文档库 最新最全的文档下载
当前位置:文档库 › 线性系统理论介绍

线性系统理论介绍

线性系统理论

绪论

线性系统理论的研究对象

线性系统理论的主要任务

线性系统理论的发展过程

线性系统理论的主要学派

本课程内容及参考书

线性系统理论的研究对象

系统:由相互关联和相互作用的若干组成部分按一定规律组合而成的具有特定功能的整体。

——机械运动系统、电系统

——人体系统、发酵系统

——交通系统、人口系统、经济系统

从数学角度——相似系统(忽略物理特性)

线性系统非线性系统

——满足叠加原理;可建立一套通用方法;

研究对象——线性系统以及可以线性化的系统

工程系统生物系统社会系统

在控制理论中研究系统的动态特性

——采用微分方程或差分方程

连续系统——微分方程

离散系统——差分方程

定常系统——动态方程的系数与时间无关

时变系统——动态方程的系数是时间的函数主要研究对象——多输入多输出线性定常连续系统但很多结论可以推广到线性时变系统

线性离散系统

线性系统理论的发展过程

上世纪40年代—50年代中期

经典控制理论

采用传递函数模型,适用于单输入单输出;

上世纪60年代以来

现代控制理论

采用状态空间模型,适用于多输入多输出系统;

在此基础上,涌现出很多种方法,比如几何方法、频域方法、代数方法等。

上世纪80年代中期,提出大系统理论

现代线性系统理论的主要学派

线性系统的状态空间法

线性系统的几何理论

线性系统的代数理论

多变量频域法

线性系统的状态空间法

状态空间法是线性系统理论中最重要和影响最广的一个分支; 数学模型——状态空间描述;

是一种时域方法——直观;

主要的数学基础是线性代数和矩阵理论;

主要的计算为矩阵运算和矩阵变换,适合在计算机上进行; 已经发展为一整套完整和成熟的理论和方法;

是其它分支的基础,或对其它分支影响较大;

也是本门课程的主要内容;

线性系统的几何理论

状态空间方法的基础上进行的变化

特点是将线性系统的研究化为状态空间中的几何问题;

把矩阵看成向量空间的线性映射,系统理论和空间座标选取无关,这样往往给出一些比较本质的结果,在解耦及跟踪器取得较好进展。 代表著作:

加拿大著名学者旺纳姆(W.M.Wonham) 著述的《W.M. Wonhan:Linear Multivariable Control:A Geometric Apporach (1978) (84年有中译本).

线性系统的代数理论

是用抽象代数工具研究线性系统的一种方法;

主要在实现、反馈问题上取得一些成果。

代表著作:

R.E.Kalman: Topics In Mathmatical System Theory (1969)

多变量频域法

在复数域进行。充分应用了经典控制理论的优点。多变量频率域方法属于这一范畴。是最活跃的研究领域之一。

主要著作:

1. H.H.Rosenbrock: State-Space and Multivariable Theory, Nelson, London.

2. W.A.Wolovich: Linear Multivariable Systems (1974).

3. M. Vidyasagar: Control System Synthesis:A Factorization Approach (1985), MIT Press.

这种方法也是我国很多高校研究生阶段线性系统理论主要介绍的内容。

线性系统理论的主要任务

线性系统理论主要研究线性系统

研究系统状态的运动规律以及改变这种运动规律的可能性和方法。

研究给定系统状态的运动规律以及改变这种运动规律的可能性——系统分析

改变这种运动规律的方法及参数确定——系统设计以上两种任务建立在系统模型基础之上的

首要工作——系统建模

主要内容系统描述——单输入单输出(第一章)

多输入多输出(第四章)

定量分析——运动分析(第二章)

定性分析

能控能观性分析(第三章)

稳定性分析(第五章)

极点配置

状态观测器

镇定与渐近跟踪

解耦控制

(第六章)

本课程内容及参考书

本课程内容

复习状态空间模型(单输入单输出)的建立

复习系统的运动分析——求解(介绍时变系统求解)

能控性、能观测性的判定——定性证明

系统结构分解

传递函数阵实现(多输入多输出状态空间表达式建立)

系统稳定性分析

系统设计——极点配置、状态观测器、镇定与渐近跟

踪、解耦控制

参考书

线性系统理论

?段广仁《线性系统理论》哈尔滨工业大学出版社;

?仝茂达《线性系统理论和设计》中国科技大学出版社;

?Chi-Tsong Chen《Linear System theory and

Design》Third Edition

?郑大钟《线性系统理论》第二版清华大学出版社,

?Thomas Kailath, Linear Systems,1980

矩阵方面:

1.(日)须田信英等曹长修译:

《自动控制中的矩阵理论》科学出版社1979 2.韩京清、许可康、何关钰:

《线性系统理论的代数基础》,辽宁科技出版社3.黄琳:

《系统与控制理论中的线性代数》, 科学出版社考试

30%平时+70%闭卷考试

结束

线性系统理论大纲

北京化工大学 攻读博士学位研究生入学考试 《线性系统理论》考试大纲 一、适用的招生专业 控制理论与控制工程; 二、考试的基本要求 要求考试比较系统地理解线性系统状态空间设计方法的基本概念和基本理论,掌握线 性系统的状态空间分析和设计方法,要求考试具有抽象思维能力、逻辑推理能力、运算能力 和综合运用所学的知识分析问题和解决问题的能力。 三、考试的主要内容与要求 (▲表示应掌握;■表示应理解;?表示应了解) 1.▲线性系统的状态空间描述 传递函数表达与状态空间描述之间的相互转换;代数等价;组合系统的状态空间描述。2.线性系统的运动分析 ▲状态转移矩阵的定义、性质;▲定常和时变系统的状态转移矩阵求解;▲定常和时变系统的状态运动分析;■连续系统的离散化;■离散系统的运动分析。 3.线性系统能控性和能观性分析 ▲能控性及能观性定义;▲时变和定常系统的能控性及能观测性判别;■对偶原理;▲能控、能观规范型;?结构分解。 4.线性系统稳定性分析 ▲Lyapunov意义下的运动稳定性定义;■Lyapunov稳定性理论;■线性系统的Lyapunov稳定性分析;?离散系统的状态运动稳定性及判据。 5.线性系统的综合设计理论 ▲状态反馈和输出反馈的比较;极点配置问题的定义,▲极点配置条件;单变量系统的极点配置算法;■状态反馈的镇定问题;?输入——输出静态、动态解耦的定义、条件和算法;?跟踪控制;?线性二次型最优问题;▲观测器的提法、分类、与存在条件;▲全维状态观测器的设计;?降维状态观测器的设计;■观测器状态反馈控制系统及分离原理。 四、考试参考书 郑大钟,线性系统理论。北京:化学工业出版社。

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.wendangku.net/doc/b614914800.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

线性系统理论

系统控制的理论和实践被认为是对20世纪人类生产和社会活动产生重大影响的科学领域之一。其中,线性系统理论是系统控制理论中最基础,最成熟的分支。系统存在于自然界和人类社会的各个领域。从系统控制理论的角度来看,它通常被定义为具有某些相关功能和受限制部分的特定功能的整体。系统状态由描述系统行为的变量表示。它具有完整性,抽象性和相对性的特征。 摘要 线性系统科学与技术是一门应用广泛的学科。面对各种各样的复杂系统,控制对象可以是确定性的或随机的,并且控制方法可以是常规控制或最优控制。控制理论与社会生产和科学技术的发展密切相关,并且在近代发展迅速。线性系统理论是现代控制理论中最基础,最成熟的分支,是控制科学的重要课程之一。 线性系统理论内容丰富,思想深刻,方法多样,富有美感。它不仅为线性控制系统的建模,分析和综合提供了完整的理论,而且还包含许多解决复杂问题的方法。这些方法简化了系统的建模,分析和综合,为系统控制理论的其他分支和其他学科提供了参考。它们是解决复杂问题的有效方法。 线性系统理论的发展经历了两个阶段:经典线性系统理论和现代线性系统理论。 古典理论形成于1930年代和1940年代。奈奎斯特在1932年提出了反馈放大器的稳定性理论。波特在1940年代初提出了波特图。埃文斯在1948年提出了根轨迹理论。这表明了经典线性控制理论的

形成。古典理论在第二次世界大战中的应用取得了巨大的成功。本文主要研究单输入单输出线性时不变系统。 1950年代后,随着航空技术的发展和控制理论的应用范围的扩大,经典线性控制理论的局限性日益明显。这种情况促进了线性系统的研究,从1960年以后的古典阶段到现代阶段。美国学者R.E.卡尔曼首先将状态空间方法应用于多元线性系统的研究,提出了可控性和可观测性两个基本概念,并提出了相应的标准。1963年,例如吉尔伯特,他得到了揭示线性系统结构分解的重要结果,为现代线性系统理论的形成和发展做出了开创性的工作。1965年后,现代线性系统理论又得到发展。有许多研究多元系统的理论和方法,例如线性系统的几何理论,线性系统的代数理论和多变量频域方法。随着计算机技术的发展,线性系统的计算方法和计算机辅助设计受到越来越多的关注。

线性系统理论

Linear Systems Theory: A Structural Decomposition Approach 线性系统理论: 结构分解法 Ben M. Chen (陈本美) 新加坡国立大学 Zongli Lin(林宗利) 美国弗吉尼亚大学 Yacov Shamash (雅科夫 司马诩) 美国纽约州立大学石溪分校

此书献给我们的家人 前两位作者谨以这中译版献给他们的母校 厦门大学

目录 绪论 1 导论和预览 1.1 背景 1.2 各章预览 1.3 符号和术语 2 数学基础 2.1 导论 2.2 矢量空间和子空间 2.3 矩阵代数和特性 2.3.1 行列式、逆和求导 2.3.2 秩、特征值和约当型 2.3.3 特殊矩阵 2.3.4 奇异值分解 2.4 范数 2.4.1 矢量范数 2.4.2矩阵范数 2.4.3 连续时间信号范数 2.4.4 离散时间信号范数 2.4.5 连续时间系统范数 2.4.6 离散时间系统范数 3 线性系统理论复习 3.1 导论 3.2 动态响应 3.3 系统稳定性 3.4 可控性和可观性 3.5 系统可逆性 3.6 常态秩、有限零点和无限零点3.7 几何子空间 3.8 状态反馈和输出馈入的特性3.9 练习

4 无驱动和/或无检测系统的分解 4.1 导论 4.2 自治系统 4.3 无驱动系统 4.4 无检测系统 4.5 练习 5. 正则系统的分解 5.1 导论 5.2 SISO系统 5.3 严格正则系统 5.4 非严格正则系统 5.5 结构化分解特性的证明 5.6 系统矩阵的Kronecker型和Smith型5.7 离散时间系统 5.8 练习 6 奇异系统的分解 6.1 导论 6.2 SISO奇异系统 6.3 MIMO描述系统 6.4 定理6.3.1的证明和性质 6.5 离散时间奇异系统 6.6 练习 7 双线性变换的结构化映射 7.1 导论 7.2 连续到离散时间系统的映射 7.3 离散时间到连续时间系统的映射7.4 定理7.2.1的证明 7.5 练习 8 系统因子分解 8.1 导论 8.2 严格正则系统 8.3 非严格正则系统 8.4 离散时间系统 8.5 练习 9 通过选择传感器/执行器实现的结构配置9.1 导论 9.2 同时有限和无限零点结构配置 9.2.1 SISO系统 9.2.2 MIMO系统

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

信息光学习题答案

信息光学习题答案 第一章 线性系统分析 1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dx d x g = (2)()();?=dx x f x g (3)()();x f x g = (4)()()()[];2 ? ∞ ∞ --= αααd x h f x g (5) ()()απξααd j f ?∞ ∞ --2exp 解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。 1.2 证明)()ex p()(2x comb x j x comb x comb +=?? ? ??π 证明:左边=∑∑∑∞ -∞ =∞-∞=∞-∞=-=??? ???-=??? ??-=??? ??n n n n x n x n x x comb )2(2)2(2122δδδ ∑∑∑∑∑∑∞ -∞ =∞ -∞ =∞ -∞=∞ -∞=∞ -∞ =∞ -∞ =--+-= -+-=-+-= +=n n n n n n n n x n x n x jn n x n x x j n x x j x comb x comb ) () 1()() ()exp()() ()exp()()exp()()(δδδπδδπδπ右边 当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞ -∞ =-n n x )2(2δ 所以当n 为偶数时,左右两边相等。 1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式 0)(,) () ()]([1 ≠''-= ∑ =i n i i i x h x h x x x h δδ 式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。于是 )() ()(sin x comb n x x n =-=∑∞ -∞ =π δπ ππδ

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

matlab综述报告

MATLAB综述报告 1.MATLAB的简介和主要特点 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。 它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,

FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA 的支持。 2.在控制领域中的应用 在线性系统理论中,一般常用的数学模型形式有:传递函数模型(系统的外部模型)、状态方程模型(系统的内部模型)、零极点增益模型和部分分式模型等。这些模型之间都有着内在的联系,可以相互进行转换。 MATLAB中,使用函数tf()建立控制系统的传递函数模型,或将控制系统的其它模型转换为传递函数模型,使用格式:sys=tf(num,den)。 早期的控制系统分析过程复杂而耗时,如想得到一个系统的冲激响应曲线,首先需要编写一个求解微分方程的子程序,然后将已经获得的系统模型输入计算机,通过计算机的运算获得冲激响应的响应数据,然后再编写一个绘图程序,将数据绘制成可供工程分析的响应曲线。MATLAB控制系统工具箱和SIMULINK辅助环境的出现,给控制系统分析带来了福音。控制系统的分析包括系统的稳定性分析、时域分析、频域分析及根轨迹分析等。 复域(根轨迹)分析: (1)零极点图pzmap()函数用来绘制系统的零极点图,

线性系统理论_中英文对照

[Linear system theory and design] Absolutely integrable 绝对可积 Adder 加法器 Additivity 可加性 Adjoint 伴随 Aeronautical航空的 Arbitrary 任意的 Asymptotic stability渐近稳定 Asymptotic tracking 渐近跟踪 Balanced realization 平衡实现 Basis 基 BIBO stability 有界输入有界输出稳定 Black box 黑箱 Blocking zero 阻塞零点 Canonical decomposition 规范分解 Canonical规范 Capacitor 电容 Causality 因果性 Cayley-Hamilton theorem 凯莱-哈密顿定理Characteristic polynominal 特征多项式 Circumflex 卷积

Coefficient 系数 Cofactor 余因子 Column degree 列次数 Column-degree-coefficient matrix 列次数系数矩阵Column echelon form 列梯形 Column indices 列指数集 Column reduced 列既约 Common Divisor公共因式 Companion-form matrix 规范型矩阵Compensator 调节器,补偿器 Compensator equation补偿器方程 Control configuration 控制构型Controllability 能控性 Convolution 卷积 Conventional常规的 Coprimeness互质 Corollary推论 Cyclic matrix 循环矩阵 Dead beat design 有限拍设计 Decoupling 解耦 Degree of rational function有理矩阵的次数Description of system系统描述

线性系统理论多年考题和答案

2008级综合大题 []400102110010112x x u y x ????????=-+????????-????=& 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定;(各种稳定之间的关系和判定方法!) 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵21416124,() 2.000M B AB A B rank M ?? ????==-=???? ???? 系统不完全 可控,不能任意配置极点。 2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1140120001P -????=-??????,求得1203311066 001P ?? ?? ?? ??=-?????? ???? 进行变换[]11 20831112,0,22260001A PAP B PB c cP --? ??????? ????=-====???? ???????? ????

所以系统不可简约实现为[]08112022x x u y x ?????=+?????????? ?=? & 3. 12(1)(1)2(1) ()()(4)(2)(1)(4)(2) s s s G s c sI A B s s s s s --+-=-= =-++-+ 4. det()(4)(2)(1)sI A s s s -=-++,系统有一极点4,位于复平面的右部,故不是渐近稳定。 12(1) ()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11228,12T k k k k A Bk k +???? =+=???????? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程*2 ()(2)(3)56f s s s s s =++=++ 比较上两式求得:728T k -?? =??-?? 6. 可以。设12l L l ??=????,则11222821222l l A LC l l --?? -=? ?--?? 特征方程2 2121()(222)1628f s s l l s l l =+-++-- 期望特征方程*2 ()(4)(5)920f s s s s s =++=++ 比较得:103136L ???? =????????

线性系统理论基础课设

摘要 建模、控制与优化是控制理论要解决的主要问题。在这些问题中,广泛采用了现代数学方法,使得控制理论的研究不断深入,取得了丰硕的成果。建模是控制理论中所要解决的第一个问题。控制理论中的建模方法主要有两种,一是经验建模,二是根据物理规律建模。所研究的对象主要是动态模型,一般用微分方程或差分方程来描述。设计控制系统是控制理论的核心内容。在线性系统中,我们所用到的数学工具是拓扑、线性群。在非线性系统中,我们用到了微分几何。可以说微分几何是非线性控制理论的数学基础。优化是控制的一个基本目的,而最优控制则是现代控制理论的一个重要组成部分。例如庞特里亚金的极大值原理、贝尔曼的动态规划,都是关于优化和最优控制问题的。 本报告首先介绍了直流电动机的物理模型, 并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。通过对抽象出来的模型进行性能分析,确定需要使用状态观测器来修正系统。继而借助MATLAB软件对转速环进行了状态反馈控制器的设计,使系统的阶跃响应达到了设计指标。 关键词:建模控制理论设计控制系统直流电动机转速状态反馈控制器

1 系统的物理模型、参数及设计要求 -------------------- 4 1.1 系统模型 ------------------------------------- 4 1.2 系统参数 ------------------------------------- 5 1.3 设计要求 ------------------------------------- 5 2 系统模型的建立------------------------------------ 6 2.1 模型抽象 ------------------------------------- 6 2.2 所建模型的性能分析 --------------------------- 7 3 系统状态观测器的设计----------------------------- 11 3.1 期望配置的极点的确定以及状态观测器的设计----- 11 3.1.1 第一组极点配置-------------------------- 11 3.1.2 第二组极点配置-------------------------- 11 3.2 状态观测器的设计 ---------------------------- 12 3.2.1 第一组极点------------------------------ 12 3.2.2 第二组极点------------------------------ 14 3.3 状态观测器的仿真图 -------------------------- 16 3.4 原系统加了状态观测器后的仿真结果图及分析----- 17 3.4.1 第一组极点------------------------------ 17 3.4.2 第二组极点------------------------------ 18 4 状态观测器极点配置与PID方法的比较 --------------- 20 4.1 直流电机转速、电流PID控制的设计------------- 20 4.2 两种方法的比较 ------------------------------ 21

2013年中南大学信息科学与工程学院 博士研究生入学考试大纲《线性系统理论》

中南大学2013年全国博士研究生入学考试 《线性系统理论》考试大纲 I.考试性质 线性系统理论是控制科学与工程学科的基础课。本门考试的应考范围以基于状态空间描述和方法的现代控制理论为主,注重考察考生是否已经掌握控制学科最基本的理论知识。它的评价标准是本学科或者相近学科的优秀硕士毕业生能达到及格或及格以上水平,以保证被录取者具有基本的控制学科基础知识,并有利于在专业上择优选拔。 II.考查目标 线性系统理论考试在考查基本知识、基本理论的基础上,注意考查运用控制理论的基本方法分析和解决实际问题的能力。考生应能: 1、全面掌握线性系统理论的基本知识; 2、运用线性系统理论的基本原理,建立控制系统状态空间方程,并分析其能控性、能观性与稳定性等; 3、运用线性系统理论的基本原理,计算分析控制系统问题。 Ⅲ.考试形式和试卷结构 一、答卷方式:闭卷,笔试;所列题目全部为必答题。 二、答卷时间:180分钟 三、题型比例:全部题型为计算、分析题,满分100分。 四、主要参考书目: 郑大钟编著,线性系统理论(第一部分),清华大学出版社,2002年第二版。 Ⅳ.考查内容 一、线性系统的数学描述 系统的传递函数描述,状态空间描述,两种描述形式的比较和相互转换。 线性系统在坐标变换下的特性。组合系统的状态空间描述。 二、线性系统的运动分析 状态转移矩阵及其性质。脉冲响应矩阵。线性时变系统运动分析。线性

定常系统的运动分析。线性连续系统的时间离散化。线性离散系统的运动分析。 三、线性系统的能控性和能观测性 线性系统的能控性和能观测性的定义。线性连续系统(含时变系统)的能控性、能观测性判据。线性离散系统的能控性、能观性判据。对偶原理。能控、能观测与传递函数。线性系统的能控性、能观性指数。能控和能观测规范形。线性系统的结构分解。 四、系统运动的稳定性 Lyapunov意义下运动稳定性的定义。Lyapunov第二方法的主要定理。线性系统稳定性判据。离散系统的稳定性及其判据。系统的外部稳定性和内部稳定性。 五、线性反馈系统的综合 状态反馈和输出反馈。极点配置问题及其解的存在条件。状态反馈极点配置问题的求解方法。状态反馈可镇定条件和算法。线性二次型最优控制问题。全维和降维状态观测器。引入观测器的状态反馈控制系统的特性。

线性系统理论中状态反馈综述

线性系统理论中状态反馈综述 学号:1402028 姓名:王家林 现代控制理论源于20世纪60年代,以极大值等原理为形成标志,经典理论中以单一输入变量为研究对象,主要通过频率进行控制,现在控制理论以线性空间理论为基础,在时域中研究系统,能够定量的进行系统的分析和设计,随着计算机运算能力的发展,现代控制也在更多领域得到应用。控制系统是有受控对象和反馈控制器两部分组成的闭环系统,经典控制理论通常采用输出反馈,而现代控制理论多采用状态反馈。闭环系统极点的分布情况决定于系统的稳定性和动态品质,因此,可以根据对系统动态品质的要求,规定闭环系统的极点所具备的分布情况,把极点的配置作为系统的动态品质指标。这种把极点配置在某位置的过程称为极点配置。在空间状态法中,一般采用反馈系统状态变量或输出变量的方法,来实现系统的极点配置。 20世纪50年代以后,随着航天等技术发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的问题,这就推动了线性系统的研究,于是在1960年以后从经典阶段发展到现阶段。美国学者R.E.卡尔曼首先把状态空间法应用于多变量线性系统的研究,提出了能控性和能观性两个基本概念。其研究问题的方法主要有时域状态空间分析法,线性二次型最优状态调节器法,状态观测器控制法,李雅普诺夫稳定性分析法以及极点配置法等。近年来,计算机技术的迅速发展给需要大计算量的现代控制提供了更好的发展空间,同事工业生产的告诉发

展,是的工程界对控制的要求也日益提高,由此也极大地推动了现代控制理论的发展和完善。 在控制理论与实践中的一个基本要求是设计反馈控制率,将闭环系统的极点配置在制定的位置上,从而保证闭环系统具有所要求的动态和稳态特性。由于模型的不确定因素和各种扰动的存在,使得精确极点配置的控制方式不可能得到真正的实现。世纪设计中只能将闭环系统的极点配置在指定的区域内,就可以使系统获得满意的性能。近年来,对D稳定理论的研究十分活跃,利用这一理论研究区域极点配置问题已取得一些成果,包括最优控制、鲁棒性等方面。 在对系统的分析和设计中,首先要考虑的是系统的稳定性问题,而线性系统的稳定性与其极点的位置紧密相关,因此极点配置问题在系统设计中是很重要的。为此,需要根据分析和设计的目的,将系统极点配置在指定区域内或指定某个位置。 所谓极点配置问题,就是通过反馈矩阵的选择,使闭环系统的极点,即闭环特征方程的特征值恰好处于所希望的一组极点位置上或者是某个区内。由于希望的极点具有一定的任意性,因此极点的配置也具有一定的任意性。 对于线性系统而言,其稳定性取决于状态的零输入响应,因而取决于系统极点的分布,当极点的实部小于零时,系统是稳定的;当极点分布在虚轴上时,系统是临界稳定的;当极点的实部大于零时,系统是不稳定的。同事,系统动态响应的基本特性也依赖于极点的分布,若系统极点是负实数,则系统动态响应时非周期的,按指数规律

电子科技大学2015控制科学与工程学科研究生培养方案

控制科学与工程学科硕士研究生培养方案 (专业代码:081100) 控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。控制科学以控制论、系统论、信息论为基础,研究各应用领域内的共性问题,即为了实现控制目标,如何建立系统的模型,分析其内部与环境信息,采取何种控制与决策行为;且与各应用领域的密切结合,又形成了控制工程丰富多样的内容。本学科点在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势,在我国国民经济发展和国家安全方面发挥了重大作用。 我校控制科学与工程学科为四川省重点学科,师资力量雄厚,形成了复杂系统控制与优化、新能源系统控制技术、计算机视觉与模式识别、机器人技术与系统等研究方向,具有电子信息优势明显,学科交叉特色鲜明,工程研究能力突出等特点。本学科的发展受益于社会和国家的发展,同时也在国家的决策咨询、国防建设、行业推动、社会服务、人才培养等方面做出了突出的贡献。 一、培养目标 热爱祖国,遵纪守法,具有良好的道德品质;掌握本学科领域坚实的基础理论和系统的专门知识;掌握一门外语,能比较熟练地阅读本学科领域的外文资料,并有一定的外语写作能力;具有从事科学研究、教学工作或独立担负专门技术工作的能力。 二、研究方向 1.智能信息处理与控制2.复杂系统控制与优化 3.新能源系统控制技术4.计算机视觉与模式识别 5.智能系统及其应用6.检测技术与自动化装置 7.电力电子与运动控制8.测控通信与导航控制 9.机器人技术与系统10.多媒体数据挖掘 三、培养方式和学习年限 硕士研究生的培养,采取课程学习和论文研究工作相结合的方式。通过课程学习和论文研究工作,系统掌握所在学科领域的理论知识,培养分析问题和解决问题的能力。硕士研究生的培养采用导师个人指导或导师组集体指导相结合的方式。 全日制硕士研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。 四、学分与课程学习基本要求 总学分要求不低于26学分,课程总学分不低于24个学分,必修环节不低于2学分。课程学分要求中,学位课要求不低于15学分,公共基础课必修,基础课至少选修1门,专业基础课不低于4个学分。 允许在导师指导下、在相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求补修相应专业本科核心课程至少2门,通过考试,但不计学分;通过后方可选修专业课。

线性系统理论

线性系统理论之观察 摘要 系统控制的理论和实践被认为是20世纪对人类生产活动和社会发生重大影响的科学领域之一。在系统和控制科学领域内,线性系统是基本的研究对象,并在过去几十年中取得了众多结果和重要进展,已经形成和发展为相当完整和相当成熟的线性系统理论。线性系统理论的重要性首先在于它的基础性,其大量的概念、方法、原理和结论,对于系统与控制理论的许多学科分支,诸如最优控制、非线性控制、鲁棒控制、随机控制、智能控制、系统辨识和参数估计、过程控制、数字滤波和通信系统等,都具有重要和基本的作用,成为学习和研究这些学科必不可少的基础知识。 关键词最优控制、非线性控制、鲁棒控制、随机控制、智能控制、系统辨识和参数估计、过程控制、数字滤波和通信系统等 线性系统理论的主要内容 线性系统理论着重于研究线性系统状态的运动规律和改变这种运动规律的可能性和方法,以建立和揭示系统结构、参数和性能间的确立和定量的关系。通常,研究系统运动规律的问题称为分析问题,研究改变运动规律的可能性和方法的问题则为综合问题。从哲学的角度而言,前者属于认识系统的范畴,后者属于改造系统的范围。 线性系统的理论和方法是建立在其模型基础之上的。不管是对系统进行分析还是综合,一个首要的前提是建立器系统数学模型。建立模型时,最重要的是确定什么是需要反映和研究的主要系统属性,并在此基础上来定出他们的定量关系。随着所观察问题的性质的不同,

一个系统可以有不同的模型,它们代表了系统不同侧面的属性。系统数学模型的基本要素是变量、参量、常量和它们之间的关系。变量包括状态变量、输入变量和输出变量,有些情况下还需考虑扰动变量。参量可以是系统的参数或表征系统性能的参数,前者受系统环境的影响课产生变动,后者可随设计要求而人为地改变其取值。常量是指系统中不随时间改变的参数。线性系统的数学模型有两种主要形式,即时间域模型和频率域模型。时间域模型变现为微分方程组或差分方程组,可同时适用于线性时不变和线性时变系统。频率域模型表现为传递函数和频率响应,只适用于线性时不变系统。对应于系统的这两项模型,已经发展和形成线性系统理论中的两类不同方法。 (1)线性系统分析理论 (2)线性系统综合理论 线性系统理论的主要内容包括:①与系统结构有关的各种问题,例如系统的结构分解问题和解耦问题等。系统结构的规范分解(见能观测性)是其中的著名结果。②关于控制系统中反馈作用的各种问题,包括输出反馈和状态反馈对控制系统性能的影响和反馈控制系统的综合设计等问题。极点配置是这方面的主要研究课题。③状态观测器问题,研究用来重构系统状态的状态观测器的原理和设计问题。④实现问题,研究如何构造具有给定的外部特性的线性系统的问题,主要研究课题是最小实现问题。⑤几何理论,即用几何观点研究线性系统的全局性问题(见线性系统几何理论)。⑥代数理论,用抽象代数方法研究线性系统,把线性系统理论抽象化和符号化。其中最有名的是模

线性系统理论试卷

湘潭大学研究生考试试题 考试科目:线性系统理论/现代控制理论考生人数:20考试形式:闭卷 适用专业: 双控单控/电传 适用年级:一年级 试卷类型: A 类 一、给定多项式矩阵如下: 22121()1 2s s s s D s s s ?? ?????? ++++= ++ 1. 计算矩阵的行次数,判断系统是否行既约? 2. 计算矩阵的列次数,判断系统是否列既约? 3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。 二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中: 210 ()21s D s s s s ? ? ????? ? -= +-+,()11N s s s ???? =-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。 三、给定()G s 的一个左MFD 为: 1 210 1 0()112 1s s G s s s s -? ? ?? ?????????? ? ? -+= +-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。 四、确定下列传递函数矩阵的一个不可简约左MFD : 21 1 0()102 2s s s G s s s s s ????????? ? ?? += +++ 五、给定系统的传递函数矩阵为

22 3 (1)(2)(1)(2)()31(1)(2) (2)s s s s s s G s s s s s s ???? ?? ??????? ? +++++= +++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。 六、给定传递函数矩阵如下: 2 2221156()1253 43s s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试定出其零、极点,并计算出其结构指数。 七、给定系统的传递函数矩阵如下: 2 2211 154()14 3 712s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试求出一个控制器型实现。 八、确定下列传递函数矩阵()G s 的一个不可简约的PMD 2 2 141()143 32s s s s G s s s s s ?? ?? ?? ??? ??? ++-= ++++ 九、给定系统的传递函数矩阵如下: 1 2 2 430 11()221 21s s s s G s s s s s -?????? ??????? ?? ? ++-+= +++ 试设计一个状态反馈K,使得状态反馈系数的极点为: 12λ*=-, 23λ*=-, 4,5 42j λ* =-±

相关文档