化性能较混流式叶片的差。因此,在同样水头条件下,轴流式水轮机比混 流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机桨叶数较少(3~8片),桨叶呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加桨叶数和桨叶的厚度,为了能够方便地布置下桨叶和转动机构,转 轮的轮毂比,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单 位流量下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了轴流式水轮机应用水头的提高。 但是,随着科学技术的发展,通过改进转轮的设计方法,选择更加合理的流道几何参数和桨叶的型线,使得桨叶背面的压力分布更加均匀,降低桨叶正面和背面的平均压差,从而达到

轴流式水轮机的结构

轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶

图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体

轴流式水轮机的结构

一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。

1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢 轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,

轴流式水轮机转轮算例

题目: ZZ440水轮机转轮的水力设计 方法: 奇点分布法 取D1=1000mm ,取6个断面R1~R6依次为 水力设计内容: (1) 确定计算工况 (2) 确定各断面叶栅稠密度l /t (3) 选定进出口轴面速度Cz 沿半径的分布规律,确定各断面的Cz1、Cz2 (4) 选定进出口环量Γ沿半径的分布规律,确定各断面的Γ1、Γ2 (5) 计算各断面进出口速度三角形,求W ∞、β∞ (6) 第一次近似计算及绘图 (7) 第二次近似计算 ZZ440—100转轮水力设计 一.确定计算工况 由模型综合特性曲线得到n 110=115(r/min ),Q110=820(l/s ),η=91%, a om =18mm zz440属于ns=325~875范围,为了使设计的转轮能在预期的最优工况下效率最高,计算工况与最优工况的关系按下式确定: n 11=(1.2~1.4)n 110 =138~161(r/min ) n=5.841~3.721/)4.1~2.1(/1110111==D H n D H n (r/min ) 故选定n=750(r/min ) 则实际n11= 49.1431 =H nD Q11=(1.35~1.6)Q110=1.4 Q110=1148<1650(l/s ) ===H D 110Q 4.1H D 11Q Q 22 6.0s m /3 mm a D D a m m 13.391846 .010110=?== 二.确定各断面叶栅稠密度l /t 据P 213页s pj n t l ~)(关系,当ns=440时,得3.1≈pj t l )( 综合考虑一下关系: pj pj n t l t l t l )()()()95.0~85.0(K 1== pj pj b t l t l t l )()()()2.1~1.1(K 2== n n b t l t l t l )()()()25.1~2.1(K 3== 分别选取K1=0.95,K2=1.15,K3=1.21得各断面叶栅稠密度l/t 如下表:

轴流式水轮机毕业设计

轴流式水轮机毕业设计任务书、基本资料和指示书 河海大学水电学院动力系 二○○六年三月

轴流式水轮机毕业设计 任务书 一、设计内容 根据原始资料,对指定电站、指定原始参数进行机电部分的初步设计,包括:轴流式水轮机的选型、发电机选型,调保计算及调速设备选择,混流式水轮发电机组的辅助设备系统设计,电气一次部分设计。 二、时间安排(供参考) 1、轴流式水轮机的选型、发电机选型 5.5周 2、调保计算及调速设备选择0.5周 3、辅机系统2周 5、电气部分2周 6、整理成果1周 7、评阅答辩1周 8、机动0.5 周 总计12.5周 三、成果要求 1、设计说明书:说明设计思想,方案比较及最终结果,并附有必要的图表。 2、设计计算书:设计计算过程,计算公式,参数选取的依据,计算结果。 3、图纸:主机成果图、水系统图、气水系统图、电气主结线图,共5-6张(含CAD设计图),规格1号图。 轴流式水轮机毕业设计 基本资料 富春江水电站位于浙江北部钱塘江上游富春江上,造成后接入华东电网向金华等地供电。 富春江水电站坝址选在七里垅峡口,上距新安江水电站约60公里,下距杭州市110余公里,,地理位置优越。 水库为日调节,总库容9.2亿立方米。电站以发电为主,并可改善航运,发展灌溉及养殖事业等综合效益。电站为河床式,公路从左岸进入厂房。 本电站下游特征洪水位如下: 万年一遇洪水位▽15.6 (Q=43100米3/秒)

千年一遇洪水位▽14.6 (Q=29400米3/秒) 本地区年平均气温为16.0℃,实测最高气温为40.5℃,雨日约175天,以五月份为最集中. 本电站建成后将承担峰荷,也承担部分基荷,有调相任务,本电站将在120公里外的金华变电所接入系统(电力系统结线见附图)并向七里垅镇供电2-3万千瓦。

混流式水轮机

https://www.wendangku.net/doc/b312907574.html,/trade/pay_success.htm?biz_order_id=213979720000462&out_trade_no=T 200P213979720000462&dealing=T 第一节混流式水轮机结构 一、概述 混流式水轮机是反击式水轮机的一种,其应用水头范围很广,从20~700m水头均可使用。它结构简单,制造安装方便,运行可靠,且有较高的效率和较低的空蚀系数。现以图2-1所示的混流式水轮机为例来介绍这种水轮机结构。水轮机的进水部件是具有钢板里衬的蜗壳,座环支柱也称固定导叶1,在转轮四周布置着导水机构导叶2。座环支柱具有坚固的上环a和下环b,蜗壳和上下环焊接在一起。导叶轴颈用衬套(钢或尼龙材料)支承在底环3和固定于顶盖4的套筒5上。底环固定于座环的下环上面。顶盖用螺钉6与座环的上环连接。导水的传动机构是由安置在导水叶上轴颈的转臂12,连杆13和控制 环14组成。导叶的开度0a(从导叶出口边端到相邻导叶背部的最短距离)的改变是通过导水机构的两个接力器16和控制环连接的推拉杆15传动控制环来实现的。 图2-1 HL200-LJ-550水轮机剖面图(高度单位:m,尺寸单位: mm)

1—固定导叶;2—导叶;3—底环;4—顶盖;5—套筒;6—螺钉; 7—主轴法兰;8—主轴;9—上冠;10—下环;11—叶片;12—转臂;13—连杆;14—控制环;15—推拉杆;16—接力器;17—导轴承;18—泄水锥;a 19,b 19—上,下迷宫环;a—坐环上环;b—坐环下环;20—连接螺栓 由于混流式水轮机应用水头较高,导叶承受的弯曲载荷大,因此导叶的相对高度0b与轴流式水轮机比较起来做得短一些,以减小跨度。此外,随着水头增高,相同功率下水轮机的过流量减小,这样有可能减小流道的过流载面。0b一般随水头增加而减小。 导叶和水轮机顶盖4及底环3之间的间隙及相邻导叶在关机时的接合面都会有漏水现象。一般采用橡胶的或金属制成的密封件,可使导水机构关闭时的漏水量最小。在高水头的水轮机中,有时采用专门的管状密封装置,在关机时其内腔充以压缩空气,能使端面完全密封。 转轮是水轮机将水流能量转换为机械能的核心部件。水流通过导水机构进入转轮。转轮由上冠9,下环10和叶片11组成。一般混流式水轮机有14~19个叶片。叶片、上冠和下环组成坚固的整体钢性结构。转轮上冠与主轴8的下法兰连接。泄水锥18与上冠连接,用于消除水流旋蜗。 转轮密封a 19,b 19是安置在转轮上冠和下环上的多槽环。水轮机工作时,转轮前后的水流个别为高压与低压,转轮后常形成真空。因此,水轮机工作时有部分水流经过转动与不转动部件之间的间隙无益地漏掉,从而使水轮机效率降低。密封环就是为了减少流量漏损。当水经过密封环空间时,受到突然扩大和缩小的局部水力阻挡,产生水力损失,从而减小流速,使通过缝隙的流量减小。 减压孔联通转轮上腔和转轮下面的低压区,从而减小由推力轴承承受的轴向推力,当有减压孔(图2-1上的20)时,转轮上冠必须设置密封装置。 图2-2为混流式水轮机水平剖面图,座环的固定导叶数量通常为导叶数一半。

轴流式水轮机的结构

轴流式水轮机的结构 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6— 转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1—? 1—? 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体 轴流式水轮机的转轮体上装有全部叶片和操作机构,在安放叶片处转轮体的外形有圆柱形和球形两种。大中型转桨式水轮机的转轮体多数采用球形,它能使转轮体与叶片内缘之间的间隙在各种转角下都保持不大于2~5mm ,达到减少漏水损失的目标。另外环形转轮体增大了放置叶片处的轮毂直径,有利于操作机构的布置。但是相同的轮毂直径下,球形转轮体减小了叶片区转轮的过水面积,水流的流速增加,使球形转轮体的空蚀性能比圆柱形差。 圆柱形转轮体其形状简单,同时水力条件和空蚀性能均比球形转轮体好。但转轮体与叶片内缘之间的间隙是根据叶片在最大转角时的位置来确定的,而当转角减小时,转轮体与叶片之间的间隙显着增大,叶片在中间位置时,一般间隙达几十毫米,增加了通过间隙的漏水量,效率下降,所以圆柱形转轮体的效率低于球形转轮体。 转轮体的具体结构要根据接力器布置与操作机构的形式而定。小型水轮机转轮,定桨式水轮机转轮一般都采用圆柱形转轮体。转轮体一般用ZG30或ZG20MnSi 整体铸造,为了支承叶片,转轮体开有与叶片数相等的孔,并在孔中安置叶片轴。随着工艺、材料和结构的改进,转轮体球面直径与转轮直径之

水轮机的基本组成结构

水轮机 一、水轮机的基本参数 1)工作水头(H): 水轮机的工作水头就是指水轮机的进、出口单位能量差,也就是上游水位与下游水位之差,用H表示,其单位为m其大小表示水轮机利用水流单位能量的多少。 2)流量(Q:在单位时间内流经水轮机的水量,称为流量,用Q表示,其单位为m3 /s 。其大小表示水轮机利用水流能量的多少 3)出力(P):具有一定水头和流量的水流通过水轮机便做功,而在单位时间内所做的功率称为水轮机的出力,用P表示,其单位KW 水轮机的出力为:P=9.81QH 4)效率(n)目前混流式水轮机的最高效率95% P=9.81QHq 5)比转速指工作水头H为1m发出的功率P为1kw时水轮机所具有的转速,故称为比转速。 二、水轮机的类型与代号 我们根据水流能量的转换的特征不同,把水轮机分为两大类,及反击型和冲击型水轮机。 反击型水轮机,具有一定位能的水流主要以压能的形态,由水轮机转变为机械能。按其水流经过转轮的方向不同,反击型水轮机可分为以下几种类型: 反击型:轴流(定桨、转桨)水轮机、混流式水轮机、贯流式水轮机、斜流式水轮机 冲击型:水流不充满过流流道,而是在大气压力下工作,水流全部以动能

形态由转轮变为机械能。按射流冲击水斗的方式不同,可分为如下几种类型:冲击型:水斗式水轮机、斜击式水轮机、双击式水轮机 我国水轮机式的代号,有三部分组成,第一部分由水轮机型式及转轮型号组成,并由汉语拼音表示。 水轮机型式的代号 以本电站为例:水轮机型号:HL(247) —LJ—235,表示混流式水轮机,转轮型号为247,立轴,金属蜗壳,转轮直径为235 cm。 三、混流式水轮机 1定义:水流从径向流入转轮,在转轮中改变方向后从轴 向流出的水轮机。其叶片固定,不能转动调节。 2混流式水轮机-结构特点 混流式水轮机主要应用于20—450米的中水头电厂, 其结构紧凑,效率较高,能适应很宽的水头范围,是目前 世界各国广泛采用的水轮机型式之一。 当水流经过这种水轮机工作轮时,它以辐向进入、轴向流出 所以也称为辐向轴流式水轮机。

轴流式水轮机的结构

轴流式水轮机的结构 第二节轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机

1— 1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3,55m,目前最大应用水头不超过70m。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条 Qn1111件。由于轴流式水轮机的过流能力大。单位流量和单位转速都比较大,转轮中水流 ,的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

轴流式水轮机空化

轴流式水轮机关于 声发射、振动、噪声、和空化结构之间关系的调查研究 这个研究的目的是解释关于空化现象不同的声学信号和视觉图像之间的关系。以只有两个叶片的轴流式水轮机(模型机)在空化条件下运行,进行测量声发射、振动、和噪声的试验。由于模型机只有两个叶片,大部分附加边缘影响被取消,可得出结论认为这就是空化本身记录信号的来源。结果表明,空化的程度和从传感器上记录的数据之间的关系是有趣的。当空泡数量减少时,从测量元件上记录的振幅首次出现增大,经过一个极大值,再经过一个极小值,最后又重复上升。空化空蚀现象也可从视觉上进行显像观测。从测量结果上推断出声音的发射、振动、噪声和空泡结构的构成、大小、类型之间有不同的相互关系。对于这种现象,从物理方面得到的解释是处于半经验主义的,由于空化空蚀的出现使水轮机的叶片产生噪声和振动。 1.序言 用空泡、水泡的形成与聚合来描述的空化空蚀现象频繁发生在水力机械上。它引起振动,增加流动损失,改变水流形态,加剧磨损,影响光热(冷光)以及产生噪声和声发射。 目前鉴别水力机械空化空蚀最常用的方法是基于对效率下降的监测。必须注意的是空化通常是在关键点之前开始产生的,即在水轮机模型试验效率下降1%时。通常人们认为空化开始时压力是不稳定的,随着实际的流动而变化,而且与水力机械表面的粗糙度有关。其他技术,像振动分析、水听器观测和高频声发射技术的应用,近几年来在监测旋转机械方面得到了很大发展。应用在这些技术上的典型频域分析范围是5KHz—1MHz。在另一方面,在进行模型试验时,空化现象的直观性成为空化研究的重要方面。那个有趣的趋势,当空泡的数量减少时,测量信号首先上升,经过一个极大值,再经过一个极小值,最后又重复上升,实际上是众所周知的。它是由研究离心式泵空化噪音和振动的Pearsall首次提出的。在导流泵上进行试验也得到相似的趋势。然而,到目前为止仍没有完整系统的解释。 这篇文章讨论的是在只有两个叶片的轴流式水轮机上测量声发射、振动和噪音。与

相关文档
相关文档 最新文档