文档库 最新最全的文档下载
当前位置:文档库 › 椭圆的“垂径定理”

椭圆的“垂径定理”

椭圆的“垂径定理”
椭圆的“垂径定理”

每日一题[677]椭圆的“垂径定理”

已知椭圆(),为椭圆内不在坐标轴上一点.过作不过原点的直线交椭圆于两点,恰为的中点,过作的垂线交椭圆于两点,为

弦的中点.记到直线的距离为,求的最大值.

分析与解不妨设,,则根据椭圆的“垂径定理”,可得直线的斜率为,于是

进而由

,可得

设,则由

椭圆的“垂径定理”,有又

于是

因此

记(),,则

等号当且仅当时取得.因此所求的最大值为

我们都知道垂径定理是圆的重要性质,其内容为:

已知圆中有一条非直径的弦,那么这条弦垂直于过其中点的直径.对于椭圆也有类似的性质,我们称之为椭圆的“垂径定理”,描述如下:

已知不过原点O O 的直线与椭圆x 2 a 2 +y 2 b 2 =1 x2a2+y2b2=1 交于A A 、B B 两点,M M 为弦AB AB 的中点,则直线AB AB 与直线OM OM 的斜率之积

k AB ?k OM =?b 2 a 2 . kAB?kOM=?b2a2.

注一当a=b=r a=b=r 时,椭圆的垂径定理描述的内容即为圆的垂径定理;

注二这里并不要求a>b a>b ,也就是说此结论对焦点在x x 轴和焦点在y y 轴上的椭圆均适用;

注三双曲线x 2 a 2 ?y 2 b 2 =1 x2a2?y2b2=1 的垂径定理中的斜率之积

k AB ?k OM =b 2 a 2 . kAB?kOM=b2a2.

点差法是证明这一性质的最好方法:

设A(x 1 ,y 1 ) A(x1,y1) ,B(x 2 ,y 2 ) B(x2,y2) ,则

x 2 1 a 2 +y 2 1 b 2 =1x 2 2 a 2 +y 2 2 b 2 =1 x12a2+y12b2=1x22a2+y22b2=1

两式相减,有

x 2 1 ?x 2 2 a 2 +y 2 1 ?y 2 2 b 2 =0, x12?x22a2+y12?y22b2=0,

两边同时除以x 2 1 ?x 2 2 x12?x22 ,并化简可得

y 2 1 ?y 2 2 x 2 1 ?x 2 2 =?b 2 a 2 , y12?y22x12?x22=?b2a2,

利用平方差公式变形,有

y 1 ?y 2 x 1 ?x 2 ?y 1 +y 2 2 ?0x 1 +x 2 2 ?0 =?b 2 a 2 , y1?y2x1?x2?y1+y22?0x1+x22?0=?b2a2,

此即欲证性质.

证明这一性质的方法,以及这一性质都是解析几何重点学习和掌握的内容.下面就举例说明这一性质的应用.

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

文档:怎样利用垂径定理进行证明或计算

怎样利用垂径定理进行证明或计算? 垂径定理及其推论中的三要素是:垂直、平分、过圆心(直径).它们在圆内常常构成角相等、等分线段、直角三角形等.从而可应用勾股定理或解直角三角形的方法进行其证明或计算.下面举例说明. 例1已知:图1的⊙O中弦AB=12,OM垂直AB于M,OM=6.求:(1)∠AOB的度数;(2)⊙O的半径. 解:连结OA、OB,因为OM垂直AB于M,所以 因为 OM=6,所以∠AOM=∠OAM=45°. 同理∠OBM=∠BOM=45°, 所以∠AOB的度数为90°. 利用直角三角形的边角关系得出结论. 例2已知:图2中,AB是⊙O的直径,弦CD在AB同一侧,CE⊥CD于E,DF⊥CD于F.求证:AE=BF. 分析:此题是圆和直角梯形,并且点O是AB的中点,由此联想梯形的中位线,作OG 垂直CD于G,有垂径平分弦CG=DG,利用平行线等分线段可得OE=OF,因此 AE=BF.证明略. 例3如图3,半径为10厘米的⊙O中,弦AB⊥CD于 E,AB=CD=16厘米,求OE的长.

分析:要把OE纳入三角形或特殊四边形才利于计算.作OF⊥AB于F,OG⊥CD于G,容易证明四边形EGOF为正方形,且AF=BF=CG=GD=8厘米,那么OF 利用垂径垂直弦,构造直角三角形或特殊四边形,再进行推证和计算是本例的特点.例4如图4所示,已知⊙O的半径为5厘米,A为⊙O外一点,ACB交⊙O于C和B,若AO=8厘米,∠OAB=30°.求 AC、BC的长. 分析:利用垂径是经过圆心的直径,构造直角三角形.作OD⊥BC于D,连结OB得直角三 角形AOD和直角三角形BOD.在直角三角形AOD中,∠OAB=30°, 将垂径定理与勾股定理结合起来,容易得到圆中半径R、弓形高h、弦长d(图5)之间的关系: 根据此公式,R、h、d这三个量中,知道任何两个量就可以求出第三个量.

垂径定理及其推论

圆部分知识点总结 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O 的半径是r,点P到圆心O 的距离为d,则有: dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 切线的性质与判定定理 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是两条切线 ∴PA PB =;PO 平分BPA ∠

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

与圆有关的概念及性质

圆的有关概念与性质 教学目标:复习与圆有关的概念与性质。 教学重点:巩固垂径定理、圆心角、圆周角定理。并能运用这些定理进行正确的证明。 教学难点:灵活地运用这些定理进行有关的证明。 一、知识回顾 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又 是对称图形,是它的对称中心. 3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的 垂直于弦,并且平分 . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一 组量,那么它们所对应的其余各组量都分别 . 5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 6. 直径所对的圆周角是,90°所对的弦是 . 例题精讲 例1、如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l ,求弦AB的长. 对应练习1、在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=600mm,求油的最大深度.

例2、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,,连接AD,求证:△ABD≌△ACD. 对应练习2、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上的一点,OD⊥AC,垂足为E,连接BD. (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD. 例3、本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取、、 三根木柱,使得、之间的距离与、之间的距离相等,并测得长为120米,到 的距离为4米,如图所示.请你帮他们求出滴水湖的半径. 对应练习3、

圆的性质(垂径定理)

一.选择题(共12小题) 1.(2014?毕节地区)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是() 2.(2014?舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为() 3.(2014?凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为() .cm cm C cm或cm cm或cm 4.(2014?兰州)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是() =C 5.(2014?北京)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为() 6.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() C 7.(2014?赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=() 8.(2014?齐齐哈尔)如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()

9.(2014?宜昌)如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=() 10.(2014?山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为() 11.(2014?长春)如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为() 12.(2014?重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是() 二.解答题(共18小题) 13.(2014?黄石)如图,A、B是圆O上的两点,∠AOB=120°,C是弧AB的中点. (1)求证:AB平分∠OAC; (2)延长OA至P,使得OA=AP,连接PC,若圆O的半径R=1,求PC的长. 14.(2014?佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.

湘教版九年级数学下册 垂径定理教案

《垂径定理》教案 教学目标 知识与技能 1.理解圆是轴对称图形,由圆的折叠猜想垂径定理,并进行推理验证. 2.理解垂径定理,灵活运用定理进行证明及计算. 过程与方法 在探索圆的对称性以及直径垂直于弦的性质的过程中,培养我们观察,比较,归纳,概括的能力. 情感态度 通过对圆的进一步认识,加深我们对圆的完美性的体会,陶冶美育情操,激发学习热情. 教学重点 垂径定理及运用. 教学难点 用垂径定理解决实际问题. 教学过程 一、情境导入,初步认识 教师出示一张图形纸片,同学们猜想一下: ①圆是轴对称图形吗?如果是,对称轴是什么? ②如图,AB是⊙O的一条弦,直径CD⊥AB于点M,能发现图中有哪些等量关系? (在纸片上对折操作) 【教学说明】 (1)是轴对称图形,对称轴是直线CD. (2)AM=BM,AC BC AD BD ,. == 二、思考探究,获取新知 探究1垂径定理及其推论的证明. 1.由上面学生折纸操作的结论,教师再引导学生用逻辑思维证明这些结论,学生们说出已知、求证,再由小组讨论推理过程. 已知:直径CD,弦AB,且CD⊥AB,垂足为点M. 求证:AM=BM,AC BC AD BD , == 【教学说明】连接OA=OB,又CD⊥AB于点M,由等腰三角形三线合一可知AM=BM,再由⊙O关于直线CD对称,可得AC BC AD BD ,. == 2.得出垂径定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.还可以得出结论(垂径定理推论):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 3.学生讨论写出已知、求证,并说明. 学生回答: 【教学说明】已知:AB为⊙O的弦(AB不过圆心O),CD为⊙O的直径,AB交CD 于点M,MA=MB. 示证:CD⊥AB,AC BC AD BD ,. == 证明:在△OAB中,∵OA=OB,MA=MB,∴CD⊥AB.又CD为⊙O的直径,∴ == ,. AC BC AD BD 4.同学讨论回答,如果条件中,AB为任意一条弦,上面的结论还成立吗? 学生回答: 【教学说明】当AB为⊙O的直径时,直径CD与直径AB一定互相平分,位置关系是相交,不一定垂直. 探究2垂径定理在计算方面的应用. 例1如课本图,弦AB=8cm,CD是圆O的直径,CD⊥AB,垂足为E,DE=2cm,求圆O的直径CD的长. 例2已知⊙O的半径为13cm,弦AB∥CD,AB=10cm,CD=24cm,求AB与CD间的距离. 解:(1)当AB、CD在O点同侧时,如图①所示,过O作OM⊥AB于M,交CD于N,连OA、 OC.∵AB∥CD,∴ON⊥CD于N.在Rt△AOM中,AM=5cm,OM12cm.在 Rt△OCN中,CN=12cm,ON5cm.∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,由(1)可知OM= 12cm,ON=5cm,MN=OM+ ON,∴MN=17cm.∴AB与CD间的距离是7cm或17cm. 【教学说明】1.求直径往往只要能求出半径,即把它放在由半径所构成的直角三角形中去. 2.AB、CD与点O的位置关系没有说明,应分两种情况:AB、CD在O点的同侧和AB、CD 在O点的两侧. 探究3与垂径定理有关的证明. 例3证明:圆的两条平行线所夹的弧相等.已知:如课本图,在圆O中,弦AB与弦CD平行.证明:弧AC等于弧BD.

垂径定理及推论(各省市中考题)

E A B C O 1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连 结EC .若AB =8,CD =2,则EC 的长为( ▲ ) (A )215 (B )8 (C )210 (D )213 答案:D 4.2 垂径定理及推论 选择题 基础知识 2013-09-29 2. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 (A ) 3 (B ) 5 (C )15 (D ) 17 答案:B 4.2 垂径定理及推论 选择题 基础知识 2013-09-24 3. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则 下列结论错误.. 的是( ). (A )? ?AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=°

答案:C 4.2 垂径定理及推论 选择题 基本技能 2013-09-22 4. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m. 答案:0.2 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 5. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点 C 为圆心,CA 为半径的圆与AB 交于点 D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 C A D B

垂径定理 (3)

28.4垂径定理* 教学目标 1.理解垂径定理的证明过程,掌握垂径定理及其推论. 2.会用垂径定理进行简单的证明和计算. 3.了解直径、弦、弧之间的特殊关系. 教学重难点 【重点】垂径定理及其应用. 【难点】探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 复习提问: 1.什么是轴对称图形? 2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 3.你是用什么方法解决上述问题的? 4.直径是圆的对称轴正确吗? 【师生活动】学生思考后回答,教师点评,指出“直径是圆的对称轴”这个结论的错误原因.师生共同归纳:圆是轴对称图形,其对称轴是任意一条过圆心的直线(或直径所在的直线). 一、垂径定理 教师引导操作、思考、回答: 在自己课前准备的纸片上作图: 1.任意作一条弦AB. 2.过圆心O作弦AB的垂线,得直径CD交AB于点E. 3.观察图形,你能找到哪些线段相等?哪些弧相等? 4.沿着CD所在的直线折叠,观察有哪些相等的线段、弧. 5.图形中的已知是什么?你得到的结论是什么?你能写出你的证明过程吗? 6.你能用语言叙述这个命题吗?

7.你得到的结论怎样用几何语言表示? 【师生活动】学生在教师的引导下操作、观察、思考、尝试证明,然后小组合作交流,共同探究结论.教师在巡视过程中,帮助有困难的学生.学生回答问题,并展示自己的证明过程,教师适时点评,规范学生的证明过程,师生共同回忆操作过程,归纳结论. 【课件展示】如图所示,在☉O中,CD为直径,AB为弦,且CD⊥AB,垂足为E.求证AE=BE,,. 垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧. 几何语言: ∵如上图所示,在☉O中,CD为直径,CD⊥AB, ∴AE=BE,,. 二、垂径定理的推论 【课件展示】如图所示,在☉O中,直径CD与弦AB(非直径)相交于点E. 【思考】 (1)若AE=BE,能判断CD与AB垂直吗?与(或与)相等吗?说明你的理由. (2)若(或),能判断CD与AB垂直吗?AE与BE相等吗?说明你的理由. 【师生活动】学生独立思考,小组合作交流,独立书写解答过程,小组代表展示,教师对学

数学-初三-圆的相关概念与垂径定理

精锐教育1对1辅导讲义 棗互钠探索 1、圆是如何确定的?大小怎么判定? 2、圆中有哪些概念? 3、垂径定理如何应用? *曲需提# 【知识梳理1】圆的确定 定理同圆或等圆中半径相等 1?点与圆的位置关系 圆是到定点(圆心)的距离等于定长(半径)的点的集合。 圆的内部是到圆心的距离小于半径的点的集合。 圆的外部是到圆心的距离大于半径的点的集合。 点P与圆心的距离为d,则点P在直线外二d r ;点P在直线上=d = r ;点P在直线内=d :::r。 【例题精讲】例1?如图,圆0的半径为15,O到直线I的距离0H=9,P、Q、R为I上的三点.PH=9,QH=12,RH=15, 请分别说明点P、Q、R与圆0的位置关系

【试一试】 1?矩形ABCD中,AB= 8, BC=3.5,点P在边AB上,且BP = 3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( ). (A) 点B、C均在圆P夕卜;(B)点B在圆P夕卜、点C在圆P内; (C)点B在圆P内、点C在圆P夕卜;(D)点B、C均在圆P内. 2?如图所示,已知丄ABC ,乙ACB=90, AC=12, AB “3, CD _ AB于点D,以C为圆心,5为半径作圆C ( ) A.点D在圆内,B、A在圆外 B.点D在圆内,点B在圆上,点A在圆外 C.点B、D在圆内,A在圆外 D.点D、B、A都在圆外 2. 过三点的圆 1. 不在同一直线上的三点确定一个圆。 2. 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。 例2?如图,作出AB所在圆的圆心,并补全整个圆.

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系 【考纲要求】 1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现; 2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活. 【知识网络】 【考点梳理】 考点一、圆的有关概念及性质 1.圆的有关概念 圆、圆心、半径、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧; 三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定 不在同一直线上的三个点确定一个圆. 要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条

件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径. 5.圆心角、弧、弦之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角 圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点进阶:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形 (1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系 1.点和圆的位置关系 设⊙O的半径为r,点P到圆心的距离OP=d,则有: 点P在圆外?d>r; 点P在圆上?d=r; 点P在圆内?d<r. 要点进阶:圆的确定: ①过一点的圆有无数个,如图所示. ②过两点A、B的圆有无数个,如图所示. ③经过在同一直线上的三点不能作圆. ④不在同一直线上的三点确定一个圆.如图所示.

圆的定义、垂径定理、圆心角、圆周角练习

圆的定义、垂径定理、圆心角、圆周角练习 1.如下图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数 是50o,则∠C的度数是() A)50o B)40o C)30o D)25o 第1题图第2题图 2.如上图,两正方形彼此相邻,且大正方形内接于半圆,若小正方形的面积为 16cm2,则该半圆的半径为(). A)(45) + cm B) 9 cm C)45cm D)62cm 3.⊙O中,M为的中点,则下列结论正确的是( ) A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定 4.如上图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3), M是第三象限内OB上一点,BMO ∠=120,则⊙C的半径为() A. 6 B. 5 C 3 D. 32 5.如下图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______. 第5题图第6题图第7题图

6.如上图,扇形的半径是cm 2,圆心角是? 40,点C为弧AB的中点,点P在直线OB上,则PC PA+的最小值为cm 7.如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不与 A、B重合), 则cos C的值为 . 8.圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数 为: . 9.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°, 求∠C及∠AOC的度数. 10.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长. 11.如图,AB为⊙O的弦,C、D为弦AB上两点,且OC=OD ,延长OC、OD分别交⊙O于E、F, 证明:AE=BF.

垂径定理及推论教学设计

24.1.2垂径定理及其推论教学设计 【教材分析】 本节是《圆》这一章的重要容,也是本章的基础。它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。所以它在教材中处于非常重要的位置。 【教学目标】 根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面: 知识目标: 使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。 方法与过程目标: 经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。 情感态度与价值观目标: 在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。 【重点与难点】 重点:垂径定理及其推论的发现、记忆与证明。 难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。 【学生分析】 九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。 【教学方法】 鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。

人教版八年级下册数学圆的有关概念与性质

圆的有关概念与性质 ◆课前热身 1.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误 ..的是() D.OD=DE 2.如图,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是() A. B. C. D. 3.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为() A.5 B.4 C.3 D.2 4.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为() A.2 B.3 C.4 D.5 3,则弦CD 5.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm 的长为()

A . 3 cm 2 B .3cm C . D .9cm 【参考答案】 1. D 2. D 3. A 4. A 5. B ◆考点聚焦 1.圆的有关概念,包括圆心、半径、弦、弧等概念,这是本节的重点之一. 2.掌握并灵活运用垂径定理及推论,圆心角、弧、弦、弦心距间的关系定理以及圆周角定理及推论,这也是本书的重点,其中在运用相关定理时正确区分各定理的题设和结论是本节难点. 3.理解并掌握圆内接四边形的相关知识,而圆和三角形、?四边形等结合的题型也是中考热点. ◆备考兵法 “垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题. 常考题型:圆心角、圆周角定理及推论常以选择题或填空题出现;垂径定理和勾股定理结合起来常以计算题出现. ◆考点链接 1. 圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.

圆中的基本概念及定理(习题)

圆中的基本概念及定理(习题) ? 巩固练习 1. 一条排水管的截面如图所示,已知排水管的截面圆半径OB 为10,截面圆圆 心O 到水面的距离OC 为6,则水面宽AB 的长为( ) A .16 B .10 C .8 D .6 第2题图 2. 如图,AB 是⊙O 的弦,OD ⊥AB 于点D ,交⊙O 于点E ,则下列说法不一定 正确的是( ) A .AD =BD B .∠ACB =∠AOE C .AE ︵=BE ︵ D .OD =DE 3. 如图,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,若∠BOC =70°,则∠A 的度 数为( ) A .70° B .35° C .30° D .20° A O D C O C B A 第3题图 第4题图 4. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦 BC 的长为( ) A .1 B C .2 D .5. 6. E O D C B A

A 第6题图 第7题图 7. 如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB = __________. 8. 如图,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,若点D 在AB 的延长 线上,且BD =BC ,则∠D =_________. O D C B A 第8题图 第9题图 9. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C , D 为第一象限内⊙O 上的一点,若∠DAB =20°,则∠OCD =_________. 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB =16 m ,半径OA =10 m ,则中间柱CD 的高度为______m . C D B O A D C 第10题图 第11题图 11. 如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有 圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,若CE =1寸,AB =10寸,则直径CD 的长为_________. 12. 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,若四边形OABC 为 平行四边形,则∠OAD +∠OCD =______.

九年级上学期圆的定义及垂径定理

【圆的认识】第11份 1、弦和直径:连接圆上任意叫做弦,其中经过圆心的弦叫做,是圆中最长的弦。 2、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。其中正确的有 3、下列四个命题:①经过任意三点可以作一个圆;②三角形的外心在三角形的内部;③等腰三角形的外心必在底边的中线上;④菱形一定有外接圆,圆心是对角线的交点。其中假命题有 4、若OP的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与OP的位置关系是( ) A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定 5、圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 . 6、一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是__________. 7、如图,AB, CD为⊙O的两条直径,E, F分别为OA, OB的中点,求证:四边形CEDF是平行四边形. 8、⊙0的半径为13cm,圆心O到直线l的距离d=OD=5cm.在直线l上有三点P,Q,R,且PD = 12cm, QD<12cm, RD>12cm,则点P在,点Q在,点R在 . 9、如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,BC=a,EF=b, NH=C,则a,b,c有什么关系? 10、⊙0的半径为2,点P到圆心的距离OP=m, 且m使关于二的方程2x2-22x+m-1=0有实根,试确定点P 的位置. 11、如图,点P的坐标为(4,0),圆P的半径为5,且圆P与x轴交于点A,B,与y轴交于点 C,D, 试求出点A , B,C,D的坐标.12、下列说法正确的是( ) A.一个点可以确定一条直线 B.两个点可以确定两条直线 C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆 13、直角三角形两直角边长分别为3和l,那么它的外接圆的直径是( ) 14、下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整. 15、_______ 三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在 ______________. 16、下列命题正确的个数有( ) ①矩形的四个顶点在同一个圆上;②梯形的四个顶点在同一个圆上; ③菱形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上. A. 1个 B. 2个 C. 3个 D. 4个 17、在Rt△ABC中,AB=6 , BC=8,那么这个三角形的外接圆直径是() A. 5 B.10 C.5 或4 D. 10或8 18、已知等腰三角形ABC中,AB=AC,O是ABC ?的外接圆,若O的半径是4,120 BOC ∠=,求AB的长. 19、如图所示,平原上有三个村庄A、B、C,现计划打一口水井p,使水井到三个村庄的距离相等。 (1)在图中画出水井p的位置; (2)若再建一个工厂D,使工厂D到水井的距离等于水井到三个村庄的距离,且工厂D到A、C两个村庄的距离相等,工厂D应建在何处?请画出其位置. .A

垂径定理及相关计算

垂径定理的相关计算导学案 教学目标: 1.进一步熟悉垂径定理及其推论。 2.通过练习,总结常用解题方法,渗透方程、构造直角三角形的数学思想。 3.学会与同学交流合作,培养团队精神,体验学习过程中成功的快乐,增强学习数学的信心与热情。 重点难点:垂径定理及其推论在计算中的应用。 教学过程 一、复习引入: 【垂径定理】垂直于弦的直径平分这条弦,并且平分弦所对的弧. 【推论】平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 算一算:如图CD 是⊙O 的直径。 (1) 若CD ⊥弦AB 于E ,若AB =8cm,CD =10cm ,则OE =___ (2) 若AE=BE ,若DE=1cm,CD=10cm,则AB=___ (3)若CD ⊥弦AB 于E ,AB=8cm,ED=2cm, 则CD 的长=___ (4)若E 为弦AB 的中点,AB =4cm,CE =6 cm, 则OC 的长=___ (5)若CD ⊥弦AB 于E ,连结AD ,AD=13cm,OA=5cm, 则AB 的长=___ 二、能力训练: 1.如图,底面半径为5dm 的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm ,求油的深度(指油的最深处即油面到水平地面的距离)。 E B A D C O E B A D C O E B A D C O 5dm

2.⊙O 的半径为13cm ,AB 、CD 为⊙O 的两条弦,AB ∥CD ,AB =24cm ,CD =10cm ,求 AB 和CD 之间的距离。 三.提高练习: 3.已知: A 、B 、C 为⊙O 上的三点,且AB = AC ,圆心O 到BC 的距离为3cm,,半径A0= 7cm ,求AB 的长度. 四.课后思考: 4.如右图, 某地有一座圆弧形拱桥,桥下水面宽度AB 为7.2m ,拱高CD 为2.4m , 现有一艘长10m 、宽为3m 、船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过拱桥吗? B A

圆的有关概念和性质

圆的有关性质 【中考考纲解读】 1.课标要求 ①理解圆及其有关概念,了解弧、弦、圆心角的关系. ②了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征. ③掌握垂径定理,并能应用它解决有关弦的计算和证明问题. 2.考向指南 从2008、2009两年广东省统一中考数学试卷来看,本讲所学的圆的有关概念、弧长的计算、圆周角定理,垂径定理与三角形的联系等知识点考查的可能性较大.题型以选择题和填空题为主,难度不大,所占分值一般在3~5分. 【考点知识网络】 【中考考点剖析】 考点1:圆的有关概念 1. 圆的定义:平面上到定点的距离等于定长的所有点组成的图形.其中,定点为圆心,定长为半径 2. 弦:连接圆上任意两点的线段. 3. 直径:经过圆心的弦. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧. 5. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 6. 优弧:大于半圆的弧,用三个大写字母表示,如ABC . 7. 劣弧:小于半圆的弧,用两个大写字母表示,如AC . 8. 弓形:由弦及其所对的弧组成的圆形. 9. 同心圆:圆心相同,半径不相等的两个圆. 10.等圆:能够重合的两个圆或半径相等的两个圆. 11.等弧:在同圆或等圆中,能够互相重合的弧. 12.圆心角:顶点在圆心的角叫做圆心角. 13.弦心距:从圆心到弦的距离叫做弦心距. 14.圆周角:顶点在圆上,?并且两边都与圆相交的角叫做圆周角. ?? ??????????????? ???? ??基本概念:弧 弦 圆心角 圆周角确定圆的条件对称性圆基本性质垂径定理圆心角 弧 弦的关系 圆周角定理2个推论

圆的垂径定理习题及答案

圆的垂径定理习题 一. 选择题 1. 如 图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( ) 2. 如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为( ) 3. 过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为( ) A* 9cm E, 5cm 4. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使 它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直 位 D. 15个单位 5. 如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是( ) 6. 下列命题中,正确的是( A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 A.4 B. 6 C. 7 D. 8 B. 3 C. 4 D. 5 B . 10个单位 C. 1个单 A . 2 12个单位

E & 5米B, 8米C. 7米D,出米D

8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm 9?已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题 1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m 2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm 3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________ 4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm 5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘 6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m 7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm 8. 已知AB 是O 0的直径,弦CD L AB E 为垂足,CD=8 0E=1则AB= __________ 9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长 11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是 12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD 的高度为

相关文档
相关文档 最新文档