文档库 最新最全的文档下载
当前位置:文档库 › 大体积混凝土浇筑温度控制措施

大体积混凝土浇筑温度控制措施

大体积混凝土浇筑温度控制措施
大体积混凝土浇筑温度控制措施

大体积混凝土浇筑现场温度控制措施

一、温度控制指标

1、混凝土入模温度不得大于30℃;

2、混凝土浇筑体在入模温度基础上的温升值不宜大于50℃;

3、混凝土浇筑块体的里表温差(不含混凝土收缩的当量温度) 不宜大于25℃;

4、混凝土浇筑体的降温速率不宜大于2.0℃/d;

5、混凝土浇筑体表面与大气温差不宜大于20℃。

二、温度测量时间

1、混凝土入模温度每浇筑台班不得少于2次;

2、混凝土浇筑体温度上升阶段每2小时测读一次(前3天),温度下降阶段每4小时测读一次(4至7天),8至12天12小时测读一次,13天至21天24小时测读一次。

三、温度控制措施

1、混凝土入模温度的控制:在泵车处现场实测,当混凝土温度接近或超过30℃,立即

通知商混站,降低粗、细骨料的入机温度,对搅拌用水降温(加冰等),在混凝土运送边程中对罐车进行淋水等措施,对进场的混凝土及时浇筑,尽量必免暴晒;

2、混凝土浇筑体在入模温度基础上的温升值不宜大于50℃控制:浇筑时必须随时观察

混凝土的浇筑进度,及时测温,当温升值在30℃左右(实测温度-入模温度)时,供应冷却水管循环水,循环水供应必须期间如温升较快,应加快供水流速;

3、混凝土里表温差及混凝土表面与大气温差的控制:当混凝土部份浇筑完成后,应及

时覆盖麻袋等保温材料(12h内),对混凝土进行保温、保湿养护。

当混凝土里面温度-混凝土表面温度≥25℃时,主要措施是降低内部温度,提高表面温度。增加循环水流速,降低循环水水温控制混凝土内部温度;增加覆盖层的厚度,提高混凝土表面温度。

当混凝土表面温度-大气温度≥20℃时,主要措施降低混凝土表面温度,增加覆盖层浇水次数,及时释放混凝土表面温度;

4、降温速率的控制:当现实测每天的降温速率接近2℃时,应减少浇水次数,降低循环

水供水速率或间断性的进行供水;

5、混凝土温度控制是个不断重复过程,控制每项温度时可能会影响其它温度,要兼顾

全局,在实际操作中态度必须端正,专人进行供应循环水、浇水覆盖养护。

交底人:

接受交底人:

林州建总建筑工程有限公司楚雄万湖东城项目部

2015年5月7日

大体积混凝土温控及防裂技术

建筑工程 Architecture 114 大体积混凝土温控及防裂技术 王静静杜崇磊 (烟建集团有限公司混凝土分公司) 中图分类号:TU75 文献标识码:B 文章编号1007-6344(2015)02-0114-01 摘要:混凝土结构中,经常会出现由于温度效应产生的裂缝。大体积混凝土施工中,温度变形产生的裂缝成为了最常见以及最严重的质量通病。 关键词:大体积混凝土温控防裂技术 混凝土基础温差的控制是人们过去经常关注的问题,对混凝土的后期保护却没有引起足够重视,以致很多混凝土建筑都有不同程度的裂缝出现。随着科技水平的不断发展,人们逐渐认识到温度变化是造成大体积混凝土开裂的关键因素。 一、大体积混凝土温度变形产生的原因分析 大体积混凝土中主要温度因素是水泥水化热,其温升经常会到达30--50摄氏度。水泥水化作用,使混凝土在硬化过程的最初几天,产生大量的水化热。然而,导热不良的混凝土就会对这种热量进行累积,以致混凝土温度升高、体积增大。大体积混凝土结构的壁越厚,其中心的水化热升温就越大。混凝土未充分硬化部分的弹性模量在升温时很小,壁内累积的压应力数值较小;混凝土已混凝土本结硬,在降温收缩时弹性模量特别大,这种收缩就会产生极大的拉应力。浇筑温度与水化热温度共同构成了最高温度。如果对最高温度值,没有采取适当的方法进行控制,没有对内外温度差通过恰当的保温措施进行减少,没有对温度应力通过改善约束条件进行减少,就会使大体积混凝土结构出现温度裂缝,甚至会出现贯穿性裂缝。 外界气温变化就会引起混凝土内部温度变。尤其在大陆性气候地区或寒冷地区,混凝土温度变形的最主要因素就是外界温度变化。很多事例显示,寒潮期间经常会出现大体积混凝土裂缝。因为气温比较低,混凝土短时间内徐变不能充分发挥,同时温度梯度大,就会形成很大的温度应力。建筑施工期间,混凝土内部经常会产生很大的拉应力。 水化热、浇灌温度以及外界气温变化等各种温度差,以及叠加应力,共同形成了混凝土的内部温度应力。强迫变形引起了温度应力,约束力越大,应力就会越大。而混凝土属于脆性材料,抗拉强度只有抗压强度的10%左右,混凝土内部温度应力大于混凝土抗拉强度时,混凝土自然就会因为温度变形而产生裂缝。受弯断面和孔洞四周应力集中的区域、混凝强度最差的地方、温度变化较大的表面以及应力最大的核心区域是混凝土温度变形最易发生的地方。 二、避免大体积混凝土出现裂缝的措施分析 (一)配制混凝土的材料分析 1、水泥 水化热就会引起混凝土内部大的温差,混凝土内部较大的温差就会产生温度裂缝。因此降低混凝土内部温差以及有效控制水化热,就能预防温度裂缝的产生。只有处理好混凝土的主要材料水泥,就能从整体上降低水化热。低水化热的水泥就能对水化热起到很好的控制作用。通过诸多实验得出,水泥中的主要放热成分铝酸三钙与硅酸三钙占的比例较大,因此,通过向水泥中加入中热硅酸盐、低热矿渣等有效物质,就能够对这两种成分有效的中和,就能降低水泥的水化热。 2、粉煤灰 硅、铝氧化物是构成粉煤灰的主要成分。硅铝氧化物与水泥接触就会发生二次反应,对材料的活性有很好的增强作用,同时,减少了水泥在混凝土中的含量,进而会有效避免混凝土裂缝的出现。粉煤灰颗粒能够在二次反应后均匀的分布在混凝土中,有效的改变与完善混凝土的内部结构,进而使混凝土内部的孔隙率减小,对孔结构起到优化作用,就会很大程度的增强混凝土硬化后的性能。因此,实际施工过程中,经常会在混凝土中加入粉煤灰,对混凝土出现裂缝起到很好防治的作用。 3、骨料 粗骨料:粒径的大小与级配有很大的关系,选择粒径较大的骨料就会降低水泥砂浆及水泥的使用量,进而会降低水化热,就能很好的预防裂缝的形成。细骨料:同样道理,配制混凝土时,应选用中粗沙。同时,应调整沙子的含泥量,这能够有效的防止混凝土出现收缩变化,进而防止混凝土产生裂缝。 4、外加剂 混凝泥土中加入适当的减水剂、缓凝剂以及引气剂等外加剂,也能有效的避免混凝土出现过多的裂缝。其原理是:减水剂对混凝土的融合性有很好的促进作用,进而提高了混凝土的强度,使水灰比降低,水泥含量降低,就能有效防止裂缝的出现。缓凝剂能够延长混凝土放热峰值的时间。引气剂对混凝土的和易性与可泵性具有很好的增强作用,能够充分发挥混凝土的耐久性,就增强了混凝土的抗裂性。应该注意,添加外加剂的混凝土与基准混凝土的收缩比一定保持在35%左右,必须有效控制外加剂的使用量,防止用量过大,改变混凝土的使用性能。 (二)混凝土施工方式的选择分析 1、混凝土的拌制与浇筑 施工过程中,混凝土的拌制非常重要,混凝土材料的使用性能会直接受到混凝土拌制效果的影响。因此,施工中要严格按照标准对混凝土进行拌制,并有效的控制混凝土出机口坍落度。同时,要调整好混凝土拌合物出机口的温度,对温度进行合理控制,可以利用送冷风以及冷却的方式调节。 运用有效的振捣方式,进行混凝土的浇筑,并合理分布振捣的时间,尤其是泛浆与间距的控制。同时,浇筑工作完成后,要适当的压实与抹平浇筑表面,能够很好的控制混凝土的裂缝的产生。另外,使用分层浇筑的方式,能够使下层混凝土在初凝时内凝结良好,对防止裂缝的产生也有很好的预防效果。 2、混凝土隔热保护与日常维护分析 大体积混凝土出现裂缝的主要原因是内外温差大,因此,采取一定的措施对混凝土的温度控制是浇筑结束后非常重要的工作。通过实施隔热保护就能促进混凝土表面快速散热。拆模时,更应注意外部的环境温度,必须实施有效的表面保护,防止因温差形成裂缝。 混凝土浇筑施工结束后,一定要采取日常维护措施。对混凝土的表面进行洒水,保持湿润状态,就能增加混凝土内部的强度。混凝土浇筑结束12--18小时后,就应对其进行实施保护,维护时间应持续20天以上。 三、建议与结语 (一)建议 1、改善混凝土的约束条件 混凝土结构的约束决定了混凝土应力的大小,分缝间距与约束作用有密切关系。合理的分缝不仅能减轻约束作用,而且也能缩小约束范围。通畅分缝间距以12--18米为宜。同时,应考虑后浇缝的宽度,以及应满足同截面钢筋的搭接比度,一般以1米为宜。应选用膨胀水泥配制后浇缝混凝土,整体结构浇筑40天后,就能进行后浇缝。 2、对结构的钢筋进行合理搭配 限制裂缝的出现还与合理的配筋有关。合理的配筋能够减少数目小而宽度大的裂缝,改善数目多而宽度小的裂缝,这样就减轻了裂缝的程度。构造钢筋部位不仅要设置在结构表层,而且在结构薄弱部位也要设置。 3、对混凝土一定要加强保温与养护 为了有效减少混凝土内外温度差及混凝土表面温度梯度,防止表面裂缝,无论是常温还是负温施工,都必须实施混凝土的保温措施。常温保护能够缓冲混凝土受到大气温度变化与雨水侵袭的温度影响。负温保护层一定要使用不透气的材料,才能见效,应根据工程特点、气温以及控制混凝土内外温度差等条件设计负温保护层。保温层还有保湿的作用,同样能够提高混凝土表面抗裂能力。养护期以不低于一个月为宜,较寒冷的地区应该适当延长。 (二)结语 大体积混凝土结构使用性能,会因裂缝受到很大的影响。只有对大体积混凝土的裂缝做好预防措施,发现裂缝并及时采取措施进行修补调整,才能不使其应用受到影响。 参考文献 [1]唐祥胜.大体积混凝土裂缝控制与防止措施[D].合肥工业大学,2005. [2]李树奇.大体积混凝土防裂技术措施的研究[D].天津大学,2004. [3]刘琳莉.桥梁大体积混凝土水化热施工控制研究[D].西南交通大学,2012.

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

大体积混凝土温控措施方案

大体积混凝土温控措施 2.16.6.1 温控标准 混凝土温度控制的原则是:1)尽量降低混凝土的温升、延缓最高温度出现时间;2)降低降温速率;3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温 (季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。根据本工程的实际情况,制定如下温控标准: ?砼浇筑温度: 锚塞体、承台及重力锚锚体混凝土浇筑温度夏季控制在30C以内,冬季控 制在20r以内。 ?最大内表温差及相邻块温差: 锚塞体、承台及重力锚锚体混凝土w 20 r ?冬季混凝土表面温度与气温之差》20 r,混凝土表面养护水温度与混凝土表面温度之差w i5r。 ?混凝土最大降温速率w 2.0 r/ d o 2.16.6.2 现场温度控制措施 在锚碇等大体积混凝土施工中,将从混凝土的原料材选择、配比设计以及混凝土的拌和、运输、浇筑、振捣到通水、养护、保温等全过程实行有效监控,具体措施如下:(1)混凝土配合比设计及原材料选择 为使大体积混凝土具有良好的抗侵蚀性、体积稳定性和抗裂性能,混凝土配制应遵循如下原则: ?选用低水化热和含碱性量低的水泥,避免使用早强水泥和高C3A含量的水泥; ?降低单方混凝土中胶凝材料及硅酸盐水泥的用量; ?选用坚固耐久、级配合格、粒形良好的洁净骨料; ?尽量降低拌和水用量,使用性能优良的高效减水剂; ?有抗渗要求的钢筋混凝土应采用较大掺量矿物掺和料的低水胶比混凝 土。单掺粉煤灰的掺量不宜小于25%,单掺磨细矿渣的掺量不宜小于50%,且

宜使用粉煤灰加硅灰、粉煤灰加矿渣或两种以上的矿物掺和料。 (2)混凝土浇筑温度的控制 降低混凝土的浇筑温度对控制混凝土裂缝非常重要。相同混凝土,入模温度 高的温升值要比入模温度低的大许多。混凝土的入模温度应视气温而调整。在炎热气候下不应超过28C,冬季不应低于5C。在混凝土浇筑之前,通过测量水泥、粉煤灰、砂、石、水的温度,可以估算浇筑温度。若浇筑温度不在控制要求内,则应采取相措施。 ①夏季降低混凝土入仓温度的措施有: 水泥使用前应充分冷却,确保施工时水泥温度w 50C。 搭设遮阳棚,堆高骨料、底层取料、用水喷淋骨料。 避免模板和新浇筑混凝土受阳光直射,入模前的模板与钢筋温度以及附近的局 部气温不超过35C。为此,应合理安排工期,尽量采用夜间浇筑。 当浇筑温度超过28 C,应采用拌和水加冰措施。 当气温高于入仓温度时,应加快运输和入仓速度,减少混凝土在运输和浇筑过 程中的温度回升。混凝土输送管外用草袋遮阳,并经常洒水。 混凝土升温阶段,为降低最高温升,应对模板及混凝土表面进行冷却,如洒水降温、避免暴晒等。 ②冬季施工如日平均气温低于5C时,为防止混凝土受冻,可采取拌和水加 热及运输过程的保温等措施。 (3)控制混凝土浇筑间歇期、分层厚度 各层混凝土浇筑间歇期应控制在7天左右,最长不得超过10天。为降低老混凝土的约束,需做到薄层、短间歇、连续施工。如因故间歇期较长,应根据实际情况在充分验算的基础上对上层混凝土层厚进行调整。官山侧锚塞体混凝土拟分8次浇筑,分层厚度综合考虑结构的特点,分层厚度示意图见附图2.16-4 ; 承台2次浇筑,分层厚度示意图见附图2.16-5 ;牛轭侧重力锚块分9次浇筑,分层厚度示意见图2.16-6 ;牛轭侧重力锚支墩分6次浇筑,分层厚度示意见图 2.16-7

大体积混凝土施工方案完整版本

大体积混凝土专项施工方案 方远建设集团股份有限公司 二0一六年八月

大体积混凝土专项施工方案 编制: 审核: 批准: 方远建设集团股份有限公司 二0一六年八月

地下室工程施工方案 一、编制依据 《混凝土结构设计规范》GB50010-2010 《地下工程防水技术规范》GB50108-2008 《建筑地基基础工程施工质量验收规范》GB50202-2002 《混凝土结构工程施工质量验收规范》GB50204-2002 《大体积混凝土施工规范》GB50496-2009 《建筑工程质量验收统一标准》GB50300-2001 《混凝土强度检验评定标准》GB/T50107-2010 《地下防水工程质量验收规范》GB50208-2002 《钢筋机械连接通用技术规程》JGJ107-2003 《钢筋焊接及验收规程》JGJ18-2003 《混凝土泵送施工技术规程》JGJ10-95 《施工现场临时用电安全技术规范》JGJ46-2005 《砌体结构设计规范》GB50003-2011 建筑图集11G101-1 11G101-2 二、工程概况 台州市方远大饭店工程,位于台州市经济技术开发区西商务区。南邻市府大道,西接学院路,北侧为西商纬二路,东侧为西商经一路,本工程主楼地上13层,裙房地上3层,设2层地下室,。总建筑面积61832㎡,其中地上39221㎡,地下22611㎡,现浇钢筋混凝土框架-剪力墙结构。设计使用年限50年,结构安全等级为二级,地下室防水等级为

二级,地下室顶板和屋面绿化种植土部位防水等级为一级,人防等级为核六级,构件耐火等级为一级。 本工程±0.00相当于绝对标高4.3m(黄海标高)。 地下室底板标高为-10.7m,底板现浇砼厚800mm。 地下室剪力墙厚度为400mm。 地下室-2层顶板厚度人防部分200mm,其余150mm。 地下室-1层顶板厚度主楼部分180mm,其余250mm。 地下室按后浇带划分为9个区块,东西方向长度为124m,南北方向长度为94m,属大面积,超长地下室钢筋混凝土结构,电梯井最深处深度为4.2m,电梯井基础混凝土厚度为2m,地下室地板混凝土厚度为800mm,属于大体积混凝土,基础垫层砼强度为C15,基础承台、地梁、底板、地下室侧壁、砼强度等级为C35(地下室底、侧、顶抗渗等级为P8,掺HEA膨胀剂),根据本工程地下室钢筋混凝土结构超长,大面积的特点,在施工中要抓住以下几方面的关键技术:一是设计具有抗渗,抗裂性能的混凝土配合比,二是地下室结构的抗渗,抗裂的技术措施及质量控制,三是混凝土的搅拌、泵送、浇筑等质量控制,四是大体积混凝土浇捣时的内外温差的控制 三、混凝土工程 混凝土采用商品砼,搅拌车运输到现场,由混凝土泵泵送入模。施工时,应严格控制砼的配合比,泵送施工工艺及混凝土的养护,在前三车混凝土到达施工现场时间内,向搅拌站有关负责人索取水泥、砂石试验单,外加剂质量证明及配合比通知单,浇筑一个月内,搅拌站应提供其他混凝土技术资料(强度报告及合格证等)。

大体积混凝土温控计算书

大体积混凝土温控计算书 1、混凝土的绝热升温 式中:T (t )—混凝土龄期为t 时的绝热温升「C ) m c ——每m 3混凝土胶凝材料用量,取415kg/m 3 Q ——胶凝材料水热化总量,Q=kQ Q o —水泥水热化总量377KJ/kg (查建筑施工计算手册) C —混凝土的比热:取0.96KJ/ (kg.C ) p —混凝土的重力密度,取2400kg/m 3 m ——与水泥品种浇筑强度系有关的系数取 0.3d -1(查建筑施工计算手 册) t ——混凝土龄期(d ) 经计算:Q=kQ=(为+Kr1)Q °=(0.955+0.928-1)X377=332.9KJ/kg 2、混凝土收缩变形的当量温度 (1)混凝土收缩的相对变形值计算 0 (A A-0.01t\ 皿 §(t )= § (1-e ) m 1m 2m 3..…mu 式中:勺(t )——龄期为t 时混凝土收缩引起的相对变形值 『 -- 在标准试验状态下混凝土最终收缩的相对变形值取 3.24X104 m 〔m 2m 3..…mu ——考虑各种非标准条件的修正系数 m 1=1.0 m 2=1.0 m 3=1.0 m 4=1.2 m 5=0.93 m 6=1.0 m 7=0.57 m 8=0.835 m 9=1.0 m 10=0.89 mn=1.01 m 1m 2m3 ... m 11=0.447 T (t )二 m c Q c ? -mt 、 (1-e )

(2)混凝土收缩相对变形值的当量温度计算 T y(t)=啊a 式中:T y(t)——龄期为t时,混凝土的收缩当量温度 5 a——混凝土的线膨胀系数,取 1.0X10- 3、混凝土的弹性模量 E t)=^E o(1-e为 式中:E t)——混凝土龄期为t时,混凝土弹性模量(N/mm2) E o——混凝土的弹性模量近似取标准条件下28d的弹性模量:C40 E o=3.25X1(fN/mm2 ?——系数,近似取0.09 混凝土中掺和材料对弹性模量修正系数,=1.005 4、各龄期温差 (1 )、内部温差 T nax=T+ &)T(t) 式中:T m ax——混凝土内部的最高温度 T——混凝土的浇筑温度,因搅拌砼无降温措施,取浇筑时的大气平均温度,取15C T t)—在龄期t时混凝土的绝热温升 &)—在龄期t时的降温系数

混凝土温控措施

1.8混凝土温控防裂措施 1.8.1混凝土温控要求 浇筑大体积混凝土应在一天中气温较低时进行。混凝土的浇筑温度(振捣后 50~100mm 深处的温度)不宜高于28℃。在炎热季节浇筑大体积混凝土时,宜将 混凝土原材料进行遮盖,避免日光爆晒。根据原料温度推算拌合后混凝土的温度 可按下式进行: max 0()t T T T ξ=+ (1) 式中: ξ —不同浇筑块厚度、不同龄期时的降温系数,可由表查得 0T —混凝土的浇筑入模温度 max T —混凝土内部最高温度 ()t T —在t 龄期时混凝土的绝热温升 ()(1)mt c t m Q T e C ρ -=- (2) 式中: c m —每立方米混凝土水泥用量 Q —每千克水泥水化热量 C —混凝土的比热,一般取0.96J/Kg ·K ρ —混凝土的质量密度,取2400Kg/m 3 e ―常数,为2.718 m ―与水泥品种,浇筑时与温度有关的经验系数,取0.3 t ―混凝土浇筑后至计算时的天数 1.8.2混凝土温控措施 为防止大体积混凝土温差过大产生温度裂缝,从而保证混凝土的质量,在混 凝土施工中,我们主要采取了以下措施: 1、采用低水化热水泥 施工中选用了水化热较低的矿渣硅酸盐水泥,同时,为减少混凝土配合比中

的水泥用量,在确保混凝土强度及坍落度的条件下,适当掺入了粉煤灰及外加剂,以降低混凝土的水化热温升,控制最终水化热。 2、控制混凝土入模温度 混凝土的入模温度指混凝土运输至浇筑时的温度,降低混凝土的入模温度措施是用冷水对粗骨料进行冲洗,选择在夜间浇筑混凝土,混凝土入模温度控制在了24℃以内。 3、控制混凝土分层浇筑厚度 尽量减少浇筑层厚度,以便加快混凝土散热速度。施工采用汽车泵泵送入模时候,混凝土浇筑时严格控制分层厚度为每30cm一层,自一侧向另一侧顺序浇筑,保证在下层混凝土初凝前浇筑完成上层混凝土。分层厚度利用钢筋或其它标尺做参照物,派专人进行负责,一个下料点到位后,移至下一个下料点,依次进行,混凝土布料完成且平整后开始振捣。 4、加强混凝土的振捣质量 浇筑过程中配备6条插入式振动棒,分区负责保证振捣质量,尤其是在钢筋密集处,必须保证其密实性和均匀性,防止出现过振、漏振现象。 混凝土浇筑到设计标高后,要除去表面浮浆,安排专人找平。为防止混凝土表面出现收缩裂缝,用木抹进行二次收浆找平。 5、及时保温养护 (1)在遇气温骤降的天气或寒冷季节浇筑大体积混凝土后,应注意覆盖保温,加强养护。 (2)保温养护采用在混凝土表面蓄水养护的方法,养护安排专人进行,个别蓄水养护不到的部位给予覆盖并经常洒水,保持混凝土表面湿润不失水。6、做好混凝土温度监测 对于重要结构在混凝土内部埋设电阻式温度计测量混凝土温度,全面掌握混凝土内部温度,出现较大温差时及时采取降温措施。每100m2仓面面积应不少于1个测点,每一浇筑层应不少于3个测点。测点应均匀分布在浇筑层面上时、浇筑块内部的温度观测,除按设计规定进行外,应根据混凝土温度控制的需要,补充埋设仪器进行观测。 1.8.3混凝土裂缝、漏浆处理

大体积混凝土冷却循环水温控措施

大体积混凝土冷却循环水温控措施 由于大体积混凝土具有结构厚、体形大、施工技术要求高等特点,在大体积混凝土施工过程中,因水泥水化热作用产生很大的热量,混凝土表面热量散失较快,内部热量不易散发,从而内部与表面产生较大的温差。当温差超过一定临界值时,致使混凝土产生温度应力裂缝,从而影响工程的耐久性。本工程底板3.2米、2.6米厚采用“大体积混凝土冷却循环水温控施工工法”,防止了大体积混凝土产生温度应力裂缝的质量通病。 采用冷却循环水温控法降低大体积混凝土温升,通过测温点内热偶传感器所测混凝土内温度的变化规律,自动调节循环水管水流速度,平衡大体积混凝土内外温度,防止混凝土温差所产生的应力裂缝,确保工程质量。 5.11.1施工工艺流程 施工工艺流程见下图 5.11.2 砼温升和冷却循环水管、测温点埋设计算 (1)砼温升计算 根据经验公式:Tmax= To +Q/10 式中 Tmax----为砼内部的最高升温值; To----为砼浇筑温度。按夏天15天平均气温取30℃; Q-----为C30每立方米砼中PO42.5矿渣水泥用量取368㎏/m3, 则施工中砼中心最高温升值为:Tmax=30+368/10=66.8℃

循环水管道立面示意图 (2)冷却循环水管埋设计算 1)根据《高层建筑施工手册》及热交换原理,每一立方砼在规定时间内,内部中心温度降低到表面温度时放出的热量,等于砼在硬化期间散失到大气中的热量。 2)依据该基础设计尺寸、配筋、埋件、留洞、夏天昼夜气温变化及砼温升梯度等情况,以¢48冷却循环水管所承担的砼理论降温体积为基准,通过精确计算(计算过程略)确定,冷却循环水管道按照左、中、右三个循环系统进行安装。冷却循环水管安装上下中心距为660mm,左右中心距为1710mm(如下图所示),三个系统循环水管呈之字形布置。 循环水管道立面安装图 冷却循环水管道安装节点详图 (3)温控点布置及安装:

大体积混凝土施工质量保证措施

大体积混凝土施工质量保证篇 1 浇筑前准备阶段质量控制措施 1.1 材料 在保证混凝土强度及耐久性的前提下,采用低水化热的水泥,在混凝土中掺加10~15℅粉煤灰减少水泥用量,根据实验每减少10Kg水泥,其水化热使混凝土的温度相应的降低1℃,每增加20Kg粉煤灰又能减少10Kg水泥。 采用骨料堆场加遮阳棚,以降低骨料温度。严格控制骨料的针片状含量,优化骨料级配,以减少水泥用量,降低水化热,同时要尽量降低砂、石的含水率,严格控制含泥量。 在混凝土中适当的掺入缓凝型高效减水剂来降低水泥用量和减少水灰比,来降低混凝土温升和减小收缩变形。 大体积混凝土浇筑前的施工机具、养护材料、应急备用设备需提前准备到位。 1.2 人员 统筹安排人员,合理细化工作。大体积混凝土浇筑前需编制施工值班表,将各项工作进行分解细化,责任到人。 1.3 机械 ——混凝土搅拌系统:2~3套搅拌机组,额定单机产量为60m3/h; ——混凝土运输车:额定运输量为8m3/车; ——布料机:HG28G; ——泵车:SY5385THD-37/46/50; ——振捣棒:ZN-25/50; ——其他:冲毛机、空压机、洒水车、柴油发电机等 1.4 技术及现场准备

(1) 进场原材料(钢筋、水泥、砂子、石子)必须符合设计图纸及施工验收规范规定。检查要点: (a) 首先应检查进场水泥的品种、级别、包装或散装仓号、出厂日期、出厂合格证、出厂检验报告,并按规定进行见证取样复检,其强度、安定性、初凝终凝时间等性能指标必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》等规定,另外应注意根据混凝土工程的特点、所处环境条件和混凝土设计性能要求合理选用水泥品种。比如:为了降低大体积混凝土的水化热,配制C40以上的高强混凝土或快硬混凝土时,宜优先选用质量稳定、强度等级不低于42.5级的硅酸盐水泥或普通硅酸盐水泥;钢筋混凝土结构、预应力混凝土结构中,严禁使用含氯化物的水泥等。其次是砂子、石子、外加剂、掺合料、钢筋等原材料的质量,必须经过取样试验符合标准,对未经专业监理工程师检查验收或验收不合格的材料禁止使用。钢筋的进场质量必须符合《钢筋混凝土用热轧带肋钢筋》等的规定取样作力学性能检验。 (b) 施工图纸上面备注原材料产地的必须符合设计图纸要求。 (c)进场原材料经现场检验合格后,现场见证取样送到有资质的试验室试验合格后方可浇筑混凝土。 (2) 模板验收合格。检验的要点是 (a) 模板及支架的选用是否按施工组织设计方案执行,模板的轴线、标高、几何尺寸是否符合设计要求,模板拼缝是否严密、表面隔离剂涂刷是否均匀,无油污,模板内清理是否干净并充分湿润。 (b) 模板支撑系统是否稳定、牢固。模板制作必须保证工程结构和构件各部分形状尺寸和相互位置的正确性,支撑系统须具有足够的承载能力,刚度和稳定性。 (3) 钢筋工程验收合格。检查要点 (a) 钢筋的品种、规格、数量、位置、保护层、间距和加工形状是否符合设计要求。钢筋的连接形式和连接工艺、钢筋的接头位置和间距是否符合设计和施工验收规范要求。 (b) 钢筋的锚固长度、绑扎搭接长度、焊接长度和焊接质量是否符合设计和规范要求。钢筋的弯钩和弯折角度、弯弧、弯后的平直长度部分、受力钢筋

大体积混凝土测温方案

大体积混凝土测温方案 一、概述 大体积混凝土是指混凝土结构物实体最小尺寸不小于1m的大 体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。 随着我国建筑技术的不断提高,大体积混凝土结构的应用也越来越广泛。大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。在混凝土硬化初期,水泥水化的同时释放出较多热量,而混凝土与周围环境的热交换较慢,所以混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行逐渐减少,混凝土的温度降低,因而产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(简称主温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。此外,混凝土的导热系数相对较小。其内部的热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成混凝土内外的温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构物的平面尺寸、结构厚度、约束条件、周边环境情况、

含筋率、混凝土各种组成材料和物理力学性能、施工工艺等许多因素影响。故为了保证大体积钢筋混凝土施工质量,国家建设部于2010 年颁布的《高层建筑混凝土结构技术规程》(JGJ 3-2010)中第13.9.6 条规定:“大体积混凝土浇筑后,应在12h 内采取保湿、控温措施。混凝土浇筑体的里表温差不宜大于25℃,混凝土浇筑体表面与大气温差不宜大于20℃”。中华人民共和国住房和城乡建设部颁发的《大体积混凝土施工规范》(GB 50496-2009)中第5.5.1 、5.5.3 、6.0.1 、6.0.2 、6.0.3 、6.0.6 条及《混凝土结构工程施工规范》(GB 50666-2011)中第8.5.2 、8.5.4 、8.5.6 、8.7.3 、8.7.4 、8.7.6 、8.7.7 条中都对大体积混凝土浇筑后的养护和测温作了明确的规定。 二、工程概况 吉地?澜花语三期工程项目由河南吉地置业有限公司开发、新浦集团公司承建。该项目位于郑东新区白沙镇文华路南、仁爱路西。基础为筏板基础,筏板厚度为1800mm,系大体积混凝土结构,混凝土设计强度等级为C40,抗渗等级为P6。钢筋混凝土基础筏板全长68.86m,宽13.8m,厚1.8m,需浇注的混凝土量约计2650m3,强度等级为C40,P6。因筏板的厚度大,连续浇注的混凝土量大,按大体积混凝土组织施工。重点控制三项内容: 第一、混凝土浇注后的内外温差,防止裂缝产生。 第二、合理组织浇注顺序,防止产生冷缝。 第三、所用水泥品种、外加剂品种的选用与合理的配比,满足

桥墩承台大体积混凝土施工方案

承台大体积混凝土施工方案 工程概况: 济洛路桥P0承台结构尺寸为32.485×6.50×2.00m。混凝土设计强度为C30,计划采取一次性浇筑,数量为422.305 m3,属于大体积混凝土施工。大体积混凝土由于结构尺寸大,水泥水化热引起混凝土温度升高,热量不易及时散发而形成较大的内外温度差,较大的温度差引起混凝土体积变化的差异,使混凝土各部位受到约束而不能自由伸缩,当温度变形产生的拉应力大于混凝土的抗拉应力时,便产生了裂缝。为解决混凝土施工产生的水化热、防止混凝土产生裂缝和混凝土浇筑等问题,特制定本方案。 混凝土浇筑完毕后转入养护阶段。防止混凝土开裂的一个重要原则是尽可能使新浇筑混凝土少失水分及内外温差控制在允许范围内(不大于25℃)。混凝土表面干燥或水分蒸发过快和温度下降幅度较大时,都足以引起表面混凝土开裂,且裂缝会向内发展。因此,要尽量长时间的保温和保持混凝土表面湿润,以使其表面缓慢冷却、干燥,使混凝土能够产生足够的强度以抵抗温度拉应力。 一、混凝土浇筑 模板安装和钢筋绑扎经检查合格后,在原材料准备和天气条件允许的情况下,须立即进行混凝土浇筑。 由于混凝土方量大,为加快浇筑速度,拟采用泵送,这样既减轻了施工中工人的劳动强度,同时也节省了混凝土转运的时间。 1、根据面积大小和混凝土供应能力,本次混凝土浇筑采取全面分层的

施工方法:即在第一层全面浇筑全部浇 筑完毕后,再回头浇筑第二层,分层厚 度300~500mm 且不大于震动棒长 1.25倍。此时应使第一层混凝土还未初 凝,如此逐层连续浇筑,直至完工为止。为了保证结构的整体性,要求次层混凝土在前层混凝土初凝前浇筑完毕。 2、混凝土浇筑从低处开始,沿长边方向自一端向另一端推进,逐层上升。浇筑时,要在下一层混凝土初凝之前浇筑上一层混凝土,避免产生冷缝,并将表面泌水及时排走。 3、混凝土浇筑过程中,掺用高效减水剂华冠GFA-3G,能大幅度减少用水量和提高新拌混凝土的和易性,从而减少了混凝土水化反应产生的水化热。 4、混凝土的密实成型:用插入式振动器振捣混凝土时,应垂直插入,并插入下层混凝土50mm,以促使上下层混凝土结合成整体,每一振点的振捣延续时间应使混凝土充分捣实(振动时间10~15s,以混凝土泛浆不再溢出气泡为准,不可过振)。采用插入式振动器捣实普通混凝土的移动间距,不宜大于作用半径的1.5倍。捣实轻骨料混凝土的间距,不宜大于作用半径的1倍,振动器与摸板的距离不宜大于振动器作用半径的1/2,并应尽量避免碰撞钢筋、摸板、预埋件等。插点的位置分布必须按照行列式或交错式进行选择,不可漏振。 5、泌水处理:大体积混凝土另一特点是上、下浇筑层施工间歇时间较长,各分层之间易产生泌水层,它将会导致混凝土强度降低,酥软、脱皮起

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度 检 测 方 案 方案编制人: 方案批准人: XX工程质量检测有限责任公司 20 年月日

目录 封面 (1) 一、测温描述 (3) 二、工程概况 (4) 三、依据标准规范及温控指标 (5) 四、测温仪器及设备 (5) 五、测温点的布置 (5) 六、温度测试元件的安装及保护 (7) 七、测温时间 (7) 八、温控措施与建议 (8) 九、监测程序 (9) 十、安全、文明措施 (9) 十一、质量保证体系及服务承诺 (10) 十二、委托单位的配合工作 (11) 十三、测温点布置图………………………………………附图页

XX名都工程2#、3#楼筏板基础 大体积混凝土水化热温度和温差 监测方案 一、测温描述 因大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。 在混凝土硬化初期,水泥水化释放出较多热量,而混凝土与周围环境的热交换较慢,故混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行慢慢减少,混凝土的温度降低,混凝土产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(此应力简称为温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。 此外,混凝土的导热系数较小。混凝土内部热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成了混凝土里表温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构的平面尺寸,结构厚度,约束条件,周边环境情况,含筋率,混凝土各种组成材料的特性和物理力学性能,施工工艺等许多因素影响。故为了保证大体积混凝土施工质量,

大体积混凝土施工方案(全)

和平里项目 大体积混凝土施工方案 编制: 审核: 审批: 编制单位:石家庄一建建设集团有限公司 二零一七年十一月

目录 一、编制依据------------------------------------2 二、工程概况-----------------------------------2 三、大体积混凝土施工采取的防裂措施-------------2 四、混凝土的水化热温升与应力的计算-------------4 五、施工部署-----------------------------------4 六、施工方法-----------------------------------6 七、应急措施-----------------------------------8 八、质量标准-----------------------------------9 九、安全环保措施-------------------------------11 十、附图---------------------------------------13

一、编制依据 (1)和平里住宅项目1#住宅楼施工图纸 (2)《混凝土结构设计规范》(GB50010-2010)(2015年版) (3)《混凝土结构工程施工规范》(GB50666-2011) (4)《混凝土结构工程施工质量及验收规范》 (GB50204-2015) (5)《普通混凝土配合比设计规程》JGJ55-2011 (6)《建筑工程施工质量验收统一标准》(GB50300-2013) (7)《建筑地基基础工程施工质量验收规范》(GB50202-2002) (8)《大体积混凝土施工规范》GB 50496-2009 二、工程概况 工程概况表 本工程大体积混凝土施工正值春夏交替季节,这给施工带来了一定的难度。 三、大体积混凝土施工采取的防裂措施

混凝土的温控计算及温控措施(计算公式)

4.混凝土的温控计算及温控措施 4.1 C30大体积混凝土配合比设计及试配。 为降低C30大体积混凝土的最高温度,最主要的措施是降低混凝土的水化热。因此,必须做好混凝土配合比设计及试配工作。 4.1.1原材料选用 水泥:C30大体积混凝土应选用水化热较低的水泥,并尽可能减少水泥用量。本工程选用了普通硅酸盐水泥,即PO42.5海螺牌水泥。 细骨料:根据试验采用Ⅱ区中砂。 粗骨料:在可泵送情况下,选用粒径5-32.5连续级配石子,以减少水泥用量和混凝土收缩变形。 含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。 掺合料:采用添加粉煤灰技术。项目部根据试验选定才用二级粉煤灰,在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,大大降低了混凝土前3天的水化热。 外加剂:采用外加膨胀剂(AEA)技术。在混凝土中添加占胶凝材料8%的AEA。试验表明,在混凝土添加了AEA之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,从而提高了提高混凝土抗裂强度和抗渗性能。 4.1.2试配及施工配合比确定 根据试验室配合比设计试配,确定每立方米混凝土配合比为PO42.5级水泥 305kg,砂(中砂)752kg、连续级配碎石(粒径5—31.5mm)1063kg,掺合料65kg,外加剂25kg,水190kg,坍落度120士20mm。 4.2混凝土温度验算 假若承台周边没有任何散热和热损失条件(现场为砖地模且在砼施工时周边分层回填夯实),水化热全部转化成温升后的温度值,在混凝土表面覆盖一层麻袋作为保温层,则混凝土水化热绝热温升值为(混凝土在3-3.5d的水化热为峰值,则取3d砼温度): 计算参数:混凝土为C30 P8、普硅水泥为P.O42.5

大体积砼的温控措施及施工工艺

大体积砼的温控措施及施工工艺 (1)大体积砼的温控措施 大体积混凝土在施工阶段产生的温度应力往往超过外荷载引起的结构应力,使混凝土产生温度裂缝,影响锚碇使用年限。因此,锚碇大体积混凝土的温度控制成为确保锚碇施工质量的关键问题。在施工过程中,我们将采取以下措施:A砂石料和拌和水预冷却措施 按照温控方案的要求,在每次混凝土开盘前,工地试验人员都须测定和记录砂、石、水泥、粉煤灰和拌合用水的温度,据以计算其混凝土出盘温度和入模温度。当环境温度较高,混凝土拌和料的入模温度达不到设计温度要求时,采用原材料预冷措施,降低混凝土拌和料的温度。 B冷却拌和用水 采用冰水作拌和用水降低拌和料温度。 C集料预冷 粗集料的温度对混凝土拌和料的温度影响最大。采取冰水喷洒集料预冷,搭盖通风席棚遮阳。

(2)大体积砼的施工工艺 A浇注 混凝土采用90 m3/h陆上拌合站集中拌合,2台输送泵浇筑各块混凝土。 按设计图纸和温控方案划分各层厚度。分层布置参见混凝土浇注分层布置图。每层由于浇注面积大、混凝土方量多,考虑到混凝土生产能力的限制,施工从一侧开始,以坡比1:5按斜面法布料,由低处向高处浇注,水平推进作业。在下层混凝土初凝前,上层混凝土浇筑到位,以保证混凝土浇筑质量。上下层混凝土浇注间歇时间控制在4-7d。由于混凝土采用泵送施工,具有较大的流动性,施工时在前端设置挡板。混凝土浇注时间选择在室外温度较底时进行,以夜间施工为主,并按气温控制混凝土入仓温度。为保证混凝土的均匀性和密实性,在浇注过程中加强振捣。振动器采用型号为φ100mm-150mm和φ60mm-35mm,两者结合使用,按施工规范要求反复振捣。在浇注过程中随时检查模板、支架钢筋、预埋件、预留孔和混凝土垫块的稳固情况,当发现有变形、

大体积混凝土施工方案

金科·集美晴洲一标段工程 大体积混凝土施工方案 编制人: 校对人: 审核人: 审批人: 审批日期:

大体积混凝土施工方案 目录 第一章工程概况 (1) 第二章编制依据 (1) 第三章施工部署 (2) 3.1施工准备 (2) 3.2现场准备 (3) 3.3施工计划安排 (3) 3.4混凝土浇筑的人员组织 (3) 3.5泵管的布置 (4) 3.6泵管的加固 (5) 第四章组织管理及施工顺序 (5) 4.1施工组织构架 (5) 4.2施工顺序 (6) 第五章原材料选用及配合比设计 (7) 5.1原材料 (7) 5.2配合比设计 (7) 第六章大体积混凝土施工 (8) 第七章大体积混凝土测温与养护 (10) 第八章质量保证措施 (16) 第九章安全文明施工措施 (16) 第十章环境保护措施 (17) 第十一章应急措施 (18)

第一章工程概况 (注:重点叙述筏板基础厚度、混凝土标号、浇筑方量、混凝土供应单位等相关信息) 本工程位于**,工程为3栋高层商业住宅,整个工程的总建筑面积为103320平方米,地上建筑面积约75320平方米,地下建筑面积约28000平方米。高度为102.30m,±0.000相当于绝对标高482.25m。 本工程主楼结构形式为剪力墙结构,筏板基础;地库部分结构形式为框架结构,独立基础。基底标高-12.75m,电梯井集水坑基底标高-14.30m。 根据图纸介绍的情况,本工程2、3、4#楼地下室有高层筏板基础,地下室建筑面积约8100 m2, 筏板板厚均为1500mm,属于大体积混凝土施工,混凝土的浇筑量较大,施工中应加强浇筑和养护措施,防止出现冷凝缝和温度裂缝。基础具体如下表所示。 地基基础桩基基础形式平板式筏板基础 基础混凝土量约5610m3 筏板基础厚度1500mm 基础混凝土标号C40/P8 商品混凝土由指定的**商品混凝土有限公司供应,为了保证混凝土的连续供应,与混凝土公司协商混凝土供应的连续性。要求搅拌站配备足够的混凝土运输车外,沿途派专人及时反馈路况信息。 优化混凝土配合比,掺外加剂,减少水泥用量;控制混凝土入模温度;加强混凝土的养护。 建设单位:**; 设计单位:**; 监理单位:**; 施工单位:中天建设集团有限公司。 第二章编制依据 1、《大体积混凝土施工规范》GB50496-2009 2、《混凝土结构工程施工质量验收规范》GB50204-2015 3、《建筑地基基础工程施工质量验收规范》GB50202-2002 4、《混凝土外加剂应用技术规范》GB 50119-2013

相关文档
相关文档 最新文档