文档库 最新最全的文档下载
当前位置:文档库 › 水解酸化污水处理工艺研究

水解酸化污水处理工艺研究

水解酸化污水处理工艺研究
水解酸化污水处理工艺研究

水解酸化污水处理工艺研究

中国市政工程中南设计研究总院

摘要:本文在介绍水解酸化工艺的基本原理、反应控制条件的基础上,分析了水解酸化工艺的设计要点及研究应用现状,为工程设计和科研提供参考。

关键词:污水处理水解酸化厌氧消化

水解酸化工艺能将污水中的非溶解性有机物转变为溶解性有机物,将难生物降解有机物转变为易生物降解有机物,提高污水的可生化性,通常用于生化工艺的预处理,同时由于水解酸化可以去除一部分有机污染物,减少后继处理设备的曝气量,降低污泥产率,节约能耗,逐渐在污水处理尤其是高浓度及难降解有机废水处理中得到了广泛的应用[1]。

1 水解酸化反应机理

1.1 基本概念

水解酸化的净水机理主要包括两个方面:首先是在细菌胞外酶的作用下,将复杂的大分子不溶性有机物水解为简单的小分子水溶性有机物;然后是发酵细菌将水解产物吸收进细胞内,排出挥发性脂肪酸(VFA)、醇类、乳酸等代谢产物。在厌氧条件下,水解和酸化无法截然分开,水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为了取得能进行发酵的水溶性底物,并通过胞内的生化反应取得能源[2]。

1.2 水解酸化与厌氧生物处理工艺的关系

随着能源问题的日益突出,以往仅用于污泥处理的厌氧生物处理工艺由于能耗低、有机物负荷高、污泥产量相对较少、可回收生物能源(沼气)等优点,在污水处理中也越来越受到重视。

厌氧生物处理是经大量微生物的协同作用来完成的,根据微生物的生物种群,复杂有机物的厌氧降解过程是分别在水解细菌、酸化发酵菌、产乙酸菌和产甲烷菌的共同作用下分水解、酸化、产乙酸、产甲烷四个阶段完成的[3],水解酸化工艺是将有机物的降解过程控制在厌氧生物处理的前两个阶段。

水解酸化工艺最终产物主要为低浓度有机酸,而完整的厌氧生物处理工艺中,水解酸化

产物会立即经产乙酸、产甲烷反应转化为CH4、CO2和新的细胞物质。水解酸化工艺对温度不需控制,优势菌种为兼性菌,要求氧化还原电位ORP<50mV即可,而厌氧生物处理工艺需对温度进行控制,优势菌种为厌氧菌,要求ORP<-300mV[2]。

2 水解酸化工艺过程控制

2.1 水解酸化过程的主要影响因素

2.1.1 污水中有机物的性质

有机物的种类及形态对水解酸化过程有较大影响。如对多糖、蛋白质和脂肪三类有机物而言,水解速率依次减少;对同类有机物而言,分子量越大,水解越困难;就分子结构而言,直链比支链易于水解,支链比环状易于水解,单环化合物比杂环或多环化合物易于水解;就粒径而言,颗粒性有机物(被0.45μm孔径的过滤器所截留的物质)粒径越大,单位重量有机物的比表面积越小,水解速率也越小。

2.1.2 pH值

pH值主要影响水解的速率、水解酸化的产物以及污泥的形态和结构。水解酸化微生物对pH值有较大范围的适应性,水解过程可在pH值3.5~10.0的范围内顺利进行,但最佳范围为5.5~6.5。

2.1.3 温度

温度对水解反应的影响符合一般的生物反应规律,即在一定的范围内,温度越高,水解反应的速率越大。但当温度在10~20℃之间变化时,水解反应速率变化不大,可见水解微生物对低温变化的适应性较强。

2.1.4 水力停留时间

水力停留时间是水解酸化工艺设计和运行的重要参数,一般水力停留时间越长,被水解物质与水解微生物接触时间也越长,相应地水解效率也越高[2]。针对不同的污水应通过试验确定合理的水力停留时间,一般地,对于城市污水可采用2~5h,对于印染废水等高浓度工业污水可采用5~10h,或根据具体水质采用更长的水力停留时间。

2.2 水解酸化过程维持方法

有机物厌氧降解过程包括水解、酸化(发酵产酸)、产乙酸和产甲烷几个阶段,要维持良好

的水解酸化反应,应根据水解酸化的特点创造合适的条件,并控制产甲烷菌的生长。

水解酸化最适宜的pH范围为5.5~6.5,而产甲烷菌的适宜pH范围为6.8~7.2,通过调整有机负荷或加酸调整pH,可使反应维持在最佳的pH范围内。改变有机负荷调整pH的理论依据为:提高有机负荷,引起系统内挥发性有机酸的积累,导致pH值下降,而pH值的降低反过来又抑制了甲烷菌的增殖,使有机酸进一步积累,导致pH更加降低,如此反复,系统可自然地进入最佳的水解酸化状态。加酸主要适用于污水中含有大量难降解物质或含有大量的缓冲物质。

水解产酸菌与产甲烷菌生长速度不同,前者高于后者,当水解酸化泥龄较小时,甲烷菌的数量将逐渐减少,直到完全淘汰。

另外维持良好水解酸化条件的方法还有适量投加CCl4、CH3Cl抑制产甲烷菌生长,控制微量氧、调节氧化还原电位等[4]。

2.3 水解酸化反应程度的评价指标

水解酸化主要是将非溶解态、难生物降解的有机物转化为溶解态、易生物降解的物质,反应进行的程度可用以下一些指标评价[2]。

2.3.1 pH值变化

污水中糖类、蛋白质、脂肪等大分子物质经水解酸化后,将引起pH值下降,测定进出水pH值的变化可间接反映水解酸化进行的状况,这是目前工程实践中最为简便的方法之一,但当进水底物浓度较低或含有大量缓冲物质时,这一指标难以适用。

2.3.2 溶解性BOD(SBOD)和耗氧速率变化

测定进出水SBOD浓度、BOD/COD比值以及耗氧速率的变化,可直接反映水解酸化的工作状态。

2.3.3 NH3-N浓度变化

含氮有机物中的氮经水解酸化反应后被转化为氨,当进水中含有含氮有机物时,测定NH3-N浓度变化,也可反映水解酸化的工作状态,如焦化废水水解酸化后NH3-N浓度明显高于进水。

2.3.4 挥发性悬浮物(VSS)变化

水解过程中,颗粒性有机物被转化为溶解性有机物,引起VSS减小。对于接触式反应器,进出水VSS差值越大,表明水解程度越好;对于污泥床反应器,由于出水VSS减少有可能是污泥层的截留作用所致,VSS的变化只能部分反映反应器的水解状态。

2.3.5 挥发性有机酸(VFA)变化

污水中的有机物经水解酸化反应后产物一般为VFA。实际工程中,测定VFA变化是最准确、最常用、最方便的评价水解酸化进行状态的方法之一。

2.3.6 VFA/BAP比值

生物化学产酸势(BAP)表示污水中可在水解酸化工程中转化为挥发性有机酸(VFA)的有机物的最大量。测定水解酸化产生的VFA浓度与BAP比值可定量评价水解酸化程度。该比值小于1,比值越接近1表示水解酸化程度越高。

3 工艺设计要点

3.1 反应器类型

根据微生物的生长方式,水解酸化反应器可分为活性污泥法(悬浮生长型)、生物膜法(附着生长型)和复合法(复合生长型)三种。

活性污泥法水解酸化反应器包含完全混合式和污泥床两种型式,如图1、图2所示。完全混合式水解酸化反应器内设置搅拌装置实现完全混合,其后设置沉淀池,并回流污泥以保证较高的污泥浓度,适用于含固率较高的污水;污泥床反应器内水解污泥能较好地保留在反应器内,污泥层对悬浮物等有较强的截留作用,其后一般不设沉淀池,适用于含悬浮物浓度相对较低的城市污水及难降解工业废水。

图1 完全混合式水解酸化反应器图2 上流式污泥床水解酸化反应器由于水解酸化菌难以形成密实的絮凝体,易流失,难以维持反应器内的污泥浓度,工程中多采用附着型反应器。复合法将活性污泥法和生物膜法结合在一起,一般采用上流式,反

应器下部为污泥层,上部设置填料[2]。

3.2 反应器容积计算

水解酸化反应器容积可以根据水解过程的动力学方程或经验值计算。

3.2.1 动力学法

水解是水解酸化过程的限制性阶段,颗粒性有机物的水解反应是颗粒性有机物浓度的一级反应,对于连续式无污泥回流的完全混合系统,所需的反应器容积V为:V=Q(S po-S p)/(K h S p) (式1)

式中:Q—进水流量,m3/h

S po—进水颗粒性有机物浓度,mg/L

S p—出水颗粒性有机物浓度,mg/L

K h—水解速率常数,h-1

K h通过试验确定,对于生活污水K h一般为0.1~0.2 h-1。

3.2.2 水力停留时间法

水力停留时间法是一种经验计算方法,反应器容积V计算公式如下:

V=Qt (式2)

式中Q—进水流量,m3/h

t—水力停留时间,h

水力停留时间根据经验或试验确定[2]。一般城市污水的水解酸化-好氧处理中,t为2-3h;难降解工业污水的水解酸化-好氧处理中,可参照类似或相关工程经验确定,如印染废水可为8-12h。

3.2.3 有机负荷法[5]

反应器的有效容积可根据处理污水的水量、浓度及容积负荷确定。

V=QS/q (式3)

式中V—有效容积,m3

Q—进水流量,m3/d

S—COD浓度,kg/ m3

q—容积负荷,kg/ (m3·d)

容积负荷需要试验确定,或参照同类污水经验值,一般可采用1~3kg/(m3·d)。

3.3 剩余污泥量

有机物的水解酸化降解中,微生物自身得以增殖,同时不可生物降解的有机物及无机固体的积累也不利于水解酸化的正常运行,为了保持水解酸化微生物的活性,需要排除剩余污泥,控制泥龄,使微生物浓度维持在一个合适的水平,剩余污泥排放量可参考式4计算[2],实际运行中应根据污泥浓度变化确定。

ΔX=ΔX1+ΔX2-ΔX3=Q(S po-S p)+[μm S r/(K s+S r)-K d]XV- K h S p Q (式4)

式中:ΔX—排放的剩余污泥量,Kg/d

ΔX1—进出水颗粒有机物的减少量,Kg/d

ΔX2—微生物净增长量,Kg/d

ΔX3—水解的有机物量,Kg/d

X—水解污泥浓度,mg/L

μm—水解微生物的最大比增长速率,h-1

S r—溶解性底物浓度,mg/L

K s—饱和常数,mg/L

K d—水解微生物的衰减常数,h-1

其它符号意义与式1相同。

4. 工程实例

水解酸化工艺由于可有效改善污水的可生化性,提高污水处理效果,在试验研究及工程实践中得到了广泛应用。

江苏某染织实业有限公司采用“水解酸化-活性污泥法-物化”工艺处理印染废水,设计规模为5000 t/d。该工艺中,水解酸化池从底部进水,顶部出水,采用脉冲布水使布水均匀,减少污泥流失,同时池中装有填料,既增加了微生物量,又可防止污泥上浮。另外,在水解酸化池的进出口设有pH自动监测仪,以便把握pH值的变化,及时调整,保证水解酸化池的稳定运行。停留时间为3~5 h。运行结果表明,进水COD、BOD、SS、pH分别为1216mg/L、

404 mg/L、454 mg/L、9;水解酸化池出水pH为8.5,进出水B/C分别为0.33和0.35;工艺出水COD、BOD、SS、pH分别为85 mg/L、22 mg/L、49 mg/L、7,出水水质达到《纺织染整工业水污染物排放标准》(GB4287-92)Ⅰ级标准[6]。

哈尔滨工业大学韩春威等采用水解酸化-生物接触氧化工艺和水解酸化-SBR工艺对屠宰废水进行试验研究,水解酸化反应器的总容积约63.28L(有效容积51.34L),反应器为圆柱体,Φ390 mm上口不密闭,底部为圆锥形集泥斗,有一个进水口,反应器内悬挂四根半软性填料,水解酸化反应器分为清水层区和污泥床区,反应器的上部清水区填料与废水充分接触,反应器的下部为水解酸化反应器的接种污泥,待处理废水以及补充的活性污泥由反应器底部进入反应器内,废水经过污泥区与污泥充分的混合,污泥床类似于过滤层,拦截大部分的悬浮物,再与填料充分接触,水解出水的色度也大幅度降低,出水由顶部排水口排出。研究结果表明,水解酸化最佳水力停留时间为8~10h,进水COD浓度为480~1457mg/L时,出水COD浓度稳定,COD去除率随着容积负荷的增大而提高,水解酸化有一定的耐冲击负荷能力,适宜的COD容积负荷为2.91kg/(m3·d)左右。在此运行条件下,水解酸化对COD去除率较高,可达到50%左右[7]。

侍广良等采用“水解酸化-好氧”工艺对印染废水进行处理,其中水解酸化段停留时间为7~8h、COD容积负荷为1.5~2.5kg/m3·d,好氧段停留时间及COD容积负荷分别为4.5~5h和4.5~5kg/m3·d的条件下运行时取得了良好的处理效果[8]。

卢大群等采用“混凝沉淀-水解酸化-好氧氧化-混合沉淀”工艺处理印染废水,设计停留时间为10h,选用半软性填料作为微生物载体。池底设置曝气管线予以搅拌,以避免厌氧污泥于池底过量淤积,曝气量约为2.0m3/min[9]。

张豪等采用“气浮-水解酸化-UBF-SBR”工艺处理某制药公司的硫酸卷曲霉素生产废水,其中水解酸化停留时间16 h,在进水COD 6000~20000 mg/L、SS 2000~5000 mg/L,BOD5∶COD = 0.25~0.4的条件下,该工艺出水水质能够达到COD<300 mg/L、BOD5<50 mg/L、NH3-N<20mg/L,满足《污水综合排放标准》(GB8978-1996)生物制药行业二级要求[10]。

5. 小结

水解酸化工艺可改善污水的可生化性,提高污水处理效果,减少后续生化处理的反应时

间和处理能耗。由于反应控制在厌氧降解过程的水解酸化阶段,故出水无厌氧发酵所具有的不良气味,改了污水处理厂的环境;不需要密闭反应器,不需要搅拌器和水、气、固三相分离器,降低了造价并便于维护,可以设计出适合大、中、小型污水厂所需要的构筑物[11]。随着水环境恶化的加剧,有机污染物浓度不断提高,成分也越来越复杂,水解酸化工艺因其特有的处理效能,将会有更加广阔的应用前景。

参考文献

[1] 赵大传倪寿清等. 生活污水水解酸化的研究[J]. 山东建筑工程学院学报,2006,21(2):154-158

[2] 李亚新. 活性污泥法理论与技术[M]. 北京:中国建筑工业出版社,2007:511-526

[3] 赵庆良刘雨等. 废水处理与资源化新工艺[M]. 北京:中国建筑工业出版社,2006:68-82

[4] 孙美琴彭超英梁多. 水解酸化预处理工艺及应用[J]. 四川环境,2003,22(4):52-55

[5] 程凯英黄石峰等. 水解(酸化)反应器在工程应用中的研究与展望[J]. 工业水处理,2005,25(3):39-42

[6] 李川. 水解酸化-活性污泥法处理印染废水研究[J]. 环境工程学报,3(10):1789-1791

[7] 韩春威水解酸化-好氧工艺处理屠宰废水的试验研究[硕士学位论文]. 哈尔滨工业大学,2007,6.

[8] 侍广良马华年. 悬浮、附着厌氧-好氧生物处理新工艺的研究与应用[J]. 中国给水排水,1996,12(3):4-6

[9] 卢大群王厚俊等. 混凝沉淀-水解酸化-好氧氧化-混凝沉淀工艺处理印染废水[J]. 云南环境科学,2006,24(1):48-50

[10] 张豪杨兴富等. 气浮-水解酸化-UBF-SBR工艺处理硫酸卷曲霉素生产废水的研究[J]. 信阳师范学院学报:自然科学版,2008,21(4):556-559

[11] 王松. 水解酸化-生物接触氧化工艺处理印染废水的试验研究[硕士学位论文]. 武汉理工大学,2005,11.

沉淀池及水解酸化池设计参数

沉淀池及水解酸化池设计参数 沉淀池设计参数: 平流沉淀池:按表面负荷进行设计,按水平流速进行核算。水平流速为5~7 mm/s。表面负荷:给水自然沉淀0.4~0.6m3/m2.h;混凝后沉淀1.0~2.2m3/m2.h;城市污水1.5~3. 0m3/m2.h。有效水深一般为2~4m,长宽比为3~5,长深比8~12。进出水口均设置挡板,挡板高出池内水面0.1~0.2m,挡板据进水口0.5~1.0m;距出水口0.25~0.5m。挡板淹没深度:进口0.5~1.0m(约为池深5/6左右);出口处为0.3~0.4m。 竖流式沉淀池:池直径=4~7m,不宜大于8m,池直径与有效水深之比≤3。上流速度为0. 3~0.5 mm/s;中心管下流速度<30 mm/s。喇叭口直径及高度为中心管直径的1.35倍;反射板直径为喇叭口直径的1.3倍,中心管底与反射板间缝隙高度为0.25~0.50m;反射板表面与水平面的夹角为17°,板底距泥面至少0.3m;排泥管下端距池底≤0.2m,管上端超出水面0.4m。浮渣挡板距集水槽0.25~0.5m,板上端超出水面0.1~0.15m,淹没深度为0.3~0.4m。 斜管沉淀池超高0.3~0.5m,清水区保护高度为1.0 m,缓冲层高度为0.7~1.0m,斜管沉淀池表面负荷2~4m3/m2.h为宜。沉淀时间1.5~4h。 水解酸化池设计参数: 水解酸化池放弃了厌氧反应中甲烷发酵阶段,利用水解和产酸菌的反应,将不溶性有机物水解成溶解性有机物,减轻后续处理构筑物的负荷,使污泥与污水同时得到处理,可以取消污泥消化。在整个水解酸化过程中,80%以上的进水悬浮物水解成可溶性物质,将大分子降解为小分子,不仅是难降解的大分子物质得到降解,而且出水BOD5/COD比值提高,降低了后续生物处理的需氧量和曝气时间。 水解反应器对水质和水温变化适应能力较强,水解-好氧生物处理工艺效率高,能耗低,投资少,运行费低,简单易行。 水解反应器设计是以水力负荷为控制参数,有机负荷只作为参考指标。水解反应池内溶解氧应为零,反应器形式可采用悬浮型生物反应器(如UASB)或附着型生物反应器。 名称参数 水力负荷0.5~2.5m3/m2 有机负荷 1.95~8.8kgCOD/m3.d 停留时间2~8h

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较根据有机物在厌氧处理中所要求达到的分解程度,可将其分为两种类型,即酸发酵(水解酸化)和甲烷发酵。前者以有机酸为主要发酵产物,而后者则以甲烷为主要发酵产物。酸发酵是一种不彻底的有机物厌氧转化过程,其作用在于使复杂的不溶性高分子有机物经过水解和产酸,转化为溶解性的简单低分子有机物,为后续厌氧处理中产乙酸产氢和产甲烷微生物或好氧处理准备易于氧化分解的有机底物(即提高废水的BOD5 / COD ,改善废水的可生化性)。因而,它常作为生物预处理工序或厌氧-好氧联合生化处理工艺中的前处理工序。 厌氧-好氧工艺是中、高浓度有机废水处理的适宜工艺。这是因为: 1.厌氧法多适用于高浓度有机废水的处理,能有效地降解好氧法不能去除的有机物,具有抗冲击负荷能力强的优点,但其出水综合的指标往往不能达到处理要求; 2.厌氧法能耗低和运行费便宜,尤其在高浓度有机废水时,厌氧法要比好氧法经济得多; 3.好氧法则多适用于中低浓度有机废水的处理,对于高浓度且水质、水量不稳定的废水的耐冲击负荷能力不如厌氧法,尤其当进水中含有高分子复杂有机物时,其处理效果往往受到严重的影响。厌氧-好氧联合处理工艺可大大改善水质及运行的稳定性,但由于厌氧段实现了甲烷过程,因而对运行条件和操作要求较为严格,同时因原水中大量易于降解的有机物质在厌氧处理中被甲烷化后,剩余的有机物主要为难生物降解和厌氧消化的剩余产物,因而尽管其后续的好氧处理进水负荷得到大大降低,但处理效率仍较低。此外,该工艺须考虑复杂的气体回收利用设施,从而增加基建费用。而水解酸化工艺则将厌氧处理控制在产酸阶段,不仅降低了对环境条件(如温度、p H、DO等)的要求,使厌氧段所需容积缩小,同时也可不考虑气体的利用系统,从而节省基建费用。由于厌氧段控制在水解酸化阶段,经水解后原水中易降解物质的减少较少,而原来难以降解的大分子物质则被转化为易生物降解的物质,从而使废水的可生化性及降解速率得到较大幅度的提高。因此,其后续好氧处理可在较短的HRT下达到较高的处理率。两相厌氧消化工艺即是将厌氧消化中的产酸相和产甲烷相分开,以便获得各自最优的运行工况。与水解酸化过程相比,其产酸段对产物的要求是不同的(以乙酸为其产物)。 水解酸化、混合厌氧和两相厌氧由于各自的作用不同、对产物要求及处理程度的不同,对各自的运行和操作要求也不同: 1. Eh不同。在混合厌氧消化系统中,由于承担水解和酸化功能的微生物与产甲烷菌共处于一个反应器中,整个反应器的氧化还原电位Eh须严格控制在- 300mV以下以满足甲烷菌的要求,因而其水解酸化菌也是在此Eh值下工作的。两

水解酸化池设计

水解酸化池 1. 某污水厂总设计规模为20万m 3/d ,污水处理厂的进水水质如下表: 污水处理厂的进水水质1-1 污水能否进行生化处理,尤其是否适用于生物脱氮除磷工艺,取决于污水中各种营养成分的含量及其比例能否满足生物生长需要,因此必须分析相关的进水指标。 表1-2 污水厂污水营养物比值 BOD /COD BOD i. BOD 5 /COD cr 比值 污水BOD 5 /COD cr 值是判定污水可生化性的最简便易行和最常用的方法。根据工程经验,一般认为BOD 5 /COD cr >0.45可生化性较好,BOD 5 /COD cr <0.3较难生化,BOD 5 /COD cr <0.25不易生化。 本项目BOD 5 /COD cr =0.28,可见其生化性较难。

ii.BOD5 /TN比值 BOD5 /TN比值是判别能否有效脱氮的重要指标。理论方面,BOD5 /TN ≥2.86就能进行脱氮;工程经验方面,BOD5 /TN≥4.0才能有效脱氮。 本项目BOD5 /TN =3.11,可见其能进行脱氮。 iii.BOD5 /TP比值 进水中的BOD5是作为营养物供聚磷菌活动的基质,故BOD5/TP是衡量能否达到除磷的重要指标,在污水中BOD5 /TP之比为17及以上时,取得良好的除磷效果。 本项目BOD5 /TP =28,可见其能达到良好的除磷效果。 1.水解酸化池工艺的确定 针对本工程项目的特点需对预处理工艺有如下要求: 1)进水的COD高,BOD5/CODcr较低,污水的可生化性较难,选择工艺时 应进一步提高污水的可生化性,确保出水水质; 2)本工程将接入大量工业废水(占城市污水量的70%),同时大部分工业废 水为纺织印染废水,选择预处理工艺时,应综合考虑色度的去除; 3)预处理工艺应尽可能节省:基建投资、能耗和运行费用; 因此,通过本工程可研,在好氧生物反应池前增加水解酸化池预处理工艺,目的:a)改善进水水质,提高BOD5 /CODcr;b)印染废水中污染物绝大多数属于芳香烃化合物,利用厌氧菌可对该类化合物开环,达到较好的脱色目的;c) 采用水解-活性污泥法与传统的活性污泥相比,其基建投资、能耗和运行费用可分别节省30%左右。

水解酸化池的工艺操作规程

编号:SM-ZD-71033 水解酸化池的工艺操作规 程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

水解酸化池的工艺操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 本项目水解酸化池的处理效果增强措施:

水解酸化基础知识

水解酸化基本知识 水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。 酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。 从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两项厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。 影响水解酸化过程的重要因素: PH值:水解酸化微生物对PH值变化的适应性较强,水解酸化过程可在PH值3.5-10的范围内进行,但最佳的PH是5.5-6.5 水温:研究表明,水温在10-20摄氏度之间变化时,对水解反应速度影响不大,说明参与水解的微生物对低温变化的适应性强。 底物的种类和形态:底物的种类和形态对水解酸化过程的速度有很大影响。对同类有机物来说,分子量越大,水解越困难,相应的水解速度就越小。颗粒状有机物,粒径越大,单位重量有机物的比表面积就越小,水解速度也越小。 污泥生物固体停留时间:在常规的厌氧条件下,混合厌氧消化系统中,水解酸化微生物的比增值速度高于甲烷菌,因此,当系统的生物固体停留时间较小时,甲烷菌的数量将逐渐减少,直至完全淘汰。为了保持水解微生物的活性,水解池内水解微生物浓度应该保持一个合适的浓度。这都是靠控制水解池的生物固体停留时间来完成的。 水利停留时间:对水解酸化反应器来说,水利停留时间越长,底物与水解微生物的接触时间也越长,相应的水解效率就高。 水解酸化过程的判断指标: 一个水解反应池是否发生了水解,以及水解过程进行的程度,单从出水的水质COD、BOD等的去除率来判断是不全面的。判断指标为: BOD/COD比值的变化:废水可生化性的一个重要指标。 溶解性有机物的比例变化:水解处理后,溶解性有机物比例显著增加。 有机酸(VAF)的变化:进出水VAF的相差越大,说明水解酸化的程度越好。

水解酸化池设计计算书

水构筑物课程设计 课程设计计算说明书 专业: _____ 环境工程 _________ 班级:环工1211 ________ 题目: _____ 水解酸化池 _______ 指导教师:黄勇/刘忻 姓名: _______ 姚亚婷_________ 学号:1220103136 _________ 2015年1月3日

环境科学与工程学院 目录 1.1水解池的容积 (1) 1.2水解池上升流速校核 (1) 1.3配水方式 (2) 1.4堰的设计 (2) 1.4.1 堰长设计 (2) 1.4.2 出水堰的形式及尺寸 (2) 1.4.3 堰上水头h1 (3) 1.4.4 集水水槽宽B (3) 1.4.5 集水槽深度 (3) 1.5进水管设计 (4) 1.6出水管设计 (4) 1.7污泥回流泵设计计算 (5)

水解酸化池设计计算 1.1水解池的容积 水解池的容积V V K z QHRT 式中:V ——水解池容积,m3; K z——总变化系数,1.5; Q ---- 设计流量,Q=130m3/h; HRT ——水力停留时间,设为6h; 则水解酸化池容积为V K Z QHRT =1.5*130*6=1170m3, 水解池,分为2格,设每格水解酸化池长18米,每格的宽为6.5m, 设备中有效水深高度为5m,则每格水解池容积为18*6.5*5=585m3 设超高为0.5m,则总高为5.5m 1.2水解池上升流速校核 已知反应器高度为:H=5.5m;反应器的高度与上升流速之间的关系如下: Q V H

式中: A HRTA HRT 上升流速(m/h); Q 设计流量,m3/h ; V 水解池容积,m3; A 反应器表面积,m2; HRT——水力停留时间,h,取6h; 则v=5.5/6=0.92(m/h) 水解反应器的上升流速0.5 ~1.8m/ h ,符合设计要求 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底200mm,均匀布置在池底,位于所服务面积的中心。 1.4堰的设计1.4.1堰长设计 取出水堰负荷q' =1.5L/(sm)(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于1.7L/(s m))。 式中:L——堰长m; q 出水堰负荷,L/(s m),取1.5L/(s m); Q'--- 设计流量,每格流量为0.018m3/s; 则L Q -M0 12m,取堰长L 12m。

水解酸化池工艺详解

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。设计进水流量为900m3/h,水力停留时间按8.5h,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部2.4m布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。在考虑到后续好氧处理的能耗问题,水解酸化就主要用于低浓度难降解废水的预处理了。

水解酸化池调试方案

水解酸化池调试方案 一、各类指标参数 1、理论运行控制点:水力负荷(上升流速)、水力停留时间、污泥浓度、污泥回流、B/C。 2、日常主要检测指标:进出水流量、进出水COD和BOD、DO、污泥浓度、PH、SS、SV30、氨氮和总磷总磷(如有要求可检测)、水温(如有要求可检测)、微生物镜检。 3、主要涉及的设备材料:进出水泵(自流方式此项没有)、污泥回流泵、潜水搅拌机或其它同功能推流器、填料。 4、主要涉及的水质监测设备(如无在线检测设施时可参照): 1) 实验室物化检测设备见附件检测方法中设备要求 2) 涉及到的电子检测设备:流量计、便携式DO检测仪、COD测定仪、氨氮和总磷总磷测定仪、温度计、微生物镜检设备。二、调试前准备 以下各项在无特殊情况下均为同时进行,无主次之分。 1、项目水检测: 1)主要摸查现场排水情况,主要包括现阶段排水量、满负荷排水量、排水周期、各车间或者工业单元排水点、降雨等天气对于排水的影响。

2)与甲方协调,将日常水质监测设备就位。在带泥调试之前,将进水水质检测完毕,其中包括COD、BOD、PH、SS、水温、氨氮和总磷总磷,以及本项目其它主要去除指标。 2、与甲方协调确定污水处理站调试结束后的运行人员,并进行一些前期相关培训。 3、对本项目设备设施进行调试,以确保设备设施正常运行,建议用清水进行试车。 4、联系接种污泥,以确保污泥接种前进场。再联系时,要充分考虑余量,以防突发事件时无污泥可用。 5、与甲方单位协调,确定所需公用工程的情况,包括水、电、蒸汽(如有要求)等。 三、种污泥的选择及驯化培养 总的原则为源污泥的活性再生,水质的适应,定向提升负荷驯化。 1、种泥选择原则: 1) 本项目如有污水处理,原有污泥接种为最优选择。 2) 可选择附近相近生产的企业浓缩消化污泥或脱水污泥。 3) 可选择附近市政污水处理厂的浓缩消化污泥或脱水污泥。 4) 以上都没有,则要选择没有重金属、毒性,且生化活性相对高、进水COD、BOD低于本项目的活性污泥作为种泥培养。

水解酸化池工艺详解精选文档

水解酸化池工艺详解精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取 m/h,有效水深为。设计进水流量为900m3/h,水力停留时间按,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR 的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化

水解酸化池设计计算书

水构筑物课程设计课程设计计算说明书 专业:环境工程 班级:环工1211 题目:水解酸化池 指导教师:黄勇/刘忻 姓名:姚亚婷 学号: 1220103136 环境科学与工程学院 2015年1月3日

目录 1.1水解池的容积 (1) 1.2水解池上升流速校核 (1) 1.3配水方式 (2) 1.4堰的设计 (2) 1.4.1堰长设计 (2) 1.4.2出水堰的形式及尺寸 (2) h (3) 1.4.3堰上水头 1 1.4.4集水水槽宽B (3) 1.4.5集水槽深度 (3) 1.5进水管设计 (4) 1.6出水管设计 (4) 1.7污泥回流泵设计计算 (5)

水解酸化池设计计算 1.1水解池的容积 水解池的容积V QHRT K V Z = 式中:V ——水解池容积, m 3; z K ——总变化系数,1.5; Q ——设计流量,Q=130m 3/h ; HRT ——水力停留时间,设为6h ; 则水解酸化池容积为QHRT K V Z ==1.5*130*6=1170m 3, 水解池,分为2格,设每格水解酸化池长18米,每格的宽为6.5m ,设备中有效水深高度为5m ,则每格水解池容积为18*6.5*5=585m 3 设超高为0.5m ,则总高为5.5m 1.2水解池上升流速校核 已知反应器高度为:H=5.5m ;反应器的高度与上升流速之间的关系如下: HRT H HRTA V A Q = == ν 式中: ν——上升流速(m/h ); Q ——设计流量,m 3 /h ; V ——水解池容积,m 3 ;

A ——反应器表面积,m 2 ; HRT ——水力停留时间,h ,取6h ; 则v=5.5/6=0.92(m/h) 水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底200mm ,均匀布置在池底,位于所服务面积的中心。 1.4堰的设计 1.4.1堰长设计 取出水堰负荷q ’ =1.5)/(m s L ?(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ?)。 '' q Q L = 式中:L ——堰长m ; 'q ——出水堰负荷,)/(m s L ?,取1.5)/(m s L ?; 'Q ——设计流量,每格流量为0.018m 3 /s ; 则125 .11000 018.0''=?= =q Q L m ,取堰长m L 12=。

水解酸化工艺

水解酸化工艺 1、原理 水解酸化净水原理主要包括两个方面:首先是在细菌胞外酶的作用下,将复杂的大分子不溶性有机物水解为简单的小分子水溶性有机物;然后是发酵细菌将水解产物吸收进细胞内,排出挥发性脂肪酸(VFA)、醇类、乳酸等代谢产物。在厌氧条件下,水解和酸化无法截然分开,水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为取得能进行发酵的水溶性底物,并通过胞内的生化反应取得能源。 水解酸化工艺能将污水中的非溶性有机物转变为溶解性有机物,将难生物降解有机物转变为易生物降解有机物,提过污水的可生化性,通常用于生化工艺的预处理,同时由于水解酸化可以去除一部分有机污染物,减少后续处理设备的曝气量,降低污泥产率,节约能耗。 2、设计计算 (1)、动力学法 水解是水解酸化过程的限制性阶段,颗粒性有机物的水解反应是颗粒性有机物浓度的一级反应,对于连续式无污泥回流的完全混合系统,所需的反应器容积V为: V=Q(S po-S p)/(K b S p) 式中:Q ——进水流量,m3/h S po——进水颗粒性有机物浓度,mg/l S p——出水颗粒性有机物浓度,mg/l K b——水解速率常数,h-1 K b通过试验确定,对于生活污水K b一般为0.1~0.2h-1

(2)、水力停留时间法 水力停留时间法是一种经验计算方法,反应器容积V为: V=Qt 式中:Q——进水流量,m3/h t——水力停留时间,h 水力停留时间根据经验或试验确定,一般城市污水的水解酸化-好氧处理中,t为2~3h;难降解工业污水的水解酸化-好氧处理中,可参照类似或相关工程经验确定,如印染废水可为t8~12h。 (3)、有机负荷法 反应器有效容积可根据处理污水的水量、浓度及容积负荷确定。 V=QS/q 式中:Q——进水流量,m3/h S——COD浓度,kg/m3 q——容积负荷,kg/(m3·d) 容积负荷需要试验确定,或参照同类污水经验值,一般可取1~3kg/(m3·d)

水解酸化池的工艺操作规程

水解酸化池的工艺操作规程 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 水解酸化池的处理效果增强措施: a、水解酸化池底部安装有大阻力布水系统,利用二沉池的回流污泥搅动水解酸化池底部的污泥,使其处于悬浮状态并且与进入的废水充分混合,从而提高了水解酸化池的处理效果,减轻后续好氧处理的负荷。二沉池的污泥回流水解酸化池,可以增加水解酸化池内的污泥浓度、提高处理效果,同时使污泥得到消化,减少了剩余污泥的排放量、降低污泥处理费用,从而减少了运行费用。 b、在水解酸化池内安装弹性填料,对搅动的废水进行水力切割,

使悬浮状态的污泥与水充分混合。为水解酸化菌的生长提供有利条件。 c、水解酸化池底部还装有排泥管道系统,是由UASB厌氧反应器排泥系统改进而成,可以保证水解酸化池长期稳定的运行。 为保证设施的稳定运行,必须保证均匀进水!根据车间的日产生污水量,分次分阶段的从调节池提升至水解酸化池。 污泥回流量控制在总污泥量为池容的1/3即可。

水解酸化池设计计算书(免费)

免费的 目录 1水解酸化池设计计算 (1) 1.1水解池的容积 (1) 1.4.1堰长设计 (2) 1.4.2出水堰的形式及尺寸 (2) 1.4.3堰上水头 h (3) 1 1.4.4集水水槽宽B (3) 1.4.5集水槽深度 (3) 1.4.6进水堰简略图 (4)

1水解酸化池设计计算 1.1水解池的容积 水解池的容积V QHRT K V Z = 式中:V ——水解池容积,m 3; z K ——总变化系数,1.5; Q ——设计流量,m 3/h ; HRT ——水力停留时间,h ,取6h ; 则345655.1m V =??= 印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。 1.2水解池上升流速校核 已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下: HRT H HRTA V A Q === ν 式中: ν——上升流速(m/h ); Q ——设计流量,m 3 /h ; V ——水解池容积,m 3; A ——反应器表面积,m 2 ;

HRT ——水力停留时间,h ,取6h ; 则)/(67.06 4 h m == ν 水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。 1.4进水堰设计 已知每格沉淀池进水流量s m h m Q /00035.03600 4/533' =?= ; 1.4.1堰长设计 取出水堰负荷)/(2.0'm s L q ?=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ?)。 '' q Q L = 式中:L ——堰长m ; 'q ——出水堰负荷,)/(m s L ?,取0.2)/(m s L ?; 'Q ——设计流量,m 3 /s ; 则75.12.01000 00035.0''=?==q Q L m ,取堰长m L 2=。 1.4.2出水堰的形式及尺寸 出水收集器采用UPVC 自制90o三角堰出水。直接查第二版《给

水解酸化池的工艺操作规程标准范本

操作规程编号:LX-FS-A37098 水解酸化池的工艺操作规程标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

水解酸化池的工艺操作规程标准范 本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降

《水解酸化反应器污水处理工程技术规范》

附件3 水解酸化反应器污水处理工程技术规范(征求意见稿)编制说明

项目名称:水解酸化反应器污水处理工程技术规范 项目统一编号:247-1392 项目承担单位:中国环境保护产业协会 编制组主要成员:王凯军,燕中凯,王焕升,尚光旭,刘媛,薛念涛,高志永,朱民,刘晓剑 标准所技术管理负责人:姚芝茂 技术处项目管理人:姜宏

目次 1 任务来源 (1) 2 标准制定必要性 (1) 3 主要工作过程 (1) 4 国内相关标准研究 (2) 5 同类工程现状调研 (4) 5.1 水解酸化法的反应器类型 (4) 5.2 水解酸化法应用现状 (6) 5.3 水解酸化法存在的问题 (8) 5.4 水解酸化法的发展趋势 (9) 6 主要技术内容及说明 (9) 6.1 水解酸化法的机理 (9) 6.2 水解酸化法的适用性 (10) 6.3 水量和水质 (11) 6.4 污染物去除率 (11) 6.5水解酸化法污水处理工艺流程 (12) 6.6 预处理 (12) 6.7 升流式水解反应器 (13) 6.8 复合式水解反应器 (16) 6.9 完全混合式水解反应器 (16) 6.10 后续处理 (17) 6.11 剩余污泥及处理 (17) 6.12 检测与控制 (17) 6.13 运行与维护 (18) 7 标准实施的环境效益与经济技术分析 (19) 8 标准实施建议 (19)

《水解酸化反应器污水处理工程技术规范》编制说明 1 任务来源 2009年,环境保护部下达了“关于开展2009年度国家环境保护标准制修订项目工作的通知”(环办函【2009】221号),其中提出了制定《污水厌氧生物处理工程技术规范水解酸化法》(项目编号247-1392号)行业标准的任务。 本标准主要起草单位:中国环境保护产业协会、清华大学、北京市环境保护科学研究院。 2 标准制定必要性 环境保护标准化是我国环境保护的一项重要的发展战略,建立与国际接轨的环境工程服务技术标准体系和环境技术评估体系,是当前加快环境保护标准化步伐的一项重要任务。它对于提升我国环境工程服务业的国际竞争能力,规范环境工程服务业市场,保证环境工程建设和运行管理质量,为环境管理提供技术支撑和保障具有重要意义。 环境工程服务技术标准包括工程类技术标准和产品类技术标准两大类,是环境工程立项、科研、招投标、设计、建设施工、验收、运行全过程服务的技术依据。 水解酸化法作为有效改善水质可生化性的工艺在我国污水处理工程实践中已得到广泛应用。很多管理部门、设计部门和技术研究单位,在从事水解酸化法污水处理工程的设计及运行管理工作中已经积累了一些实践经验,但是国内尚缺乏可操作的技术规范指导水解酸化法污水处理设施的建设与运行。为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、和国家其他有关污水处理领域的法规,规范水解酸化反应器污水处理工程的规划、设计、施工、验收和运行管理,需要制定《污水厌氧生物处理工程技术规范水解酸化法》作为污水水解酸化法污水处理技术工程设计工作的指导性文件,为水解酸化法设备的施工、验收和运行管理提出相关要求。使水解酸化法污水处理设施从建设到运行全过程能有一个技术规范进行指导,对于保证水解酸化法污水处理工程的建设质量和稳定运行,以及保证环境保护主管部门的有序监管都具有重要意义。 因此,《污水厌氧生物处理工程技术规范水解酸化法》的编制是十分必要和及时的。 3 主要工作过程 2009年3月,环境保护部下达《污水厌氧生物处理工程技术规范水解酸化法》编制任务后,中国环境保护产业协会组织成立了标准编制组,编制组由中国环境保护产业协会、清华大学、北京市环境保护科学研究院等相关单位的人员组成。

水解酸化原理介绍

水解酸化原理介绍 作者:钱进 1. 水解酸化反应机理 水解在化学上指的是化合物与水进行的一类反应的总称。在废水处理中,水解指的是有机底物进入细胞之前,在胞外进行的生物化学反应。水解是复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。他们首先在细菌胞外酶的水解作用下转变为小分子物质。这一阶段最为典型的特征是生物反应的场所发生在细胞外,微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶完成生物催化氧化反应(主要包括大分子物质的断链和水溶)。 酸化则是一类典型的发酵过程,即产酸发酵过程。酸化是有机底物即作为电子受体也是电子供体的生物降解过程。在酸化过程中溶解性有机物被转化以挥发酸为主的末端产物。 在厌氧条件下的混合微生物系统中,即使严格地控制条件,水解和酸化也无法截然分开,这是因为水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为了取得能进行发酵的水溶性底物,并通过胞内的生化反应取得能源,同时排出代谢产物(厌氧条件下主要为各种有机酸)。如果废水中同时存在不溶性和溶解性有机物时,水解和酸化更是不可分割地同时进行。如果酸化使pH值下降太多时,则不利于水解的进行。 厌氧发酵产生沼气过程可分为水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。水解酸化工艺就是将厌氧处理控制在反应时间较短的第一和第二阶段,即将不溶性有机物水解为可溶性有机物,将难生物降解的大分子物质转化为易生物降解的小分子有机物质的过程。 1.2水解酸化的影响因素

a)基质的种类和颗粒粒径 基质不同,其水解难易亦不同。基质的种类对水解酸化过程的速率有重要影响。如脂肪、蛋白质、多糖在其他条件相同的条件下,水解速率逐渐增大;对同类型有机物来说,分子量大的要比分子量小的更难水解;从分子结构来说,水解难易程度为直链结构>支链结构>环状结构,且单环化合物易于杂环化合物。污染物的颗粒的大小对水解速率的影响也很大。颗粒粒径越大,单位重量的比表面积就小,越难于水解。因此,对于颗粒大有机污染物浓度较高的废水或污泥,先破碎后再进入水解池,加速水解(酸化)速率。 b)容积负荷 容积负荷是水解过程的重要工艺参数之一,它反映了进水浓度与停留时间对厌氧过程的综合影响。对于水解反应器,容积负荷设计取值较低,提高水力停留时间,使污染物质与水解微生物接触时间加长,溶解出COD 浓度变高,水解也越完全。对于对于城市污水,水解反应可在很短时间内完成,容积负荷可取相对较高值;而对于工业废水比例较大的的污水,容积负荷需根据废水性质进行设计。 c)配水系统 水解池良好运行的重要条件之一是保障污泥和废水之间的充分接触,因此系统底部的布水系统应该尽可能地均匀。水解反应器的配水系统是一个关键的设计系统,为了使反应器底部进水均匀,有必要采用将进水均匀分配到多个进水点的分配装置。 d)上升流速 为确保水解反应器中泥水的充分接触及出水水质,水解池的上升流速应控制在一定的范围内。当上升流速偏低时,大量的较密实的活性污泥沉积在水解池的底部,在污水上升的过程中,泥水不能充分接触反应,从而导致了去除效果较差。当上升流速偏高时,会造成水解池的活性污泥大量流失。出水带泥,一方面对后续好氧生化处理的微生物造成毒性,另一方面无法保证水解池的去除效果。 1.3水解酸化工艺优点 水解酸化阶段主要利用的是发酵细菌,这类细菌的种类繁多,代谢能力强,繁殖速度快,对外界环境适应能力强等特点。

水解酸化池设计计算书

目录 1水解酸化池设计计算 (1) 1.1水解池的容积 (1) 1.4.1堰长设计 (2) 1.4.2出水堰的形式及尺寸 (2) 1.4.3堰上水头 h (3) 1 1.4.4集水水槽宽B (3) 1.4.5集水槽深度 (3) 1.4.6进水堰简略图 (4)

1水解酸化池设计计算 1.1水解池的容积 水解池的容积V QHRT K V Z =式中:V ——水解池容积,m 3; z K ——总变化系数,1.5; Q ——设计流量,m 3/h ; HRT ——水力停留时间,h ,取6h ; 则3 45655.1m V =××=印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。 1.2水解池上升流速校核 已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下: HRT H HRTA V A Q ===ν式中:ν——上升流速(m/h ); Q ——设计流量,m 3/h ; V ——水解池容积,m 3; A ——反应器表面积,m 2;

HRT ——水力停留时间,h ,取6h ;则)/(67.06 4h m ==ν水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。 1.4进水堰设计 已知每格沉淀池进水流量s m h m Q /00035.036004/533' =×=;1.4.1堰长设计 取出水堰负荷)/(2.0'm s L q ?=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ?)。 '' q Q L =式中:L ——堰长m ; 'q ——出水堰负荷,)/(m s L ?,取0.2)/(m s L ?; 'Q ——设计流量,m 3/s ;则75.12.010*******.0''=×==q Q L m ,取堰长m L 2=。1.4.2出水堰的形式及尺寸 出水收集器采用UPVC 自制90o三角堰出水。直接查第二版《给

相关文档