文档库 最新最全的文档下载
当前位置:文档库 › 热传导方程及其定解问题的导出

热传导方程及其定解问题的导出

热传导方程及其定解问题的导出
热传导方程及其定解问题的导出

第一章 热传导方程

本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会

遇到这类方程.

§1 热传导方程及其定解问题的导出

热传导方程的导出

物理模型

在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化.

以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律

物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和.

在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律.

设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3

), q ρ

热流密度(焦耳/秒·米2

),0f 是热源强度(焦耳/千克·秒).

注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ρρ?-(n ρ

D ?的外法向),从而由能量守恒律,我们有

,)||(21

21

120??????????+?-=-?==t t D

t t D

D

t t t t dxdydz f dt ds n q dt dxdydz u u c ρρρ

ρ () 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比

,u k q ?-=ρ

(梯度?

??

?

????????==?z u y u x u gradu u ,,) () 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

,n

u k n u k n q ρρρρ??-=??-=?

从而式可改写为

??????????+??=-?==21

21120)||(t t D

t t D D t t t t dxdydz f dt dS n u

k dt dxdydz u u c ρρρ 假设(,,,)u x y z t 在柱体(0,)Ω?+∞内具有连续微商222222,,,z

u

y u x u t u ????????.则应用散度定

理(或高斯公式)立得:

[]2

21

1

0()t t t t D

D

u

dt c dxdydz dt k u f dxdydz t ρ

ρ?=??+??

???????,

由于被积函数在(0,)Ω?+∞内连续,以及],[21t t ,D 的任意性,又由于物体均匀,各向同性, k c ,,ρ都是常数,立得:

,)(0f u k t

u

c ρρ

+??=?? ,)(0c

f u c k

t u +??=??ρ ,,,,,)(222222u z

u

y u x u z u z y u y x u x z u y u x u z y x u ???+??+??=?

??

??????+???

? ??????+??? ??????=???? ????????????? ????????=???记为

令,,02

c

f f c k

a ==

ρ?是三维Laplace 算子,则 ,2f u a t

u

+?=?? () 称为热传导方程.

当0≥f 时表示热源,当0≤f 时表示热汇.

为了具体确定物体内部的温度分布,我们还需要知道物体的初始温度分布以及通过物体的边界受周围介质的影响. 初始条件

Ω??Ω=Ω∈=),,(),

,,()0,,,(z y x z y x z y x u ?

边界条件有三类: 1.已知边界上的温度分布

),,,,(t z y x g u =∑

这里[0,)∑=?Ω?∞.

特别当≡g 常数时,称物体的边界保持恒温. 2.已知通过边界Ω?的热量

),,,,(t z y x g n

u k

=??∑

(n 为Ω?上的单位外法向量),0≥g 表示流入,0≤g 表示流出,特别当0≡g 表示物体绝热. 3已知通过边界Ω?与周围介质有热交换.

(),00∑∑

-=??u g n

u k

α或),,,,(t z y x g u n u =??

?

??+??∑α

这里0g 表示周围介质温度,00

>=k

αα表示热交换系数.

定解问题

为了具体确定物体的温度场,我们需要求解热传导方程的某一特定的定解问题. 设Ω是空间3R 中的有界开区域.

第一初边值问题

???

?

???=Ω

∈=∞?Ω∈=?-??∑),,,(),,(),,,()0,,,(),0(),,,(,2t z y x g u z y x z y x z y x u t z y x f u a t u ? 第二初边值问题

????

???=??Ω

∈=∞?Ω∈=?-??∑),,,(),,(),,,()0,,,(),0(),,,(,2

t z y x g n

u z y x z y x z y x u t z y x f u a t u ? 第三初边值问题

?????

????=??? ??+??Ω∈=∞?Ω∈=?-??∑)

,,,(),,(),,,()0,,,(),0(),,,(,2

t z y x g u n

u

z y x z y x z y x u t z y x f u a t u α? 初值问题(或称Cauchy 问题)

??

???∈=∞?∈=?-??332

),,(),,,()0,,,(),0(),,,(,

R z y x z y x z y x u R t z y x f u a t

u ? 什么是定解问题的解(解说一下)

验证2

2

12),(x t a t x u u +==是方程022

2=??-??x

u a t u 的一个解; ()0,21),(2

2

42>=

--

t e

t

a t x u t

a x ξπ(ξ是参数)是方程022

2=??-??x

u a t u 的一个解. 数学物理方程的主要问题,在推导出方程之后,求出方程的解.然而求出一个偏微分方程的精确解一般是困难的. 附注1 方程

f u a t

u

=?-??2虽然通常称为热传导方程,但绝不只用来表述热传导现象.事实上,自然界还有很多现象同样可用这个方程来刻划,一个重要的例子是考虑某类分子在介质(如空气,水,…)中的扩散.浓度u 的不均匀产生分子运动(扩散),它遵循质量守恒定律.根据Nernst 实验定律:分子运动速度与浓度的梯度成正比:u D v ?-=,D 称为扩散系数.从而同样

可导出分子浓度u 适合的方程

f u a t u

=?-??2,这里2a 是一个与扩散系数成正比的常数,f 表示反应项.因此人们通常把方程f u a t

u

=?-??2称为扩散方程,而u a ?-2称为扩散项.

附注 2 对某些三维问题,如果根据问题的某些性质,适当选取坐标系,可以化归为或近似地化归为一维或二维问题来处理.这样的简化对于 求解定解问题,特别是求问题的近似解带来方便.

例 1. 如果物体可看成一根细杆,它的侧表面绝热,它与周围介质的热交换只在杆的两端

l x ,0=进行;如果在任意一个与杆的轴线垂直的截面上,初始温度和热源强度的变化很小,那

么我们可以近似地认为杆上的温度分布只依赖于截面的位置.因此如果取杆的轴线为轴,那么方程可改写为

),(2

2

2t x f x u a t u =??-?? () 我们称它为一维热传导方程.

同样,如考虑薄片物体上的热传导,薄片的侧面绝热,可得二维热传导方程.

例2 考虑一半径为R 的球体,它通过球表面与周围介质有热交换.如果在球面上所有各点所受周围介质的影响都相同,且球内任意一点的初始温度和热源强度只依赖于它到球心的距离而与它的方位无关,那么如果我们选择以球心为坐标原点并引进球坐标,从而球内的温度

),(t r u u =适合方程

),(222

2t r f r u r r

u a t u =???? ????+??-?? 这是由于222),,(),,,(z y x r t r v t z y x u u ++=

==.

r

x r v x r r v x u ??=

????=??, r v

r

x r r x r v r x x r v r x r v r x r v x x u ??-+???=??? ??????+???=??? ???????=??3

222222222222, 同理 r v

r

y r r y r v y u ??-+???=??3

22222222, r v

r

z r r z r v z u ??-+???=??3

22222222, 于是22222

2z

u

y u x u u ??+??+??=? ()

r v r z y x r r z y x r v ??++-+++???=3

22222222223 r v

r r

v ??+??=222 .

我们称它为球对称问题的热传导方程.

例 3 考虑一高为H ,半径为R 的圆柱形物体.引入柱坐标系,取柱体的轴线为z 轴,下底落在

0=z 平面上,假设在柱体的侧表面和上下底上给出的边界条件只分别依赖于z 和r (点到轴线

的距离),且柱体初始温度和内部热源亦只是z r ,的函数.这样在柱体内温度),,(t z r u u =适合

方程),,(12222

2t z r f z u r u r r u a t u =???

? ????+??+??-?? 这是一个二维轴对称问题的热传导方程. 这是由于22),

,,(),,,(y x r t z r v t z y x u u +===

r v

r

x r r x r v x u ??-+???=??3

22222222 r v r

y r r y r v y u ??-+???=??3

22222222

r

v

r r v y u x u ??+

??=??+??1222222 若进一步假设柱长无穷,且通过柱体侧表面受周围介质的影响是相同的,又若柱体的初始温度的内部热源只依赖于r ,这样在柱体内温度),(t r u u =适合方程

.),(122

2t r f r u r r u a t u =???

? ????+??-?? 附注3 如果物体内部的热源以及它和外界的热交换与时间无关.这样在相当长时间以后物体内部的温度渐趋于稳定。设),,(),,,(lim z y x v t z y x u t =+∞

→,则有0lim

=??+∞→t

u

t ,从而稳定温度场

适合Poisson 方程

Ω∈=?-),,(,),,(2z y x z y x f v a .

导热方程求解matlab

使用差分方法求解下面的热传导方程 2 (,)4(,) 0100.2t xx T x t T x t x t =<<<< 初值条件:2(,0)44T x x x =- 边值条件:(0,)0(1,)0 T t T t == 使用差分公式 1,,1,2 2 2 (,)2(,)(,) 2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+= +≈ ,1,(,)(,) (,)()i j i j i j i j t i j T x t k T x t T T T x t O k k k ++--= +≈ 上面两式带入原热传导方程 ,1,1,,1,2 2i j i j i j i j i j T T T T T k h +-+--+= 令2 24k r h =,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ i x j t j

编程MA TLAB 程序,运行结果如下 1 x t T function mypdesolution c=1; xspan=[0 1]; tspan=[0 0.2]; ngrid=[100 10]; f=@(x)4*x-4*x.^2; g1=@(t)0; g2=@(t)0; [T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid); [x,t]=meshgrid(x,t); mesh(x,t,T); xlabel('x') ylabel('t') zlabel('T') function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid) % 热传导方程:

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

热传导方程的求解

应用物理软件训练 前言 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其

他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。 本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。

题目:热传导方程的求解 目录 一、参数说明 (1) 二、基本原理 (1) 三、MATLAB程序流程图 (3) 四、源程序 (3) 五、程序调试情况 (6) 六、仿真中遇到的问题 (9) 七、结束语 (9) 八、参考文献 (10)

一、参数说明 U=zeros(21,101) 返回一个21*101的零矩阵 x=linspace(0,1,100);将变量设成列向量 meshz(u)绘制矩阵打的三维图 axis([0 21 0 1]);横坐标从0到21,纵坐标从0到1 eps是MATLAB默认的最小浮点数精度 [X,Y]=pol2cart(R,TH);效果和上一句相同 waterfall(RR,TT,wn)瀑布图 二、基本原理 1、一维热传导问题 (1)无限长细杆的热传导定解问题 利用傅里叶变换求得问题的解是: 取得初始温度分布如下 这是在区间0到1之间的高度为1的一个矩形脉冲,于是得 (2)有限长细杆的热传导定解问题

传热基本方程及传热计算

第三节传热基本方程及传热计算 可知,要强化传热过程主要应着眼于增加推动力和减少热阻, 也就是设法增大 t m 或者 增大传热面积A 和传热系数K 。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建 立在上述基本方程的基础上的, 传热计算则主要解决基本方程中的 Q ,A,K, tm 及有关量的 计算。传热基本方程是传热章中最主要的方程式。 、传热速率Q 的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热 量Qh ,必等于冷流体所吸收的热量 Qc ,即Qn Qc ,称之热量衡算式。 i.i. 无相变化时热负荷的计算 (1) ( 1)比热法 Q m h c ph T 1 T 2 m c C pc t 2 11 式中 Q ――热负荷或传热速率, J .S 1或W ; mh , mc ――热、冷流体的质量流量, kg.s -1; Cpc,Cph ――冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J . (kg.k ) -1; T 1 ,T 2——热流体进、出口温度,K(° C ); t 1 ,t 2 —冷流体的进出口温度,K(° C )。 (2) 热焓法 Q m(l 1 I 2) (4 — 13) 式中 丨 1 ――物料始态的焓,k J .kg -1; I 2 ――物料终态的焓,k J .kg -1。 2 ?有相变化时热负荷计算 Q Gr (4—14) 式中 G ――发生相变化流体的质量流量, kg.s -1; r ---- 液体汽化(或蒸汽冷凝)潜热, k J .kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化, 然后根据不同算式进行计算。 对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有: 从传热基本方程 或 Q kA t m t Q m 1 kA 传热推动力 传热热阻 (4-11) (4-lla) (4-12)

热传导方程傅里解

热传导方程傅里解

————————————————————————————————作者:————————————————————————————————日期:

热传导在三维的等方向均匀介质里的传播可用以下方程表达: 其中: ?u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。 ?/是空间中一点的温度对时间的变化率。 ?, 与温度对三个空间座标轴的二次导数。 ?k决定于材料的热传导率、密度与热容。 热方程是傅里叶冷却律的一个推论(详见条目热传导)。 如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。 热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。 热方程也是抛物线偏微分方程最简单的例子。 利用拉普拉斯算子,热方程可推广为下述形式

其中的是对空间变量的拉普拉斯算子。 热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。 就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 以傅里叶级数解热方程[编辑] 以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个空间变量的热方程,这可以当作棍子的热传导之模型。方程如下: 其中u = u(t, x) 是t和x的双变量函数。 ?x是空间变量,所以x∈[0,L],其中L表示棍子长度。

2热传导方程的初值问题

§2热传导方程的初值问题 一维热传导方程的初值问题(或Cauchy 问题) ?? ???+∞<<∞-=>+∞<<∞-=??-??x x x u t x t x f x u a t u ),()0,(0 ,),,(2 2 2? () 偏导数的多种记号xx x t u x u u x u u t u =??=??=??22,,. 问题也可记为 ?? ?+∞ <<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0 ,,),(2?. Fourier 变换 我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可 积,若积分 ? +∞ ∞ -dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。 将),(+∞-∞上绝对可积函数形成的集合记为),(1 +∞-∞L 或),(+∞-∞L , 即{ } ∞<=+∞-∞=+∞-∞? +∞ ∞ -dx x f f L L )(| ),(),(1 ,称为可积函数空间. 连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C , {}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。 定义 若),(+∞-∞∈L f ,那么积分 ),(?)(21 λπ λf dx e x f x i =? +∞ ∞ -- 有意义,称为Fourier 变换, )(? λf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ? +∞ ∞ --= =dx e x f f Ff x i λπ λλ)(21)(?)( 定理 (Fourier 积分定理)若),(),(1 +∞-∞?+∞-∞∈C L f ,那么我们有

第四章导热问题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目:六点对称差分格式解热传导方程的初边值 问题 姓名:王晓霜 学院:理学院 专业:信息与计算科学 班级: 0911012 学号: 091101218 指导老师:翟方曼 2012年12月14日

一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数, jh x x j ==, ()N j ,,1,0Λ=; τk y y k ==, ()M k ,,1,0Λ=

传热基本方程及传热计算

第三节 传热基本方程及传热计算 从传热基本方程 m t kA Q ?= (4-11) 或 传热热阻传热推动力= ?=kA t Q m 1 (4-11a) 可知,要强化传热过程主要应着眼于增加推动力和减少热阻,也就是设法增大m t ?或者 增大传热面积A和传热系数K。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建立在上述基本方程的基础上的,传热计算则主要解决基本方程中的m t K A Q ?,,,及有关量的 计算。传热基本方程是传热章中最主要的方程式。 一、传热速率Q的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热量 h Q ,必等于冷流体所吸收的热量c Q ,即c n Q Q =,称之热量衡算式。 1. 1. 无相变化时热负荷的计算 (1) (1) 比热法 () ()1221t t c m T T c m Q pc c ph h -=-= (4-12) 式中 Q ——热负荷或传热速率,J.s -1或W ; c h m m ,——热、冷流体的质量流量,kg.s -1; ph pc c c ,——冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J.(kg.k )-1; 21,T T ——热流体进、出口温度,K(°C ); 21,t t -冷流体的进出口温度,K(°C )。 (2)热焓法 )(21I I m Q -= (4-13) 式中 1I ——物料始态的焓,k J.kg -1; 2I ——物料终态的焓,k J.kg -1。 2.有相变化时热负荷计算 Gr Q = (4-14) 式中 G ——发生相变化流体的质量流量,kg.s -1; r ——液体汽化(或蒸汽冷凝)潜热,k J.kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化,然后根据不同算式进行计算。对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有:

热传导方程的导出及其定解问题的导出

热传导方程的导出及其定解问题的导出 1. 热传导方程的导出 考察空间某物体G 的热传导问题。以函数(,,,)u x y z t 表示物体G 在位置(,,)x y z 及时刻t 的温度。 依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数 u n ??成正比,即 (,,) u dQ k x y z dSdt n ?=-? (1-1) 其中(,,)k x y z 称为物体在点(,,)x y z 处的热传导系数,它应取正值。(1-1)式中负号的出现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和 u n ??异号。 在物体G 内任取一闭曲面Γ,它所包围的区域记为Ω,由(1-1)式,从时刻1t 到2t 流进此闭曲面的全部热量为 21(,,)t t u Q k x y z dS dt n Γ?? ?=??????? ? (1-2) 这里 u n ??表示u 沿Γ上单位外法线方向n 的方向导数。 流入的热量使物体内部的温度发生变化,在实践间隔12(,)t t 中物体温度从1(,,,)u x y z t 变化到2(,,,)u x y z t ,它所应该吸收的热量是 21(,,)(,,)[(,,,)(,,,)]c x y z x y z u x y z t u x y z t dxdydz ρΩ -??? 其中c 为比热,ρ为密度。因此就成立 21 21(,,) (,,)(,,)[(,,,)(,,,)]t t u k x y z dS dt c x y z x y z u x y z t u x y z t dxdydz n ρΓΩ ??? =-??????????? (1-3) 假设函数u 关于变量,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为 2 21 1t t t t u u u u k k k dxdydzdt c dt dxdydz x x y y z z t ρΩΩ????????????????? ++=?????????? ? ? ? ?????????????? ???? 交换积分次序,就得到 2 1 0t t u u u u c k k k dxdydzdt t x x y y z z ρΩ?? ?????????????---=?????? ? ? ??????????????? ? (1-4) 由于12,,t t Ω都是任意的,我们得到

偏微分方程数值解法的MATLAB源码

[原创]偏微分方程数值解法的MATLAB源码【更新完毕】 说明:由于偏微分的程序都比较长,比其他的算法稍复杂一些,所以另开一贴,专门上传偏微分的程序谢谢大家的支持!其他的数值算法见:..//Announce/Announce.asp?BoardID=209&id=82450041、古典显式格式求解抛物型偏微分方程(一维热传导方程) function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t) % %输出参数:U -解矩阵,第一行表示初值,第一列和最后一列表示边值,第二行表示第2层…… % x -空间变量 % t -时间变量 %输入参数:uX -空间变量x的取值上限 % uT -时间变量t的取值上限 % phi -初值条件,定义为内联函数 % psi1 -边值条件,定义为内联函数 % psi2 -边值条件,定义为内联函数 % M -沿x轴的等分区间数 % N -沿t轴的等分区间数 % C -系数,默认情况下C=1 % %应用举例: %uX=1;uT=0.2;M=15;N=100;C=1; %phi=inline('sin(pi*x)');psi1=inline('0');psi2=inline('0'); %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C); %设置参数C的默认值 if nargin==7 C=1; end %计算步长 dx=uX/M;%x的步长 dt=uT/N;%t的步长 x=(0:M)*dx; t=(0:N)*dt;

相关文档
相关文档 最新文档