文档库 最新最全的文档下载
当前位置:文档库 › 连续函数的基本性质

连续函数的基本性质

连续函数的基本性质
连续函数的基本性质

第八节 连续函数的基本性质

一.初等函数的连续性

(一)连续函数的运算性质

定理1:如果函数)(x f 、)(x g 均在点0x 处连续,则

(1))()(x g x f βα+在点0x 处连续(βα,为常数);

(2))()(x g x f 在点0x 处连续;

(3))

()(x g x f 在点0x 处连续(0)(0≠x g ); x y sin =、x y cos =在区间),(+∞-∞内连续,

x x y cos sin +=、x x y cos sin ?=在区间),(+∞-∞内连续,

x x x y cos sin tan =

=在2

ππ+≠k x 处连续 (二) 反函数和复合函数的连续性 1.定理2:如果函数y =)(x f 在区间x I 上单值、单调增加(或单调减少)且连续,那末它的反函数)(y x ?=也在对应的区间{}x y I x x f y y I ∈==),(|上单值、单调增加(或单调减少)且连续。

2.定理3:设函数)(x u ?=当0x x →时的极限存在且等于a ,即a x x x =→)(lim 0?,而函数)(u f y =在点a u =连续,那末复合函数()[]x f y ?=当0x x →时的极限存在且等于)(a f ,即()[]()a f x f x x =→?0

lim 。 注:(1)将定理5中的条件:0x x →换为∞→x 时相应的结论也成立。

(2)如果函数)(x u ?=、)(u f y =满足定理5的条件,则有下式成立: ()[]()())lim (lim 0

0x f a f x f x x x x ??→→==。即在满足定理5的条件下,求复合函数()[]x f y ?=的极限时,函数符号和极限符号可以交换次序。

例1:求下列极限

(1))arcsin(lim 2x x x x -++∞

→ (2)x

x x )1ln(lim 0+→ (3)x

x x μμ1)1(lim 0-+→ 定理4:设函数)(x u ?=在点0x x =连续,且()00u x =?,而函数)(u f y =在点0u u =连续,那末复合函数()[]x f y ?=在点0x x =也是连续。

(三). 初等函数的连续性

定理5:基本初等函数在其定义域内都是连续的。

推论1:一切初等函数在其定义区间内都是连续的。

(所谓定义区间是指包含在定义域内的区间)

例2:求极限x

x x x arctan 4)2ln(lim 21-+→ 二.闭区间上连续函数的性质

1.最大值和最小值定理

(1). 最大值和最小值的概念

设函数)(x f y =在区间I 上有定义,若存在I x ∈0,使得对I x ∈?,都有

)()(0x f x f ≥(或)()(0x f x f ≤)

;则称)(0x f 为函数)(x f y =在区间I 上的最大值(或最小值)。

(2). 最大值和最小值定理

定理6:在闭区间上连续的函数一定存在最大值和最小值。

2.有界性定理

定理7:在闭区间上连续的函数一定在该区间上有界。

3.介值定理

(1) 零点定理(零值定理)

定理8:设函数)(x f y =在闭区间[]b a ,上连续,且0)()( b f a f ;则至少存在一点()b a ,∈ξ,使得0)(=ξf (即函数)(x f y =在开区间()b a ,内至少有一个零点)。

(2).介值定理

定理9:设函数)(x f y =在闭区间[]b a ,上连续,且在这区间的端点取不同的函数值:A a f =)( 及B b f =)(;那末,对于A 与B 之间的任意一个数C ,至少存在一点()b a ,∈ξ,使得C f =)(ξ。

推论1:在闭区间上连续的函数必定取得介于最大值与最小值之间的任何值。 例1:证明方程:2ln =x x 在),1(e 内实根。

例2:证明方程:15=+x x 有正实根。

上一节 返回

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

连续函数的性质(可编辑修改word版)

§2.2 连续函数的性质连续函数的局部性质 若函数f 在点x 0 连续,则f 在点x 有极限,且极限值等于函数 值f (x ) 。从而,根据函数极限的性质能推断出函数f 在U (x0 ) 的性态。 定理1(局部有界性)若函数f 在点x 0 连续,则f 在某U (x ) 内有 界。 定理2(局部保号性)若函数f 在点x 0连续,且f (x ) > 0 (或< 0 ), 则对任何正数r < f (x ) (或r <-f (x0) ),存在某U(x0),使得对一切x ∈U (x0 ) 有f (x) >r (或f (x) <-r )。 注:在具体应用局部保号性时,常取r =1 f (x ) ,则当f (x ) > 0 2 0 0 时,存在某U (x ) ,使在其内有f (x) >1 f (x ) 。 0 2 0 定理3(四则运算)若函数f 和g 在点x0连续,则f±g, f?g, f g (这里g(x ) ≠ 0 )也都在点x0 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点x 0 连续,g 在点u 连续,u =f (x ) ,则复合 函数g f 在点x0连续。 证明:由于g 在点u 0连续,?> 0, ? 1 > 0 ,使得当| u -u0|<1时有 | g(u) -g(u0) |<。(1) 又由u 0 = f (x ) 及u = f (x) f 在点x0连续,故对上述1,存在> 0 , 使得当| x -x |<时有|u-u0|=|f(x)-f(x0)|<1,联系(1)式得:对任给的> 0 ,存在> 0 ,使得当| x -x0 |<时有| g( f (x)) -g( f (x0 )) |<。这就证明了g f 在点x0连续。

连续函数及连续函数的性质

连续函数及连续函数的性质 张柏忱 数学与统计学院 09级汉本 (三) 班 09041100434 摘要:数学分析的发展史告示我们,无论在理论上或在应用中都应从连续函数开始。这是因为,一方面在生产实际中所遇到的函数多是连续函数;另一方面,我们常常直接或间接地借助于连续函数讨论一些不连续的函数。于是连续函数就成为数学分析研究的主要对象。 关键词:连续 该变量 间断点 有界性 最值性 介值性、 一. 连续函数概念 已知函数f(x)在a 存在极限b ,即a b x f a x ,)(lim =→可能属于函数f(x)的定义域;f(a)也 一定等于b 。但是,当f(a)=b 时,有着特殊意义。 定义 设函数f(x)在U(a)有定义。若函数f(x)在a 存在极限,且极限就是f(a),即 )()(lim a f x f a x =→ (1) 则称函数f(x)在a 连续,a 是函数f(x)的连续点。 函数f(x)在a 连续,不仅a 属于函数f(x)的定义域,且有(1)式极限。因此函数f(x)在a 连续比函数f(x)在a 存在极限有更高的要求。 用极限的“δε- 定义”,函数f(x)在a 连续(即(1)式极限).|f(a)-f(x)|,|:|,0,0εδδε<<-?>?>??有a x x 将(1)式极限改写为、 0)]()([lim =-→a f x f a x (2) 设x a x x x a x ?-=??+=.或称为自变数a x 在的改变量。设 ),()()()(a f x a f a f x f y -?+=-=? y ?称为函数y 在a 的改变量.如图3.1..0→??→x a x 于是,由(2)式 函数.0lim )(0 =??→?y a x f x 连续在 有时只需要讨论函数a x f 在)(左侧或右侧的连续性,有下面左右连续概念: 定义 设函数a x f 在以)(为左(右)端点的区间有定义。若 ))0()()(lim )(0()()(lim -==+==- + →→a f a f x f a f a f x f a x a x

函数的连续性的例题与习题集

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么

分段函数连续性讨论书写格式

讨论分段函数在分段点的连续性与可导性涉及分段函数概念、连续概念、导数概念,既是重点,又是难点。建议同学们认真模仿以下3道题的解答过程,注意讨论的函数是整个分段函数()f x ,而不是其中的某段函数(以下解答中标红的不要省了);务必精准写出连续、导数定义;答题过程较长时最后要加以总结. 例1:讨论20,1,()0 1,x x e f x x ≠?-=?=?在0x =的连续性与可导性. 解: (0)1f =. 020 li l m im (1)()0x x x f x e →→=-=. 因0 lim ()(0)x f x f →=,故 ()f x 在0x =不连续,从而也不可导. 例2:讨论20,1,()0sin , x x e f x x x ≤?-=?>?在0x =的连续性与可导性. 解:先讨论连续性. (0)0f =. 因020li l m(1im )0()x x x f x e --→→=-=,且00 lim l s i m ()n 0i x x x f x ++→→==, 得0 lim ()0x f x →=. 因0 lim ()(0)x f x f →=,故 ()f x 在0x =连续. 再讨论可导性. 因021()(0)(01lim )lim 02x x x f x f f x e x --→-→-'=--==, 但00sin l ()(0)(0)im l 1im x x f x f x f x x ++ +→→==-=', 得1()(0) (1)lim 0x f x f f x →-'=-不存在,故 ()f x 在0x =不可导. 总之, ()f x 在0x =连续,但不可导.

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

多元连续函数的性质

毕业论文 题目:多元连续函数的性质 学院:数学与信息科学学院 专业:数学与应用数学 毕业年限:2012.6 学生姓名:马骥 学号:200871010428 指导教师:张春霞

多元连续函数的性质 马骥 (西北师范大学 数学与信息科学学院,甘肃 兰州 730070) 内容摘要:本文通过将一元连续函数在闭区间上的性质和二元连续函数在有界闭区域上的性质推广到 多元连续函数的性质. 我们一般可把区域分为有界区域和无界区域.本文分别探讨了多元连续函数在有界区域和无界区域上的性质,并得出一系列的结论.对于有界区域D ,对任意0P D ∈, 任意{}n P D ?,0n P P →时,lim ()n n f P →∞ 存在,则函数f 在D 上有界,取得最大、最小值,一致连续.对于无界区域D , 如果存在0r >,对任意P D ∈,P r >时,有()f P M ≤,则f 在D 上有界;若lim ()P f P →∞ =+∞, 则取得最小值;若lim ()P f P →∞ =-∞,则取得最大值.本文分别运用了区域的道路连通性和有界闭区域 完全覆盖原理两种方法证明了零点存在性定理,然后用零点存在性定理证明多元连续函数的介值性. 关键词:有界区域;无界区域;有界性;最值性;介值性;一致连续性 Properties of the Multivariate Continuous Function Abstract :This paper popularize the properties of the continuous function of one variable or two variables on closed interval with bound to the multivariate continuous function. Generally, the domain can be divided into two kinds: the bounded domain and the unbounded domain. This paper discusses the properties of the multivariate continuous function on the bounded domain or the unbounded domain and draws a series of conclusions. On bounded domain D , for any 0P D ∈, any {}n P D ?, if lim ()n n f P →∞ exists while 0n P P →,then function f is bounded and uniformly continuous , and exist maximum and minimum value . On unbounded domain D , there is 0r > and for any P D ∈, P r > ,if ()f P M ≤,then the function f is bounded; if lim ()P f P →∞ =+∞, then the function f can get the minimum value; if lim ()P f P →∞ =-∞, the function f will get the maximum value. This paper applies road connectivity and complete coverage theorem on closed domain with bound respectively to proof of zero point theorem, then applies zero point theorem to proof of intermediate value theorem of the multivariate continuous function. Keywords :Bounded domain ;unbounded domain ;boundedness ;maximum and minimum value ; intermediate-value property ;uniformly continuous

函数的连续性复习--例题及解析

分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21)10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1==--→→x x f x x 11lim )(lim 1 1==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 21)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 00x f x f x f x x x x x x →→→+-=才存在. 函数的图象及连续性 例 已知函数2 4)(2+-=x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(l i m )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2-=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2-=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ???-=--≠+-=)2(4)2(24)(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

多元函数的极限与连续习题

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1sin 1sin )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 sin ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1lim lim 00-=+-→→y x y x x y , 二重极限不存在。 或 0lim 0=+-=→y x y x x y x , 3 1lim 20-=+-=→y x y x x y x 。

连续函数性质

连续函数的主要性质 若函数()f x 在开区间(,)a b 内每一点0(,)x a b ∈都连续,即在每一点0(,)x a b ∈都有 0lim ()()x x f x f x →= 则称函数()f x 在开区间(,)a b 内是连续函数(图1-17)。而称函数()f x 在闭区间[,]a b 上是连续函数,除了它在开区间(,)a b 内每一点都连续外,还满足条件[图1-18]: () lim ()()x a x a f x f a +→>=(右连续) 和 () lim ()()x b x b f x f b -→<=(左连续) 在定义域上连续的函数简称为连续函数。读者在前面看到,多项式、有理函数、指数函数、简单三角函数,在定义域内每一点都是连续的,即它们都是连续函数。从几何上说,区间上的连续函数,它的图形(图象)是连续不断的曲线。 根据函数极限的运算规则,能够很容易地证明下面的结论。 定理1-5 若函数()f x 和()g x 在点0x 都是连续的,则它们的和、差、积、商[除去分母在点0x 等于0]在点0x 也都是连续的。特别,常数λ与函数()f x 的乘积()f x λ在点0x 当然也是连续的。 证 证明是简单的。譬如,因为 []000 00lim ()()()lim ()0()lim ()() x x x x x x f x f x f x g x g x g x g x →→→==≠ 所以商 () () f x g x 在点0x 是连续的。 根据上述定理,连续函数的和、差、积、商在定义域内仍是连续函数。 函数之间的运算,除了加、减、乘、除外,还有一种复合运算。例如,函数2 x a [注意, 22 ()x x a a =,不是22()x x a a =]是由简单指数函数u a 和幂函数2x 复合而成的复合函数。再 如,log a 是由简单对数函数 log a u 、幂函数12u v ==和简单三角函数sin v x =,依次复合成的复合函数。 一般地,若函数()f u 定义在区间,A B 上,而函数()u u x =定义在区间,a b 上,且函数()u x 的函数值在区间,A B 上,则函数[()]f u x 就是定义在区间,a b 上的函数。称它 图1-18 x 图1-17

一元连续函数的一个性质及其应用

一元连续函数的一个性质及其应用 叶留青 杨秀芹 焦作师范高等专科学校数学系 河南焦作 454001 树立函数观点,突出函数思想,培养函数思维模式,运用函数方法,是初等数学教育教学的重要内容之一。幂平均不等式实质上是幂函数的一个性质,它是否还可以改进,一般一元连续函数是否也具有类似的性质?我们对此问题进行探讨表明,利用所给出的定理证明不等式时,思路通畅,作题规范,步骤简便,使有些证明难度较大的不等式问题变得比较简单,也加深了学生对函数思想和函数方法的运用和理解,为发现不等式,解决不等式问题开辟了一条新途径。 1.关于一元连续函数的一个性质定理 设()m f x x =,则幂平均不等式可表示为 (1)()1111n n i i i i f x f x n n ==?? ≥ ???∑∑其中0i x >()1,2, ,i n =,1m ≥ (2)()1111n n i i i i f x f x n n ==?? ≤ ??? ∑∑其中0i x >()1,2, ,i n =,01m <≤ 1.1引理 设()f x 是区间Q 上的连续函数,,(1,2,,1)i x Q i n ∈=+,且1231n x x x x +≤≤≤ ≤。 用() n M 表示点()1111,n n i i i i x f x n n ==?? ??? ∑∑(下同),则点()1n M +在以点()n M 和点()()11,n n A x f x ++为端 点的线段() n M A 上。 证明 因为 ()()()1 11 11 111111111111n n i i i i n n i i i i n n x f x n n x f x n n x f x ==++==++++∑∑∑∑=()() () () 1 1 1 1 1 1 1 11 111 n n i i i i n n i i i i n n x f x n x f x n n n x f x ==++==++++∑∑∑∑ = () () () () 111 1 1 11 11 n n i i i i n n i i i i n n x f x n x f x n n n x f x ====+++∑∑∑∑=0 基金项目:全国教育科学十五规划课题(FIB030837)子课题,河南省教育厅课程教学改革项目(C2803) 作者简介:叶留青(1965-),男,河南汝南人, 硕士,焦作师专数学系教授,从事数学课程与教学论研究。

函数的连续性及极限的

第四节 函数的连续性及极限的应用 1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义, lim x x →f (x )存在,且0 lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续. 2..函数f (x )在点x =x 0处连续必须满足下面三个条件. (1)函数f (x )在点x =x 0处有定义; (2)0 lim x x →f (x )存在; (3)0 lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点 的函数值. 如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0 处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)?g(x), ) ()(x g x f (g(x)≠0)也在点x 0处连续。 ②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。 4.函数f (x )在(a ,b )内连续的定义: 如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数 f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数. f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在 函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限

存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ), 在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义: 如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有 + →a x lim f (x )=f (a ),在右端点x =b 处有- →b x lim f (x )=f (b ),就说函数f (x ) 在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上的连续函数. 6. 最大值最小值定理 如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值 7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、 问题讨论 ●点击双基 (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要 解析:f (x )在x =x 0处有定义不一定连续. 答案:A

连续函数的运算性质

§2.2 连续函数的运算与初等函数的连续性 【导语】 对于一般函数,从定义出发讨论其连续性不仅困难,也没必要。因为许多函数都是由简单函数经过四则运算和复合运算得到的。得到了简单函数的连续性结果后,只要再了解连续函数经过运算之后的连续性结论,我们就可以得到一般函数的连续性结果。本讲将介绍连续函数的和、差、积、商函数,复合函数,以及反函数的连续性结果,并给出初等函数在其定义区间上的连续性。 【正文】 一、连续函数的四则运算 定理2 如果函数()f x 和()g x 均在0x 处连续,那么它们的和、差、积、商函数()()f x g x +,()()f x g x -,()()f x g x ,0()(()0)() f x g x g x ≠均在0x 处连续. 二、复合函数的连续性 定理3 如果函数()f u 在0u 处连续,函数()g x 在0x 处连续,且00()u g x =,那么复合函数(())f g x 在0x 处连续. 从运算的角度看,有 000 lim (())(lim ())((lim ))x x x x x x f g x f g x f g x →→→== 成立.即对连续函数来说,极限求值运算与函数求值运算可以交换次序. 三、反函数的连续性 定理 4 设1()f y -是函数()f x 的反函数,且00()y f x =.如果函数()f x 在0x 处连续,那么函数1()f y -在0y 处连续. 例 1 证明:对数函数ln y x =在(0,)+∞内连续. 解 对任意的0(0,)x ∈+∞,记00ln y x =,因为指数函数e y x =在0y 处连续,所以其反函数ln y x =在0x 处连续。

二元函数连续可微偏导之间的关系解读

一、引言 对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。 二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系 1.可微与连续的关系 若函数f(x,y在点(x0,y0处可微,则在该点连续,但反之不成立(同一元函数。 证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y- f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0, 所以lim (△x,△y→(0,0 f(x0+△x,y0+△y=f(x0,y0,故f(x,y在 点(x0,y0处连续。反之不成立。 例1.f(x,y= x2y x2+y2 ,x2+y2≠0 0,x2+y2= $

在点(0,0处连续, 但在该点不可微。 2.偏导数存在与可微的关系 由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,则f(x,y在点 (x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。 3.偏导数连续与可微的关系 由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,则f(x,y 在点(x0,y0处可微;但反之不成立, 例2.f(x,y=(x2+y2sin1 x2+y2 ,x2+y2≠0 0,x2+y2= % ’ ’ ’ & ’ ’

分段函数的几种常见题型及解法

函数的概念和性质 考点 分段函数 分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下: 1.求分段函数的定义域和值域 例1.求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-?? =-∈??∈+∞? 的定义域、值域. 2.求分段函数的函数值 例2.已知函数2 |1|2,(||1)()1,(||1)1x x f x x x --≤?? =?>?+?求12[()] f f .

例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值. 4.求分段函数的解析式 例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 226(12) .()3(24) x x x D f x x -≤≤?=?-<≤? -1 2 1 3 1 o -2 y x

连续函数的运算与性质

第十一节 连续函数的运算与性质 分布图示 ★ 连续函数的算术运算 ★ 复合函数的连续性 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 初等函数的连续性 ★ 例5 ★ 幂指函数 ★ 最大值和最小值定理 ★ 零点定理与介值定理 ★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题1-11 内容要点: 一、 连续函数的算术运算 定理1 若函数)(),(x g x f 在点0x 处连续, 则 )0)(() ()(),()(),()(,()(0≠?±x g x g x f x g x f x g x f c x cf 为常数)在点0x 处也连续. 二、 反函数与复合函数的连续性 定理2 若函数)(x f y =在区间x I 上单调增加(或单调减少)且连续,则它的反函数)(y x ?=也在对应的区间==y y I y |{ )(x f ,}x I x ∈上单调增加(或单调减少)且连续. 定理3 若a x x x =→)(lim 0 ?, 函数)(u f 在点a 出连续, 则有 )](lim [)()]([lim 0 0x f a f x f x x x x ??→→==. (10.1) 定理4 设函数)(x u ?=在点0x 连续, 且00)(u x =?, 而函数)(u f y =在点0u u =连续, 则复合函数)]([x f ?在点0x 也连续. 三、初等函数的连续性: 定理5 基本初等函数在其定义域内是连续的. 定理6 一切初等函数在其定义区间内都是连续的. 注:定理6的结论非常重要,因为微积分的研究对象主要是连续或分段连续的函数. 而一般应用中所遇到的函数基本上是初等函数,其连续性的条件总是满足的. 从而使微积分具有强大的生命力和广阔的应用前景. 四、 闭区间上连续函数的性质:最大最小值定理 有界性定理 零点定理 介值定理 五、一致连续性的概念:一致连续性定理 注: 一致连续性表明: 不论在区间I 上的任何部分, 只要自变量的两个数值接近到一定的程度, 就可使对应的函数值达到所指定的接近程度.

相关文档
相关文档 最新文档