文档库 最新最全的文档下载
当前位置:文档库 › 钢制球形储罐基本参数及重量表

钢制球形储罐基本参数及重量表

钢制球形储罐基本参数及重量表

钢制球形储罐基本参数及重量表(仅供参考)

储罐选型

1、 苯原料罐 原料罐的储存条件为常温常压储存,温度为25℃,压力为0.101325MPa ,选择该原料的储存天数为15天,储罐的装配系数φ= 0.8,储量为33t 14.6603515246597.15750.8 V Q V m m ????== =,取装填系数为0.85,则所需容积为'336597.15757761.3620.850.85V V m m ===,考虑到储罐压储存总量较大,从经济学、安全性和环保的角度来考虑,选用综合性能较优的球形储罐,根据标准选取公称容积为2000m 3的钢制球形储罐4个,材料选用Q345R ,由sw6设计出来壁厚为16mm 。标准号为:GB/T 17261-1998 2、 氢气原料罐 原料罐的储存条件为常温常压储存,温度为25℃,压力为0.101325MPa ,选择该原料的储存天数为15天,储罐的装配系数φ= 0.8,储量为33t 525.46724110346.60.8 V Q V m m ????== =,取装填系数为0.85,则所需容积为'33110346.6129819.530.850.85V V m m ===,考虑到储罐压储存总量较大,从经济学、安全性和环保的角度来考虑,选用综合性能较优的球形储罐,根据标准选取公称容积为3000m 3的钢制球形储罐4个,材料选用Q345R ,由sw6设计出来壁厚为16mm 。标准号为:GB/T 17261-1998 3、 环己烷原料罐 原料罐的储存条件为常温常压储存,温度为25℃,压力为0.101325MPa ,选择该原料的储存天数为15天,储罐的装配系数φ= 0.8,储量为33t 16.6808915247506.400.8 V Q V m m ????== =,取装填系数为0.85,则所需容积为'337506.408831.060.850.85V V m m ===,考虑到储罐压储存总量较大,从经济学、安全性和环保的角度来考虑,选用综合性能较优的球形储罐,根据标准选取公称容积为3000m 3的钢制球形储罐3个,材料选用Q345R ,由sw6设计出来壁厚为16mm 。标准号为:GB/T 17261-1998

乙烯、丙烯球形储罐维护检修规程

乙烯、丙烯球形储罐维护检修规程 乙烯、丙烯球形储罐维护检修规程 SHS03005-2004 目次 1 总则………………………………………………… (114) 2 检修周期与内容…………………………………… (115) 3 检修与质量标准…………………………………… (117) 4 试验与验收………………………………………… (118) 5 维护与故障处理…………………………………… (119)

1 总则 1(1 主题内容与适用范围 1 1 1 主题内容 本规程规定了乙烯、丙烯球形储罐(以下简称球罐)的检修周期与内容、检修与质量标准、试验与验收、维护与故障处理。 1(1,2 适用范围 本规程适用于盛装易燃、易爆的液态乙烯、丙烯介质球 罐的维护检修。其容积大于或等于400?,最高工作压力为 1(50-2(50MPa,最低工作温度不低于—40?。 本规程不适用下列球形储罐: a(储运球罐(如车、船等运载); b(双层结构的球罐。 1(2 编写修订依据 国家现行的关于压力容器方面的相关法规,包括现行《特种设备安全监察条例)、《压力容器安全技术监察规程)、《在用压力容器检验规程》GB曲—1998 钢制压力容器 CD 12337—1998 钢制球形储罐 JD 1127--82 钢制焊接球形贮罐技术条件

GB 50094-~98球形储罐施工及验收规范 球形贮罐缺陷修复暂行办法([81)劳锅字11号文) S1:[,01033--2004 设备及管道保温、保冷维护检修规程 2 检修周期与内窖 2,1 检修周期(见表1) 球罐枪修的周期结合璋罐检验周期同时安排进行。 2(2(1(2 执行《容规)、{检规)(对安全附件进行全面抢修具体做法为: a(安全阀研膺(校斡定压; b(压力表、温度计校骏或更新; c(液而计清洗、检查及修理,必要时更新; d(球罐自动安全隔离水幕装置检查及校验。 2(2(1 3 工艺阀门槐运行情况加装填料,对内漏阀门更换新阀(可切断时); 2(2(1(4 对所有连接、密封部位的紧固件进行检查紧固; 2 2(1(5 楦查拉杆受力情况,必要时调整,使之对称 均匀

钢板理论重量表

钢板理论重量表(钢板的理论重量) 厚度理论重量 理论重量厚度理论重量 厚度(mm) (mm) (kg/m2) (kg/m2) (mm) (kg/m2) 0、2 1、57 0、75 5、89 1、8 14、13 0、25 1、96 0、8 6、28 2 15、7 0、3 2、36 0、9 7、07 2、2 17、27 0、35 2、75 1 7、85 2、5 19、36 0、4 3、14 1、1 8、64 2、8 21、98 0、45 3、53 1、2 9、42 3 23、55 0、5 3、93 1、3 10、21 3、2 25、12 0、55 4、32 1、4 10、99 3、5 27、48 0、6 4、71 1、5 11、78 3、8 29、83 0、65 5、1 1、6 12、56 3、9 30、62 0、7 5、5 1、7 13、35 4 31、4 中厚钢板理论重量表(中厚钢板钢板的理论重量) 厚度理论重量厚度理论重量厚度理论重量(mm) (kg/m2) (mm) (kg/m2) (mm) (kg/m2) 4、5 3 5、33 16 125、6 38 298、3 5 39、25 18 141、3 40 314 5、5 43、18 20 157 42 329、7 6 47、16 22 172、 7 44 345、4

7 54、95 24 188、4 45 353、25 8 62、8 25 196、25 46 361、1 9 70、65 26 204、1 48 376、8 10 78、6 28 219、8 50 392、5 11 86、35 30 235、5 52 408、2 12 94、2 32 251、2 54 423、9 13 102、1 34 266、9 55 431、75 14 109、9 35 274、75 56 439、6 15 117、75 36 282、6 58 455、3 计算方法 结果修约 基本重量kg/mm、m2 7、85(厚度1mm,面积1m2的重量 — 单位重量kg/m2 基本重量(kg/m2)*厚度(mm) 修约至四位有效数字 钢板面积m2 宽度(m)*长度(m) 修约至四位有效数字 1块板重量kg

球形储罐全面检验方案(卫星)

球形储罐全面检验方案 申请单位: 浙江卫星丙烯酸有限公司容器名称: 丙烯球形储罐 项目负责人:潘柏定 检验单位: 嘉兴市特种设备检测院

嘉兴市特种设备检测院 2009.09.01 一、项目概况 1、根据浙江卫星丙烯酸有限公司的检验申请,嘉兴市特种设备检测院计划于2008年度结合该公司的大修计划,对二台丙烯球形储罐进行投用后的首次全面检验。为保证检验工作的顺利进行,确保检验工作质量,依据《特种设备安全监察条例》、《压力容器安全技术监察规程》的规定,按照《压力容器定期检验规则》以及相关规范、标准的要求,,特制定本检验方案。 2、本方案仅适用于浙江卫星丙烯酸有限公司丙烯球形储罐的全面检验,本次检验范围如下: 2.1容器本体; 2.2与容器相连接的第一道法兰密封面; 2.3安全附件; 2.4与容器直接相连的非承压部件。 二、受检容器基本情况: 容器名称:丙烯球形储罐; 产品编号:T-801A/52-19-1、T-801A/52-19-2 共二台; 类别:III 设计压力/最高工作压力:2.05/1.96 MPa 设计温度/最高工作温度:℃

使用介质:丙烯; 投用日期:2006.03 三、检验依据及参考标准 1《压力容器安全技术监察规程》 2 《压力容器定期检验规则》 3 GB12337-98《钢制球形储罐》 4 GB50094-98《球形储罐施工及验收规范》 5 《压力管道安全管理与监察规定》 6 《压力管道安装质量监督检验规则》 7 GB50235-97《工业金属管道施工及验收规范》 8 GB50236-98《现场设备、工业管道焊接及验收规范》 9 JB/T4730-2005《承压设备无损检测》 10 球罐出厂技术资料、球罐安装技术资料、及相关技术资料。

钢制压力容器Word版

钢制压力容器 GB150—1998 引言 随着科学技术的发展,科技成果的应用,使标准不断完善,在GB150-1998《钢制压力容器》标准的基础上,结合中国国情,合理采用了美国ASME Ⅷ-1卷、日本 JISB8370~8285标准的最新成果,修订了原标准的不合理的或与其它标准法规不相吻合的部分内容,制订了GB150-1998《钢制压力容器》标准。 在制订GB150-98标准时,遵循了以下几条原则。 撤消了部分单元设备和自成体系的受压元件设计内容,另行制订产品标准,使 GB150成为压力容器的基础标准。 将GB150-89第8章“卧式容器”从标准中分离出来,这部分内容将单独出标准 JB4731-98《钢制卧式容器》,现已报批。 将第9章“直立容器”和相关的附录F“直立容器高振型计算”从标准中分离出来,这部分内容将纳入修订后的JB4710-92《钢制塔式容器》之中,成为塔式容器的产品标准。 撤消附录E“U型膨胀节”,独立出新标准GB16749-97《压力容器波形膨胀节》,已于1997年8月1日实施。 撤消附录H“钢制压力容器渗透探伤”和附录L例题,前者并入JB4730-94《压力容器无损检测》加第1号修改单,后者尚未编制出来。 充分体现近年来在冶金、制造和无损检测等方面的技术进步,使标准能够反映和应用各行业技术进步的成果和适应行业发展的要求。例如新增加撤消了一些钢材的牌号,严格了钢板超声检测的要求。 以实施中取得的经验为依据,修正原标准中的错误和不足,完善标准的技术内容,力求先进。 充分协调本标准和相关标准、法规在技术内容上的一致性,以利于将标准用于产品设计、制造、检验和验收的各个环节。 1998年3月国家技术监督局发布了GB150-1998《钢制压力容器》标准,并要求从1998年10月1日起执行。学习和贯彻新GB150标准是提高压力容器质量,保证压力容器安全使用的前提。为了更好地了解、学习和贯彻新GB150,本文将新、旧GB150标准中的主要变化,以表格方式逐项对比,在比较项目中,为了做到准确,读者便于查阅,尽可能摘引部分原文或对有关规定加以阐述。 1 压力容器标准体系 详见表1。 表1 压力容器标准体系

常用钢制管件弯头三通异径管管帽理论重量体积表

常用管件产品重量/体积表 使用说明 1本表的管件重量依据ASME ASME 等相关规范使用的外径和壁厚进行计算,计算中适当考虑了工艺选料和制造情况对产品重量的影响(如厚度补偿);故此表所列重量为单件产品的近似净重,供参考。 表格中管表号带S的为不锈钢管件重量,其余为碳钢重量;在查阅不锈钢管件重量时应注意同一管表号的壁厚值碳钢与不锈钢可能不同。 2 90°弯头重量计算公式:W=*10-6R(D2-d2) 式中:W — 90°弯头重量,kg; R —弯头的曲率半径(结构尺寸),mm; D —弯头外径,mm; d —弯头内径,mm。 弯头重量公式中采用碳钢比重,即dm3计算。 45°、180°弯头的重量分别按90°弯头重量的1/2和2倍计算。 3钢管重量计算公式:W=(D-T) 式中:W —钢管每米长度的重量,kg/m; T —钢管壁厚,mm; D —钢管外径,mm。 钢管重量公式中采用碳钢比重,即dm3计算;奥氏体不锈钢管的重量为上式重量的倍。 4对焊管件的重量表中列出的为常用规格的重量,对于未列入表中的同一公称通径、不同壁厚的产品重量,可用估算公式进行重量的大致估算:Q=Wt/T 式中:Q —估算的对焊管件重量,kg; W —表中同一公称通径已列出壁厚的产品重量,kg; t —估算的对焊管件的产品壁厚值,mm; T —表中同一公称通径已列出壁厚的产品壁厚值,mm。 5本表所列体积为单件产品外部轮廓体积并考虑了装箱时所占的空间,即表中所示的近似体积为单件产品所占包装物的近似体积,供参考;使用时应注意套装时体积的计算以及小件产品体积是否需要考虑等因素。

弯头理论重量表

1000立方米球形储罐

1000立方米球形储罐 喷淋装置设计计算书 球表面积=4ΠR2=4×3.14×6.19×6.19=481.25m2 喷淋强度=9 L/min●m2 Q总=9×481.25=4331.25L/min=72.19L/S Q单=4331.25÷142=30.50 L/min V总=k4331.25÷60÷2÷3.14÷0.075÷0.075=2.04m/s V总=k4331.25÷60÷3.14÷0.1÷0.1=2.30m/s 1圈喷管 S=3.14×2(6.19×0.69) =26.82 m2 Q=9×26.82=241.40 L/min Q单=241.40÷8=30.16 L/min L间距=3.14×3.5÷8=1.37m DN40 V=k241.40÷60÷4÷3.14÷0.02÷0.02=0.80m/s 按限流孔板计算公式 限流孔板选21mm 实际减压25.00m水柱 2圈喷管 S=3.14×2(6.19×1.7)=66.08 m2

Q=9×66.08=594.72 L/min Q单=594.72÷19=31.30 L/min L间距=3.14×8.883÷19=1.46m DN50 V=k594.72÷60÷4÷3.14÷0.025÷.0.025=1.26m/s 按限流孔板计算公式 限流孔板选26mm 实际减压25.00m水柱 3圈喷管 S=3.14×2(6.19×2.4)=93.29 m2 Q=9×93.29=839.59 L/min Q单=839.59÷27=31.10 L/min L间距=3.14×12.563÷27=1.46m DN65 V=k839.59÷60÷4÷3.14÷0.0325÷.0.0325=1.05m/s 按限流孔板计算公式 限流孔板选44mm 实际减压25.00m水柱 d o 4圈喷管 S=3.14×2(2×6.19×1.4) =108.84 m2 Q=9×108.84=979.60 L/min Q单=979.60÷30=32.65 L/min

大型钢制球形储罐地基基础施工及验收检验规范

《大型钢制球形储罐地基基础施工及验收检验规范》 编制说明 一、任务来源 本项目来源于广东省质量检验协会团体标准制修订计划,项目计划编号:GDAQI2019005号。项目名称为“大型钢制球形储罐地基基础施工及验收检验规范”。本项目计划完成时间为2019年7月。(详见文件:广东省质量检验协会关于组建《金属管道沉降应力磁记忆检测方法》等四项团体标准起草工作组的通知(粤质检协函〔2019〕10号) 二、编制背景、目的和意义 2014年1月1日起施行的《中华人民共和国特种设备安全法》第三十七条明确规定,与特种设备安全相关的建筑物、附属设施,应当符合有关法律、行政法规的规定。同时,《特种设备安全法(释义)》中第三十七条也指出,承压设备与工程建筑等都是离不开的,因此与特种设备安全相关的建筑物、附属设施的设计、建造和施工应满足建筑法、消防法、建筑安全生产监督管理规定、建设工程施工现场管理规定、实施工程建设强制性标准监督规定等内容。而球形储罐的基础正是属于与特种设备安全相关的建筑物。 近年来,随着我国经济的不断增长,小型储罐已渐渐满足不了工业生产的要求,我国在石油化工、合成氨、城市燃气建设中,也可作为压缩气体(空气、氧气、氮气)的储罐。球形储罐有如下几点优点:

1、球形储罐与立式圆筒形储罐相比,在相同容积和相同压力下,球罐的表面积最小。故所需钢材面积小; 2、在相同直径情况下,球形储罐内应力最小,而且均匀,其承载能力比圆筒形容器大1倍,故球罐的板厚只需相应圆筒形容器壁板厚度的一半。由此可见,采用球形储罐,可大幅度减少钢材的消耗,一般可节省钢材30%~45%。综上所述,大型球形储罐的使用将会给工业生产带来不可估量的经济效益。目前,球形储罐在全国范围有数千台,体积最大已达30000m3,且以20%的数量逐年递增,其必将成为储存容器的新常态。但由于其经常用于储存易燃易爆、具有对环境产生污染的介质,一旦发生安全事故将产生严重的经济损失,并对生态造成严重的破坏,具备一定的危险性,很多国家都将其视为重点监控设备,在其设计、制造,施工、使用、检验等环节都制定了相关的标准规范。这些标准规范中,对材料、焊接、热处理等都做了较为严格的控制,但对基础的施工及验收却寥寥无几,一笔带过。“根基不牢、地动山摇”,可见基础的破坏对球罐的安全生产也起到很大的作用,不良基础在生产过程中也给我们带来了血淋淋的教训。 例如,1974年12月8日日本三菱公司水岛炼油厂发生一次50000m3油罐破坏事故,油从罐壁与底板之间的角焊缝处冲出约43000m3,冲跑立梯、冲开防油堤,污染地面148000m3,泼及日本冈山县、香川县、德岛县等内海东部一带,大约有7500~9600m3的油流到海面,使厂方蒙受1.5亿美元以上的损失; 又比如广东省珠海市的中海石油(中国)有限公司深圳分公司的球罐支柱在使用过程中,由于基础桩基未连接好,出现了断桩的现象,使球罐整体发生倾斜,虽然未发生重大安全事故,但该隐患将影响球罐的使用寿命及安全。 这两次事件正是由于基础的不均匀沉降导致的,这不得不让我们对基础的施工质量引起重视,而球形储罐其自重大,对基础的要求较高,特别是我国广东省珠三角的

球形储罐施工及验收规范

第六节 GB 50094-1998《球形储罐施工及验收规范》 一、总则 1.适用范围 本规范适用于设计压力大于或等于0.1 MPa且不大于4MPa、公称容积大于或等于50m3的橘瓣式或混合式以支柱支撑的碳素钢和合金钢制焊接球罐。? 2.施工及验收范围 1)球壳及与其连接的受压零部件。 2)球罐开孔的承压封头、平盖及其紧固件。 3)与球壳连接的支柱、拉杆、垫板和底板等非受压元件。 二、零部件的检查和验收 1.零部件质量证明书的检查 施工单位应对制造单位提供的产品质量证明书等技术质量文件进行检查。2.球壳板和试板的检查 1)球壳板和试板的基本规定 球壳的结构型式应符合设计图样要求。每块球壳板本身不得拼接。制造厂提供的球壳板不得有裂纹、气泡、结疤、折叠和夹杂等缺陷,当存在上述缺陷时,应按规定进行修补。应对球壳板厚度进行抽查,实测厚度不得小于名义厚度减去钢板负偏差。 2)球壳板的外形尺寸、球壳板焊接坡口应符合要求。 3)球壳板周边100mm范围内应进行全面积超声检测抽查。 4)当相邻板的厚度差大于或等于3mm或大于其中的薄板厚度的1/4时,厚板边缘应削成斜边,削边后的端部厚度应等于薄板厚度。 5)制造单位应提供每台球罐不少于6块的产品焊接试板和焊接工艺所需要的试板。 3.支柱检查 支柱全长长度允许偏差为3 mm。支柱与底板焊接后应保持垂直,其垂直度允许偏差为2 mm。支柱全长的直线度偏差应小于或等于全长的1/1000,且不应大于10mm。 4.组焊件的检查 分段支柱上段与赤道板组焊后,采用弦长不小于1m的样板检查赤道板的曲率,其间隙不得大于3mm。上段支柱直线度的允许偏差为上段支柱长度的1/1000,轴线位置偏移不应大于2mm。 人孔、接管与球壳板组焊后,人孔、接管开孔位置及外伸长度的允许偏差、球壳板的曲率及接管法兰的安装允许偏差应符合规范要求。 5.零部件的油漆、包装和运输检查 1)球壳板内外表面应除锈,并各涂底漆两道;对坡口表面及其内外边缘50 mm 范围内应涂可焊性涂料。每块球壳板上的球壳板编号、钢号及炉批号标记应以白色油漆框出。 2)运输及存放球壳板时,应采用钢结构托架包装,并应采用拉紧箍将球壳板紧箍在托架上;球壳板的凸面宜向上;各球壳板之间应垫以木块等柔性材料,重迭块数不宜超过6块;每个包装件的总重不宜超过30t。

GB150-1998《钢制压力容器》

国标委工交函[2004]2号 关于批准GB150-1998《钢制压力容器》 国家标准第2号修改单的函 全国锅炉压力容器标准化技术委员会: 你标委会以锅容标委〔2003〕秘字28号文和锅容标委〔2003〕秘字35号文报批的GB150-1998《钢制压力容器》国家标准第2号修改通知单,业经国家标准化管理委员会批准,于2004年4月1日起实施,并在《中国标准化》杂志2004年第3期上公布。 修改单见附件。 附件:GB150-1998《钢制压力容器》国家标准第2号修改单 二○○四年一月十六日

附件: GB150-1998《钢制压力容器》国家标准第2号修改单 本修改单经国家标准化管理委员会于2004年1月16日批准,自2004年4月1日起实施。 2 引用标准 a)删除标准JB2536-80压力容器油漆、包装和运输 b)增加以下4个标准: JB/T 4736-2002 补强圈 JB/T 4746-2002 钢制压力容器用封头 JB/T 4747-2002 压力容器用钢焊条订货技术条件 JB/T 4711-2003 压力容器涂敷与运输包装 10 制造、检验与验收 a)10.1.2 条中增加新条文: 10.1.2.1 压力容器用封头的制造、检验和验收还应符合JB/T 4746-2002。 10.1.2.2 在JB/T 4736-2002标准范围内的补强圈还应符合JB/T 4736-2002。 10.1.2.3 压力容器用钢焊条应符合JB/T4747-2002。 b)10.10.3条修订为:容器的涂敷与运输包装应符合JB/T 4711-2003。 主题词:国家标准修改单函 国家标准化管理委员会办公室 2004年2月6日印发 录入:芦菁校对:肖寒— 2 —

钢板理论重量表

钢板理论重量表(钢板的理论重量) 厚度理论重量 理论重量厚度理论重量 厚度(mm) (mm)(kg/m2)(kg/m2)(mm)(kg/m2) 0.2 1.57 0.75 5.89 1.8 14.13 0.25 1.96 0.8 6.28 2 15.7 0.3 2.36 0.9 7.07 2.2 17.27 0.35 2.75 1 7.85 2.5 19.36 0.4 3.14 1.1 8.64 2.8 21.98 0.45 3.53 1.2 9.42 3 23.55 0.5 3.93 1.3 10.21 3.2 25.12 0.55 4.32 1.4 10.99 3.5 27.48 0.6 4.71 1.5 11.78 3.8 29.83 0.65 5.1 1.6 12.56 3.9 30.62 0.7 5.5 1.7 13.35 4 31.4 中厚钢板理论重量表(中厚钢板钢板的理论重量) 厚度理论重量厚度理论重量厚度理论重量(mm)(kg/m2)(mm)(kg/m2)(mm)(kg/m2) 4.5 3 5.33 16 125.6 38 298.3 5 39.25 18 141.3 40 314 5.5 43.18 20 157 42 329.7 6 47.16 22 172. 7 44 345.4

7 54.95 24 188.4 45 353.25 8 62.8 25 196.25 46 361.1 9 70.65 26 204.1 48 376.8 10 78.6 28 219.8 50 392.5 11 86.35 30 235.5 52 408.2 12 94.2 32 251.2 54 423.9 13 102.1 34 266.9 55 431.75 14 109.9 35 274.75 56 439.6 15 117.75 36 282.6 58 455.3 计算方法 结果修约 基本重量kg/mm.m2 7.85(厚度1mm,面积1m2的重量 — 单位重量kg/m2 基本重量(kg/m2)*厚度(mm) 修约至四位有效数字 钢板面积m2 宽度(m)*长度(m) 修约至四位有效数字 1块板重量kg

球形储罐施工规范

3.0.3球形储罐施工单位必须获得球形储罐现场组焊许可,并应建立压力容器质量管理体系。 6.1.1从事球形储罐焊接的焊工,必须按有关安全技术规范的规定考核合格,并应取得相应项目的资格后,方可在有效期间内担任合格项目范围内的焊接工作。 6.2.1球形储罐焊接前,施工单位必须有合格的焊接工艺评定报告。焊接工艺评定应符合现行行业标准《钢制压力容器焊接工艺评定》JB 4708的有关规定。 7.1.4从事球形储罐无损检测人员,必须取得相应资格证书后才能承担与资格证书的种类和技术等级相对应的无损检测工作。 7.2.2符合下列条件之一的球形储罐球壳的对接焊缝或所规定的焊缝,必须按设计图样规定的检测方法进行100%的射线或超声检测: 1 设计压力大于或等于1.6MPa、且划分为第Ⅲ类压力容器的球形储罐; 2 按分析设计标准设计的球形储罐; 3 采用气压或气液组合耐压试验的球形储罐; 4 钢材标准抗拉强度下限值大于或等于540N/mm2的球形储罐; 5 设计图样规定应进行全部射线或者超声检测的球形储罐; 6 嵌入式接管与球壳连接的对接焊缝; 7 以开孔中心为圆心、开孔直径的1.5倍为半径的圆内包容的焊缝,以及公称直径大于250mm的接管与长颈对焊法兰、接管与接管连接的焊缝; 8 被补强圈和垫板所覆盖的焊缝。 8.1.1符合下列情况之一的球形储罐必须在耐压试验前进行焊后整体热处理: 1 设计图样要求进行焊后整体热处理的球形储罐; 2 盛装具有应力腐蚀及毒性程度为极度危害或高度危害介质的球形储罐; 3 名义厚度大于34mm(当焊前预热100℃及以上时,名义厚度大于38mm)的碳素钢制球形储罐和07MnCrMoVR钢制球形储罐; 4 名义厚度大于30mm(当焊前预热100℃及以上时,名义厚度大于34mm)的Q345R和Q370R钢制球形储罐; 5 任意厚度的其他低合金钢球形储罐。 10.1.1球形储罐必须按设计图样规定的试验方法进行耐压试验。耐压试验应包括液压试验、气压试验和气液组合试验。

钢制管件理论重量表--

常用钢制管件产品重量/体积表 使用说明 1本表的管件重量依据ASME B16.9/ASME B16.11等相关规范使用的外径和壁厚进行计算,计算中适当考虑了工艺选料和制造情况对产品重量的影响(如厚度补偿);故此表所列重量为单件产品的近似净重,供参考。 表格中管表号带S的为不锈钢管件重量,其余为碳钢重量;在查阅不锈钢管件重量时应注意同一管表号的壁厚值碳钢与不锈钢可能不同。 2 90°弯头重量计算公式:W=9.685*10-6R(D2-d2) 式中:W — 90°弯头重量,kg; R —弯头的曲率半径(结构尺寸),mm; D —弯头外径,mm; d —弯头内径,mm。 弯头重量公式中采用碳钢比重,即7.85kg/dm3计算。 45°、180°弯头的重量分别按90°弯头重量的1/2和2倍计算。 3钢管重量计算公式:W=0.02466T(D-T) 式中:W —钢管每米长度的重量,kg/m; T —钢管壁厚,mm; D —钢管外径,mm。 钢管重量公式中采用碳钢比重,即7.85kg/dm3计算;奥氏体不锈钢管的重量为上式重量的1.015倍。 4对焊管件的重量表中列出的为常用规格的重量,对于未列入表中的同一公称通径、不同壁厚的产品重量,可用估算公式进行重量的大致估算:Q=Wt/T 式中:Q —估算的对焊管件重量,kg; W —表中同一公称通径已列出壁厚的产品重量,kg; t —估算的对焊管件的产品壁厚值,mm; T —表中同一公称通径已列出壁厚的产品壁厚值,mm。 5本表所列体积为单件产品外部轮廓体积并考虑了装箱时所占的空间,即表中所示的近似体积为单件产品所占包装物的近似体积,供参考;使用时应注

第五节 球形储罐安装

第八篇球形储罐安装 第一章球形储罐简介 第一节简介 球形储罐被广泛应用在石油、化工、治金等工业部门,用来贮存气体、液体及液化气(乙烯、丙烯、丙烷、氧气、氮气、石油气、液氨、液氯)及轻烃油品等。球形储罐与立式贮罐比较,在容积、压力相同,罐壁内应力最小,而且均匀,钢材消耗量一般可减少30%~45%以上。此外,球罐还具有占地面积小、基础工程量小等特点,所以国内外应用越来越广泛。 下面以2000m3球罐为例,讲述球罐的安装过程。2000m3球罐一般采用混合四带式设计,自上而下分为上极带、上温带、赤道带、下极带四部分,下设10根支柱,共计有54块球壳板组成,焊缝长度为458.4米。 第二节球形储罐的几种组焊方法比较 一、伞形架安装法安装球罐 优点:伞形架安装简单、方便。伞形架可重复利用。伞形架的重量由中心柱承担,球壳板的附加应力小,组对容易。伞形架易安装易拆除,节约安装时间。 缺点:由于有中心柱的存在,球罐整体焊接后才能安装下极板,容易造成组对变形。由于中心柱易失稳,该方法不能安装大型球罐。 二、脚手架法安装球罐 优点:可安装各种规格球罐,不受体积限制。

缺点:罐内需要担设满堂红脚手架,脚手架用量太大,脚手架的重量由球罐承担,球壳板的附加应力大,组对困难。 第二章球形储罐安装 第一节球罐组焊施工流程图 1、球罐基础验收

球罐安装前,应按设计图纸和基础施工单位交工资料,对基础各部分尺寸外观质量进行检查和验收。 2、受压元件的检查 2.1、坡口检查 坡口角度的允许偏差为±2°30″。 坡口表面应平滑,表面粗糙度Ra应小于或等于25μm 平面度B≤1mm 坡口表面应进行100%的渗透检测。 溶渣与氧化铁皮应消除干净,坡口表面不得有裂纹和分层等缺陷,若有缺陷时,应将缺陷彻底清除,并经渗透探伤确认没有缺陷后可修补。焊后磨平,使其保持原有坡口形状及尺寸。 若发现有不允许的缺陷,应加倍抽查;若仍有不允许的缺陷,应逐件检测。 2.2、几何尺寸检查 长度方向的弦长允许偏差不大于±2.5mm 宽度方向的弦长允许偏差不大于±2 mm 对角线方向的弦长允许偏差不大于±3 mm 球壳板曲率任何部位与样板允许间隙≤3 mm 球壳板曲率测量方法是:球壳板弦长L≥2m时,应采用样板弦长2m,球壳板弦长L<2m时,应采用样板弦长等于球壳板弦长。 两条对角线应在同一平面上,用两直线对角测量,两直线的垂直距离不得大于5mm。

最新钢材理论重量 常用表

钢材理论重量表管类:公斤/米板类:公斤/平方米

钢材理论重量计算公式

角钢:每米重量(公斤)=*(边宽+边宽-边厚)*边厚 圆钢:每米重量(公斤)=*直径*直径(注:螺纹钢和圆钢相同) 扁钢:每米重量(公斤)=*厚度*边宽 管材:每米重量(公斤)=*壁厚*(外径-壁厚) 板材:每米重量(公斤)=*厚度 有色金属的板材的计算公式为:每平方米重量(公斤)=比重*厚度 各种有色金属的比重如下:紫铜板黄铜板锌板铅板铝板 铝花纹板:每平方米重量(公斤)=*厚度 紫铜管:每米重量(公斤)=*壁厚*(外径-壁厚) 黄铜管:每米重量(公斤)=*壁厚*(外径-壁厚) 镀层重量计算方法单面公称镀层重量40 50 60 90 100 110 125 135 175 225 锌层计算重量kg/m2 相当锌层厚度mm 如何在外观上辩别假冒伪劣钢材 1.伪劣钢材易出现折叠。折叠是钢材表面形成的各种折线,这种缺陷往往贯穿整个产品的纵向。产生折叠的原因是由于伪劣厂家追求高效率,压下量偏大,产生耳子,下一道轧制时就产生折叠,折叠的产品折弯后就会开裂,钢材的强度大下降。 2.伪劣钢材外表经常有麻面现象。麻面是由于轧槽磨损严重引起钢材表面不规则的凹凸不平的缺陷。由于伪劣钢材厂家要追求利润,经常出现轧槽轧制最超标。 3.伪劣钢材表面易产生结疤。原因有两点:1.伪劣钢材材质不均匀,杂质

多。2。伪劣材厂家导卫设备简陋,容易粘钢,这些杂质咬人轧辊后易产生结疤。 4.伪劣材表面易产生裂纹,原因是它的坯料是土坯,土坯气孔多,土坯在冷却的过程中由于受到热应力的作用,产生裂痕,经过轧制后就有裂纹。 5.伪劣钢材容易刮伤,原因是伪劣材厂家设备简陋,易产生毛刺,刮伤钢材表面。深度刮伤降低钢材的强度。 6.伪劣钢材无金属光泽,呈淡红色或类似生铁的颜色,原因有两点二、它的坯料是土坯。2、伪劣材轧制的温度不标准,他们的钢温是通过目测的,这样无法按规定的奥氏体区域进行轧制,钢材的性能自然就无法达标。 7.伪劣钢材的横筋细而低,经常出现充不满的现象,原因是厂家为达到大的负公差,成品前几道的压下量偏大,铁型偏小,孔型充不满。 8.伪劣钢材的横截面呈椭圆形,原因是厂家为了节约材料,成品辊前二道的压下量偏大,这种螺纹钢的强度大大地下降,而且也不符合螺纹钢外形尺寸的标准。 9.优质钢材的成分均匀,冷剪机的吨位高,切头端面平滑而整齐,而伪劣材由于材质差,切头端面常常会有掉肉的现象,即凹凸不平,并且无金属光泽。而且由于伪劣材厂家产品切头少,头尾会出现大耳子。 10.伪劣钢材材质含杂质多,钢的密度偏小,而且尺寸超差严重,所以在没有游标卡尺的情况下,可以对它进行称量核对。比如对于螺纹钢20,国家标准中规定最大负公差为5%,定尺9M时它的单根理论重量为120公斤,它的最小的重量应该是:120 X(l-5%)=114公斤,称量出来单根的实际重量比114公斤小,则是伪劣钢材,原因是它负公差超过了5%。一般来说整相称量效果会更好,主要考虑到累积误差和概率论这个问题。 11.伪劣钢材的内径尺寸波动较大,原因是;l、钢温不稳定有阴阳面。2、钢的成分不均匀。3、由于设备简陋,地基强度低,轧机的弹跳大。会出现有同一周内内径变化较大,这样的钢筋受力不均匀易产生断裂。 12.优质材的商标和印字都比较规范。 13.三钢材直径16以上的大螺纹,两商标之间的间距都在IM以上。 14.伪劣钢材螺纹钢的纵筋经常呈波浪形。 15.伪劣钢材厂家由于没有行车,所以打包比较松散。侧面呈椭圆形。

弯头三通有效计算

(外径-壁厚)*壁厚*0.02466(此为材料密度)=每米材料的重量。结果再*三通的下料长度就是三通的重量,弯头也是一样的算法。 0.02466*(S+1.5)(D-S-1.5)(3C-D/2)/1000 C为主管长度D为外径S为壁厚 或者90°弯头计算公式;0.0387*S(D-S)R/1000 式中S=壁厚mm D=外径mm R=弯曲半径mm 弯头现在国际通用的标准是美国的国家标准ANSIB16.9和16.28。该标准的外径尺寸范围是1/2”~ 80”,一般24”以内的都是用无缝钢管为原材料,26”到80”的都是用钢板冲压以后再焊接。壁厚最大可达60mm,最小到1.24mm。钢种用的最多的是碳素钢(20#)、合金钢和不锈钢,共24个钢种。锅炉上用的CrM°钢像15Cr,用量比较大。三通,外径范围在2.5”-60”,从26”-60”为焊接三通。壁厚28-60mm。大小头规格范围,常规上先说大头规格,再说小头规格,大头最小0.75”,小头最小0.5”,大头最大60”,小头最大48”,20-60”为焊接的,壁厚2.8-4.5mm。 弯头的分类方法,按它的曲率半径来分,可分为长半径弯头和短半径弯头。长半径弯头指它的曲率半径等于1.5倍的管子外径,即R=1.5D。短半径弯头指它的曲率半径等于管子外径,即R=D。式中的D为弯头直径,R为曲率半径。若按压力等级来分,大约有十七种,和美国的管子标准是相同的,有:Sch5s、Sch10s、Sch10、Sch20、Sch30、Sch40s、STD、Sch40、Sch60、Sch80s、XS;Sch80、Sch100、Sch120、Sch140、Sch160、XXS,其中最常用的是STD和XS两种。按弯头的角度分,有45°弯头,有90°弯头和180°弯头。这样一来弯头的种类是很多的,定货时定单常采取如下表示方法:如"LR STD90°8",表示长半径,压力等级为STD,90°的8"弯头;又如,"SR XS45°4"表示短半径,压力等级为XS,45°的4"弯头。以上为弯头的大概分类情况。 三通,一般有两种。三个口直径相等的为等直径三通,两端直径相同,但汇流端直径与其它两个直径不同称为异径三通。表示方法如下:对于等径三通,比如"T3"三通则表示外径是3英寸的等径三通。对于异径三通,比如"T4×4×3.5"表示同径为四英寸异径为3.5英寸的异径三通。压力等级和弯头的压力等级都是一样的,其规格范围也是一样的。 大小头,也是这个分法。大小头的表示方法是大头直径乘以小头直径,例如8"×6"表示大头直径是8英寸,小头直径是6英寸的大小头。 二,弯头重量计算公式 圆环体积=2*3.14*3.14(r2)R r--圆环圆半径 R--圆环回转半径 中空管圆环体积=2*3.14*3.14((r2)-(r’2))R r’--圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。

弯头三通的重量计算方法

弯头三通的重量计算方法 (外径-壁厚)*壁厚*0.02466(此为材料密度)=每米材料的重量。结果再*三通的下料长度就是三通的重量,弯头也是一样的算法。 或者这样算也可以 0.02466*(S+1.5)(D-S-1.5)(3C-D/2)/1000 C为主管长度D为外径S为壁厚 或者90°弯头计算公式; 0.0387*S(D-S)R/1000 式中 S=壁厚mm D=外径mm R=弯曲半径mm 弯头现在国际通用的标准是美国的国家标准ANSIB16.9和16.28。该标准的外径尺寸范围是1/2”~ 80”,一般24”以内的都是用无缝钢管为原材料,26”到80”的都是用钢板冲压以后再焊接。壁厚最大可达60mm,最小到1.24mm。钢种用的最多的是碳素钢(20#)、合金钢和不锈钢,共24个钢种。锅炉上用的CrM°钢像15Cr,用量比较大。三通,外径范围在2.5”-60”,从26”-60”为焊接三通。

壁厚28-60mm。大小头规格范围,常规上先说大头规格,再说小头规格,大头最小0.75”,小头最小0.5”,大头最大60”,小头最大48”,20-60”为焊接的,壁厚2.8-4.5mm。 下面我来讲一下弯头的分类方法,按它的曲率半径来分,可分为长半径弯头和短半径弯头。长半径弯头指它的曲率半径等于1.5倍的管子外径,即R=1.5D。短半径弯头指它的曲率半径等于管子外径,即R=D。式中的D为弯头直径,R为曲率半径。若按压力等级来分,大约有十七种,和美国的管子标准是相同的,有:Sch5s、Sch10s、Sch10、Sch20、Sch30、Sch40s、STD、 Sch40、Sch60、Sch80s、XS;Sch80、Sch100、Sch120、Sch140、Sch160、XXS,其中最常用的是STD和 XS两种。按弯头的角度分,有45°弯头,有90°弯头和180°弯头。这样一来弯头的种类是很多的,定货时定单常采取如下表示方法:如"LR STD 90°8",表示长半径,压力等级为STD,90°的8"弯头;又如,"SR XS 45°4"表示短半径,压力等级为XS,45°的4"弯头。以上为弯头的大概分类情况。 三通,一般有两种。三个口直径相等的为等直径三通,两端直径相同,但汇流端直径与其它两个直径不同称为异径三通。表示方法如下:对于等径三通,比如"T3"三通则表示外径是3英寸的等径三通。对于异径三通,比如"T4×4×3.5"表示同径为四英寸异径为3.5英寸的异径

钢板理论重量表

钢板理论重量表,中厚钢板理论重量表, 金属理论重量计算方法 钢板理论重量表,中厚钢板理论重量表,金属理论重量计算方法 理论重量计算方法 角钢:每米重量=* (边宽+边宽-边厚)*边厚 圆钢:每米重量=*直径*直径(螺纹钢和圆钢相同) 扁钢:每米重量=*厚度*边宽 管材:每米重量=*壁厚* (外径-壁厚) 板材:每米重量=*厚度 黄铜管:每米重量=*壁厚* (外径-壁厚) 紫铜管:每米重量=*壁厚* (外径-壁厚) 铝花纹板:每平方米重量=*厚度 有色金属比重:紫铜板黄铜板锌板铅板 有色金属板材的计算公式为:每平方米重量=比重*厚度理论重量计算方法 角钢:每米重量=* (边宽+边宽-边厚)*边厚 圆钢:每米重量=*直径*直径(螺纹钢和圆钢相同) 扁钢:每米重量=*厚度*边宽 管材:每米重量=*壁厚* (外径-壁厚) 板材:每米重量=*厚度 黄铜管:每米重量=*壁厚* (外径-壁厚)

紫铜管:每米重量=*壁厚* (外径-壁厚)

铝花纹板:每平方米重量=*厚度 有色金属比重:紫铜板黄铜板锌板铅板 有色金属板材的计算公式为:每平方米重量=比重*厚度 理论重量计算方法角钢圆钢扁钢管材板材黄铜管紫铜管铝花纹板 钢板理论重量表(钢板的理论重量)

中厚钢板理论重量表(中厚钢板钢板的理论重量) 矩形方管理论重量计算表,方管理论重量,镀锌方管理论重量,方管的理论重量,计球墨铸铁管价格算公式: 4x壁厚(bihou)x(边南京球墨铸铁管长-壁厚(bihou)) 其中,边长和壁厚都以毫米为单位,直接把数值代入上述公式,得岀即为上海球墨铸铁管每米方管的重量, 以克为单 位。 如毫米的方管,按上述公式即可算岀其每米重量为: ==2158.75克,即约公斤 当壁厚和边长都以毫米为单位时,4x壁厚x(边长-壁厚)算岀的是每米长度方管的体积,以立方厘米为单位,

大型钢制球罐球壳板制造工艺

大型钢制球罐的球壳板制造工艺 摘要;本文综合阐述了目前国内球罐球壳板的制造工艺,并针对球壳板制造中的几个主要环节提出了一些提高球壳板制造质量的注意事项,为以后大型球罐球壳板的制造积累有益的经验。 关键词;球罐;球壳板;制造工艺 0 前言 球罐由于具有技术先进、经济合理、使用安全等特点,已被广泛应用于国内外的石油、化工、煤气和天然气、冶金等工业领域。另外,随着材料、焊接、制造、施工安装技术的不断提高,球罐的大型化和高参数的势头锐不可挡。但是,同一般的圆柱形压力容器相比,球罐在制造上也存在着许多困难之处,如下料工序较复杂、尺寸精度要求严格、焊缝冷却收缩而造成的球体几何尺寸变形无法采用滚圆法纠正等。我厂球容车间在2008年先后完成了3台2000 m3液化气球罐,3台1000 m3天然气球罐和3台1500 m3轻烃球罐的球壳板预制工作。在实际生产过程中,我们也遇到了许多难题,阻碍了生产的顺利进行。为了解决以上问题,进一步提高大型球罐的制造质量,特总结出球壳板的制造工艺及制造中所需特别注意的环节。 1 球壳板的制造工艺 1.1 球壳板制造所需的工装机具 近年来, 由于大型化球罐的制造以及高强度调质低合金钢被广泛采用, 球壳板制造一般采用冷压成形。冷压成形就是钢板在常温状态下,经冲压变形成为球面球壳板的过程,其特点是小模具、多压点,钢板不必加热、成形美观、精度高、无氧化皮[1]。冲压设备多采用800~2500t压力机,我厂所使用的是2400t液压机。 球壳板在冷压过程中所需工装机具主要用于两个环节,一是所需的上下胎具、曲率样板;二是用于切割的专用切割轨道和二次精下料样板。文中着重论述上下胎具半径的计算。加工完成的胎具如图1所示。

钢板网理论重量表

钢板理论重量表钢板理论重量表

钢材理论重量计算公式 圆钢、螺纹钢、线材、钢丝:每米重量=0.00617 ×直径×直径钢板、扁钢、钢带:每米重量=7.85 ×厚度×边宽 镀锌钢板:每米重量=7.85×厚度×边宽×1.06(镀锌厚 酸洗钢板:每米重量=7.85×厚度×边宽 方钢:每米重量=0.00785×边宽×边宽

等边角钢:每米重量=0.00785×边厚×(2边宽-边厚) 不等边角钢:每米重量=0.00785×边厚×(长边宽+短边宽-边厚) 六角钢:每米重量= 0.0068×对边距离×对边距离 八角钢:每米重量=0.0065×对边距离×对边距离 管材:每米重量=0.02466 ×壁厚×(外径-壁厚) 方管:每米重量=0.0157×壁厚×(边长+边长-2.8584×壁厚) 矩形钢管:每米重量=0.0157 ×壁厚×(长度+宽度-2.8584×壁厚) 椭圆钢管:每米重量=0.0123 ×壁厚×(长轴+短轴-2×壁厚) 工字钢:每米重量=0.00785 ×腰厚〔高+f(腿宽-腰厚)〕 (f 值系数:一般型号带 a 的为 3.34 ,带 b 的为 2.65 ,带 c 的为 2.26 )槽钢:每米重量=0.00785 ×腰厚〔高+e(腿宽-腰厚)〕 (e 值系数:一般型号带 a 的为 3.26 ,带 b 的为 2.44 ,带 c 的为 2.24 )黄铜管:每米重量=0.02670 ×壁厚×(外径-壁厚) 紫铜管:每米重量=0.02796 ×壁厚×(外径-壁厚) 铝花纹板:每平方米重量=2.96 ×厚度 有色金属比重:紫铜板8.9 黄铜板 8.5 锌板 7.2 铅板 11.37 有色金属板材的计算公式为:每平方米重量= 比重×厚度

相关文档
相关文档 最新文档