文档库 最新最全的文档下载
当前位置:文档库 › 日光灯电路实验指导书

日光灯电路实验指导书

日光灯电路实验指导书
日光灯电路实验指导书

日光灯电路实验指导书

4.2 日光灯电路与功率因数提高

4.2.1 实验目的

1. 掌握日光灯电路的工作原理和电路连接方法。

2. 掌握功率因数补偿原理和电路测试方法。

4.2.2 实验预习要求

1. 预习日光灯电路的工作原理、功率因数补偿原理。

2. 熟悉电路的连接及测试方法。

4.2.3 日光灯电路的构成及其工作原理

1. 日光灯电路的组成(图4.2-1(a)所示)

日光灯电路是由日光灯管、启辉器(开关)、镇流器(电感器)及部分导线连接组成。

日光灯管是一根内壁均匀涂有荧光物质的细长玻璃管,管内充有稀薄的惰性气体(氩气)和水银蒸汽,在管的两端各有一段灯丝电极。

启辉器的构造如图4.2-2所示,在充满氖气的小玻璃泡里有两个电极,焊上了一对倒U字形的金属片。玻璃泡外并联一个纸质电容器,其作用是消除日光灯启辉时对周围通讯信号的干扰。

镇流器是一个带有铁心的电感线圈。

2. 日光灯电路的工作过程(大体可分为启辉前、启辉过程、启辉后共三个阶段)

启辉前:当日光灯电路加上220V交流电压后,由图4.2-1(a)可以看出电压全部加在灯管两端,同时也加在启辉器的两端电极上,此时日光灯管亦不发亮。

启辉过程:启辉器的电极加上电压以后,泡内氖气在电场作用下发生电离形成气体导电的离子流,随着电压的升高离子流也不断增大,电流的增大伴随着泡内温度上升。U字形的双金属片温度系数不同,当温度上升到一定程度(此时电压约170V),双金属片会弯曲接触短接,形成了灯丝→启辉器→灯丝→镇流器一条电流回路。

灯丝短接后接触电阻很小,触点的热功率较快的下降使得双金属片断开,也使得回路电流几乎为零。根据电感器

di(镇流器)的特点e?L,电流的突变使电感器两端产

dt图4.2-2

生的瞬时脉冲高压与220V电源叠加,共同加在灯管两端使灯管导通。

启辉后:两端灯管灯丝在启辉过程中所产生的热电子在强电场的作用下带动管内氩气运动并使其电离,形成了弧光放电过程。弧光放电过程使电流增大,温度上升,两端电压下降。温度上升使水银蒸汽游离并与氩气分子碰撞产生紫外线(人眼看不见),紫外线打在灯管内壁的荧光物质上使其激发产生可见光。

由于镇流器是一个电感器件,它的阻抗限制了电流的继续增长,使日光灯电路的电流和灯管两端的电压稳定到一定的范围内

(约90V左右)。这时并联在灯管两端的启辉器上的电压值远远低于它的启辉电压值,因此完成其工作使命。

日光灯工作时气体导电的阻抗特性是纯阻性状态,此时日光工作电路(图4.2-1(b)所示)就相当于一个纯电阻器和电感器串联的形式。

3. 功率因数

直流电路的功率P?UI;交流电路的功率P?UIcos?;式中cos?称为功率因数,其值介于0与±1之间,日光灯电路的功率因数为0.5左右。

4. 功率因数降低的危害

(1)发电设备的容量不能充分利用P?UNINcos?

发电机发出的功率额定、发电机的输出的电压和电流不允许超过额定值,当cos??1时就使发电机发出的有功功率减小了。

(2)增加线路和发电机绕组的功率损耗?P?rI

负载上消耗的有功功率P?UIcos?,当P、U一定时,流过负载回路的电流

2?P2?1P2I? ?P?rI???rU2??cos2? Ucos???如当

cos?1?0.5与cos?2?1时相比较,?P1?4?P2。

4.2.4 功率因数的提高

提高功率因数,通常是根据负载性质在电路中接入适当的电抗元件,由于实际负载(电动机、变压器、日光灯)大多为感性,常用的方法就是在电感负载两端并联电容器(如图4.2-3所

示)。并联电容器之后,负载的状态未发生改变;总电路的电压与电流之间的相位差减小了,即cos?增大了,也就提高了电网的功率因数。由于并联电容器以后总线路电流减小了,因而也就减小了线路的损耗。

(分析过程参见图4.2-4)

图4.2-3 图4.2-4

4.2.5 实验任务

1. 按图4.2-5接线,掌握日光灯电路的连接和工作过程。要求接线完成后,注意在检查合格才允许通电。

图4.2-5

2. 按表4.2-1给定的并联电容器要求完成实验,并把所测量的值填入表中。

表4.2-1

C(μF)

0 2.2 4.7 6.9 U(V)

220 220 220 220 UL(V)

UA(V)

I(A)

IL(A)

IC(A)

——cosφ P(W)

4.2.6 实验注意事项

1. 关断电源输出及调压器调零后再接线或拆线。

2. 电压表、电流表的正确连接及档位切换。

3. 接线完成后,要先经老师检查方可通电。

4.2.7 思考题

1. 镇流器在电路工作中有哪几种作用?

2. 启辉器的工作原理是什么?

3. 为了提高电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流支路,试问电路的总的电流是增大还是减小,此时感性元件上的电流和功率是否改变?

4. 提高线路功率因数为什么只用并联电容而不用串联法?所并电容值是否越大越好?

4.2.8 实验报告要求

1. 根据所测的U、I、P值,完成当C=0及C=4.7μF时总负载ZL、XL、RL值的计算。

2. 根据所测参数,画出C=0及

C=4.7μF时的I、IC、IL矢量图。 3. 说明改善电路功率因数的意义和方法。 4. 谈谈连接日光灯电路的体会。

4.2.9 实验仪器设备

1. DG09元件挂件

2. D32 数/模交流电流表挂件

3. D33交流电压表挂件

4. D34-3智能型功率、功率因数表挂件

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

模拟电路实验指导书

目录 实验一整流、滤波、稳压电路 (1) 实验二单级交流放大器(一) (5) 实验三单级交流放大器(二) (7) 实验四两级阻容耦合放大电路 (9) 实验五负反馈放大电路 (11) 实验六射极输出器的测试 (14) 实验七 OCL功率放大电路 (16) 实验八差动放大器 (18) 实验九运算放大器的基本运算电路(一) (20) 实验十集成运算放大器的基本运算电路(二) (22) 实验十一比较器、方波—三角波发生器 (24) 实验十二集成555电路的应用实验 (26) 实验十三 RC正弦波振荡器 (30) 实验十四集成功率放大器 (32) 实验十五函数信号发生器(综合性实验) (34) 实验十六积分与微分电路(设计性实验) (36) 实验十七有源滤波器(设计性实验) (38) 实验十八电压/频率转换电路(设计性实验) (40) 实验十九电流/电压转换电路(设计性实验) (41)

实验一整流、滤波、稳压电路 一、实验目的 1、比较半波整流与桥式整流的特点。 2、了解稳压电路的组成和稳压作用。 3、熟悉集成三端可调稳压器的使用。 二、实验设备 1、实验箱(台) 2、示波器 3、数字万用表 三、预习要求 1、二极管半波整流和全波整流的工作原理及整流输出波形。 2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。 3、熟悉三端集成稳压器的工作原理。 四、实验内容与步骤 首先校准示波器。 1、半波整流与桥式整流: ●分别按图1-1和图1-2接线。 ●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用 示波器的DC档观察输出波形记入表1-1中。 图1-1

电路实验指导书

实验一万用表原理及应用 实验二电路中电位的研究 实验三戴维南定理 实验四典型信号的观察与测量 实验五变压器的原副边识别与同名端测试

实验一万用表原理及使用 一、实验目的 1、熟悉万用表的面板结构以及各旋钮各档位的作用。 2、掌握万用表测电阻、电压、电流等电路常用量大小的方法。 二、实验原理 1、万用表基本结构及工作原理 万用表分为指针式万用表、数字式万用表。从外观上万用表由万用表表笔及表体组成。从结构上是由转换开关、测量电路、模/数转换电路、显示部分组成。指针万用表外观图见后附。其基本原理是利用一只灵敏的磁电式直流电流表做表头,当微小电流通过表头,就会有电流指示。但表头不能通过大电流,因此通过在表头上并联串联一些电阻进行分流或降压,从而测出电路中的电流、电压、电阻等。万用表是比较精密的仪器,如若使用不当,不仅会造成测量不准确且极易损坏。 1)直流电流表:并联一个小电阻 2)直流电压表:串联一个大电阻 3)交流电压表:在直流电压表基础上加入二极管 4)欧姆表

2、万用表的使用 (1)熟悉表盘上的各个符号的意义及各个旋钮和选择开关的主要作用。 (2)使用万用表之前,应先进行“机械调零”,即在没有被测电量时,使万用表指针指在零电压或零电流的位置上。 (3)选择表笔插孔的位置。 (4)根据被测量的种类和大小,选择转换开关的档位和量程,找出对应的刻度线。 (5)测量直流电压 a.测量电压时要选择好量程,量程的选择应尽量使指针偏转到满刻度的2/3左右。如果事先不清楚被测电压的大小时,应先选择最高量程。然后逐步减小到合适的量程。 b.将转换开关调至直流电压档合适的量程档位,万用表的两表笔和被测电路与负载并联即可。 c.读数:实际值=指示值*(量程/满偏)。 (6)测直流电流 a.将万用表转换开关置于直流电流档合适的量程档位,量程的选择方法与电压测量一样。 b.测量时先要断开电路,然后按照电流从“+”到“-”的方向,将万用表串联到被测电路中,即电流从红表笔流入,从黑表笔流出。如果将万用表与负载并联,则因表头的内阻很小,会造成短路烧坏仪表。 c.读数:实际值=指示值*(量程/满偏)。 (7)测电阻 a.选择合适的倍率档。万用表欧姆档的刻度线是不均匀的,所以倍率挡的选择应使指针停留在刻度较稀的部分为宜,且指针接近刻度尺的中间,读数越准确。一般情况下,应使指针指在刻度尺的1/3~2/3之间。

电路实验七

实验七 日光灯电路改善功率因数实验 班级:13电子(2)班 姓名:郑泽鸿 学号:04 指导教师:俞亚堃 实验日期:2014年11月17日 同组人姓名:吴泽佳、张炜林 一、实验目的 ① 了解日光灯电路的工作原理以及提高功率因数的方法; ② 通过测量日光灯电路所消耗的功率,学会使用瓦特表; ③ 学会日光灯的接线方法。 二、实验仪器与元器件 ① 8W 日光灯装置(灯管、镇流器、启辉器)1套; ② 功率表1只; ③ 万用表1只; ④ 可调电容箱1只; ⑤ 开关、导线若干。 三、实验原理 已知电路的有功功率P 、视在功率S 、电路的总电流I 、电源电压U ,根据定义,电路的功率因数IU P S P == ?cos 。由此可见,在电源电压且电路的有功功率一定时,电路的功率因数越高,它占用电源(或供电设备)的容量S 就越少。 在日光灯电路中,镇流器是一个感性元件(相当于电感与电阻的串联),因此它是一个感性电路,且功率因数很低,大约只有0.5~0.6。 提高日光灯电路(其它感性电路也是一样)的功率因数cos φ的方法就是在电路的输入端并联一定容量的电容器,如图1所示。 图1 并联电容提高功率因数电路 图2 并联电容后的相量图

图1中L 为镇流器的电感,R 为日光灯和镇流器的等效电阻,C 为并联的电容器, 设并联电容后电路总电流I ,电容支路电流C I ,灯管支路电流RL I (等于未并电容前电路中的总电流),则三者关系可用相量图如图2所示。 由图2可知,并联电容C 前总电流为RL I ,RL I 与总电压U 的相位差为L ?,功率因数为L ?cos ;并联电容C 后的总电流为I ,I 与总电压U 的相位差为?,功率因数为?cos ;显然?c o s >L ?cos ,功率被提高了。并联电容C 前后的有功功率 ??c o s c o s IU U I P L RL ==,即有功功率不变。并联电容C 后的总电流I 减小,视在功率IU S =则减小了,从而减轻了电源的负担,提高了电源的利用率。 四、实验内容及步骤 1.功率因数测试。 日光灯实验电路如图3所示,将电压表、电流表和功率表所测的数据记录于表1中。 图3 日光灯实验电路 W 为功率表,C 用可调电容箱。 表1 感性电路并联电容后的测试数据 并联电容C (μF ) 有功功率P(W) U (V ) I (A ) cos φ 0 38.3 220 0.34 0.48 0.47 38.3 220 0.341 0.48 1 39.3 220 0.292 0.57 2.2 38.7 220 0.225 0.71 2.67 38.3 220 0.225 0.71 3.2 39.1 220 0.209 0.83 4.7 38.1 220 0.19 0.85 5.7 39.1 220 0.215 0.78 6.9 38.5 220 0.27 0.61 7.9 39.3 220 0.3 0.53 10.1 38.9 220 0.432 0.37

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

日光灯实验报告答案

日光灯实验报告答案 篇一:日光灯实验报告 单相电路参数测量及功率因数的提高 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。3.研究日光灯电路中电压、电 流相量之间的关系。4.理解改善电路功率因数的意义并掌握其应用方法。 实验原理 1.日光灯电路的组成日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图所示。由于 有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。图日光灯的组成电路灯管:内壁

涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器 突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二 是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯 管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联 组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双 金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受

热后,双金属片伸 张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动 开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触 片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流 过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、 静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很 高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气

电路与模拟电子技术实验指导书夏玉勤

电路与模拟电子技术实验指导书夏玉 勤

一、注意事项: 1、进入实验室( 一教813) 必须穿鞋套, 否则不允许进入实验室。 2、进入实验室后遵守实验室的规章制度。 3、该课程共有7个实验。在做实验之前必须做好预习工作, 需要用multisim仿真的, 在做实验之前应该完成。明确实验目的, 切实 地掌握理论知识和实验原理, 尽量做到带着问题做实验。 4、进入实验室学生要细心连接电路, 通电前须仔细检查电路的电源电压和接地情况, 检查无误后通电。出现问题时要冷静的分析并查找原因。对实验过程中出现的现象、电路调整的过程以及测量结果要认真、客观的记录。做实验的过程中是2人一组, 2人互相配合完成实验, 发现不积极主动做实验的, 本次实验成绩为0。 5、实验时注意观察, 若发现有破环性现象( 如元器件发烫、异 味、冒烟) , 应立即关断电源, 保持现场, 并报告指导老师, 找出原因, 排除故障, 经指导老师同意后再继续实验。 5、实验完成后要让指导教师检查实验结果, 正确后方可拆除电路。 6、实验结束后, 撰写实验报告( 电子版) , 整理实验数据, 分析数据, 加深对理论知识和实验原理的理解, 增强利用理论知识, 解决设计 问题的能力。 7、有2个或2个以上的实验没有完成或未交实验报告, 该课程的实验成绩为不及格。 二、实验课时分配( 18学时)

实验一: 电路基本元件伏安特性的测试 一、实验目的 1.学会直流稳压电源( 固定和可调) 、电流表和电压表的使用方法。 2.了解实际电压源、电流源和电阻的外特性。 3.学会伏安特性的逐点测试法。 二、实验原理 略 三、实验内容

电路实验指导书-

电路分析 实 验 指 导 书 安徽科技学院 数理与信息工程学院

实 验 内 容 实验一 电阻元件伏安特性的测量 一、实验目的 (1)学习线性电阻元件和非线性电阻元件伏安特性的测试方法。 (2)学习直流稳压电源、万用表、直流电流表、电压表的使用方法。 二、实验原理及说明 (1)元件的伏安特性。如果把电阻元件的电压取为横坐标(纵坐标),电流取为纵坐标(横坐标),画出电压和电流的关系曲线,这条曲线称为该元件的伏安特性。 (2)线性电阻元件的伏安特性在μ-i(或i-μ)平面上是通过坐标原点的直线,与元件电压或电流的方向无关,是双向性的元件,如图2.1-1,元件上的电压和元件电流之间的关系服从欧姆定律。元件的电阻值可由下式确定:α=μ= tg m m i R i u ,其中m u 、m i 分别为电压和电流在μ-i平面坐标上的比例尺,α是伏安特性直线与电流轴之间的夹角。我们经常使用的电阻器,如金属膜电阻、绕线电阻等的伏安特性近似为直线,而电灯、电炉等器件的伏安特性曲线或多或少都是非线性的。 (3)非线性电阻元件的伏安特性不是一条通过原点的直线,所以元件上电压和元件电流之间不服从欧姆定律,而元件电阻将随电压或电流的改变而改变。有些非线性电阻元件的伏安特性还与电压或电流的方向有关,也就是说,当元件两端施加的电压方向不同时,流过它的电流完全不同,如晶体二极管、发光管等,就是单向元件,见图2.1-2。 根据常见非线性电阻元件的伏安特性,一般可分为下述三种类型: 1)电流控制型电阻元件。如果元件的端电压是流过该元件电流的单值函数,则称为电流控制型电阻元件,如图2.1-3(a )所示。 2)电压控制型电阻元件。如果通过元件的电流是该元件端电压的单值函数,则称为电压控制型电阻元件,如图2.1-3(b)所示。 3)如果元件的伏安特性曲线是单调增加或减小的。则该元件既是电流控制型又是电压控制型的电阻元件,如图2.1-3(c )所示。 (4)元件的伏安特性,可以通过实验方法测定。用电流表、电压表测定伏安特性的方法,叫伏安法。测试线性电阻元件的伏安特性,可采用改变元件两端电压测电流的方法得到,或采取改变通过元件的电流而测电压的方法得到。

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验 1.实验目的 用Multisim 的仿真软件对数字电路进行仿真研究。 2.实验内容 实验19.1 交通灯报警电路仿真 交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。出故障时报警灯亮。 设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。字母Z 表示报警灯,高电平表示报警。则真值表如表 19.1所示。 逻辑表达式为:RY RG G Y R Z ++= 若用与非门实现,则表达式可化为:RY RG G Y R Z ??= Multisim 仿真设计图如图19.1所示: 图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。用发光二极管LED1的亮暗模拟报警灯的亮暗。另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500 表19.1 LED_red LED1 图19.1

欧姆电阻。 在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。 实验19.2数字频率计电路仿真 数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。如果用2位数码管,则测量的最大频率是99Hz。 数字频率计电路Multisim仿真设计图如图19.2所示。其电路结构是: 用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。三输入与非门7410(U6A)为控制闸门。 运行后该频率计进行如下自动循环测量: 计数1秒→显示3秒→清零1秒→…… 改变被测脉冲频率,重新运行。

模拟电子技术实验指导书(经典)

《模拟电子技术》 实验指导书 班级: 姓名: 学号: 指导老师: 2017年1月制

实验一电子仪器仪表的使用 一、实验目的 1、学习使用直流稳压电源,低频信号发生器,毫伏表,示波器等仪器的正确操作方法。 2、了解以上各仪器的工作范围及性能。 二、实验设备 1、低频信号发生器1台 2、毫伏表1台 3、示波器1台 4、万用表1块 三、实验原理及内容 在电子技术实验里,测试和定量分析电路的静态和动态的工作状况时,最常用的电子仪器有:示波器、低频信号发生器、直流稳压电源、晶体管毫伏表、数字式(或指针式)万用表等,如图所示 1、实验电路测量 2、仪器仪表的工作范围 3、低频信号发生器,为电路提供各种频率和幅度的输入信号; 4、毫伏表用于测量电路的输入、输出信号的有效值; 5、示波器:用来观察电路中各点的波形,以监视电路是否正常工作,同时还用于测量波形的周期、幅度、相位差及观察电路的特性曲线等; 6、万用表(指针式):用于测量电路的静态工作点和直流信号的值。 四、实验步骤 1、打开实验仪器的电源开关让仪器预热。 2、实验箱右侧有电压为12V、-12V、5V~27V等值。并用万用表合适的直流电压量程测量校对以上各电压值。测量并记录。 3、调节XD22A低频信号发生器的“频率范围”旋钮,使f=1KHz。调节“输出衰减”“输出调节”旋钮,使低频信号发生器指示电压为3V(有效值),并用毫伏表中合适的量程测量在不同“输出衰减”对应的低频信号发生器实际输出电压值。 XD22A低频信号发生器的“输出衰减”;量程以“dB”量表示。旋钮置于“0”dB时,输出电压为表头指示值,无衰减。换算过程如下: dB=20|lgA|,A为衰减倍数,如,“输出衰减”旋钮置于0dB时,A=100=1,此时表头的任何指示值都乘以1,表示输出没有衰减,输出电压为表头指示值;又如:“输出衰减”旋钮置于10dB时A=100..5=0.333倍,此时表头的任何指示值都乘以0.33,便是输出电压有效值。

电路实验指导书

实验一元件伏安特性的测试 一、实验目的 1.掌握线性电阻元件,非线性电阻元件及电源元件伏安特性的测量方法。 2.学习直读式仪表和直流稳压电源等设备的使用方法。 二、实验说明 电阻性元件的特性可用其端电压U与通过它的电源I之间的函数关系来表示,这种U与I的关系称为电阻的伏安关系。如果将这种关系表示在U~I平面上,则称为伏安特性曲线。 1.线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,该直线斜率的倒数就是电阻元件的电阻值。如图1-1所示。由图可知线性电阻的伏安特性对称于坐标原点,这种性质称为双向性,所有线性电阻元件都具有 这种特性。 -1 图 半导体二极管是一种非线性电阻元件,它的阻值随电流的变化而变化,电压、电流不服从欧姆定律。半导体二极管的电路符号用 表示,其伏安特性如图1-2所示。由图可见,半导体二极管的电阻值随着端电压的大小和极性的不同而不同,当直流电源的正极加于二极管的阳极而负极与阴极联接时, 二极管的电阻值很小,反之二极管的电阻值很大。 2.电压源 能保持其端电压为恒定值且内部没有能量损失的电压源称为理想电压源。理想电压源的符号和伏安特性曲线如图1-3(a)所示。 理想电压源实际上是存在的,实际电压源总具有一定的能量损失,这种实际电压源可以用理想电压源与电阻的串联组合来作为模型(见图1-3b)。其端口的电压与电流的关系为: s s IR U U- = 式中电阻 s R为实际电压源的内阻,上式的关系曲线如图1-3b 所示。显然实际电压源的内阻越小,其特性越接近理想电压源。 实验箱内直流稳压电源的内阻很小,当通过的电流在规定的范围内变化时,可以近似地当作理想电压源来处理。 (a) (b) i s I 1

日光灯实验报告

日光灯实验报告 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.4 单相电路参数测量及功率因数的提高 1.4.1 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 1.4.2实验原理 1.日光灯电路的组成 日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图1.4.1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 图1.4.1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此 时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图1.4.2 所示。灯管相当于电阻负载ra,镇流器用内阻rl和电感l 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率p包括日光灯管消耗功率pa和镇流器消耗的功率pl。只要测出电路的功率p、电流i、总电压u以及灯管电压ur,就能算出灯管消耗的功率pa=i×ur, 镇流器消耗的功率pl =ppa ,cos p ui ra 图1.4.2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流i 是日光灯电流 il 和电容器电流 ic的相量和:iilic,日光灯电路并联电容器后的相量图如图1.4.3 所示。由于电容支路的电流ic 超前于电压u 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流i减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的

模拟电路仿真实验

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

多级负反馈放大器的研究 一、实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1.测试开环和闭环的电压放大倍数、输入电阻、反馈网络的电压反馈系数的通频带; 2.比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3.观察负反馈对非线性失真的改善。 二、实验原理及电路 (1)基本概念: 1.在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 2.交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。 3.在分析反馈放大电路时,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路;“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。 4.引入交流负反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。实验电路如图所示。该放大电路由两级运放构成的反相比例器组成,在末级的输出端引入了反馈网路C f 、R f2和R f1,构成了交流电压串联负反馈电路。 R110kΩ R2100kΩ R3 10kΩ R43.9kΩ R53.9kΩ R63.9kΩ R7200kΩ R81kΩ R94.7kΩR10300kΩ U1A LM324N 3 2 11 41 U1C LM324N 10 9 11 4 8 C110uF C210uF C3 10uF J1 Key = Space J2 Key = A VCC 10V VEE -10V 1 4 10 8 11 12 13 7 3 6 5VEE VCC 2 9

模拟电子技术实验指导书

《模拟电子技术》实验教学指导书课程编号:1038181007 湘潭大学 信息工程学院电工与电子技术实验中心 2007年11月30日

前言 一、实验总体目标 通过实验教学,使学生巩固和加深所学的理论知识,培养学生运用理论解决实际问题的能力。学生应掌握常用电子仪器的原理和使用方法,熟悉各种测量技术和测量方法,掌握典型的电子线路的装配、调试和基本参数的测试,逐渐学习排除实验故障,学会正确处理测量数据,分析测量结果,并在实验中培养严肃认真、一丝不苟、实事求是的工作之风。 二、适用专业年级 电子信息工程、通信工程、自动化、建筑设施智能技术等专业二年级本科学生。 三、先修课程 《高等数学》、《大学物理》、《电路分析基础》或《电路》。 网络化模拟电路实验台:36套(72组) 主要配置:数字存储示波器、DDS信号发生器、数字交流毫伏、模块化单元电路板等。 六、实验总体要求 本课程要求学生自己设计、组装各种典型的应用电路,并用常用电子仪器测试其性能指标,掌握电路调试方法,研究电路参数的作用与影响,解决实验中可能出现各种问题。 1、掌握基本实验仪器的使用,对一些主要的基本仪器如示波器、、信号发生器等应能较熟练地使用。 2、基本实验方法、实验技能的训练和培养,牢固掌握基本电路的调整和主要技术指标的测试方法,其中还要掌握电路的设计、组装等技术。 3、综合实验能力的训练和培养。 4、实验结果的处理方法和实验工作作风的培养。

七、本课程实验的重点、难点及教学方法建议 本课程实验的重点是电路的正确连接、仪表的正确使用、数据测试和分析; 本课程实验的难点是电路的设计方法和综合测试与分析。 在教学方法上,本课程实验应提前预习,使学生能够利用原理指导实验,利用实验加深对电路原理的理解,掌握分析电路、测试电路的基本方法。

数字电路实验指导书2016

***************************************************** ***************************************************** *********************************************** 数字电路 实验指导书 广东技术师范学院天河学院电气工程系

目录 实验系统概术 (3) 一、主要技术性能 (3) 二、数字电路实验系统基本组成 (4) 三、使用方法 (12) 四、故障排除 (13) 五、基本实验部分 (14) 实验一门电路逻辑功能及测试 (14) 实验二组合逻辑电路(半加器全加器及逻辑运算) (18) 实验三译码器和数据选择器 (43) 实验四触发器(一)R-S,D,J-K (22) 实验五时序电路测试及研究 (28) 实验六集成计数器161(设计) (30) 实验七555时基电路(综合) (33) 实验八四路优先判决电路(综合) (43) 附录一DSG-5B型面板图 (45) 附录二DSG-5D3型面板图 (47) 附录三常用基本逻辑单元国际符号与非国际符号对照表 (48) 附录四半导体集成电路型号命名法 (51) 附录五集成电路引脚图 (54)

实验系统概述 本实验系统是根据目前我国“数字电子技术教学大纲”的要求,配合各理工科类大专院校学生学习有关“数字基础课程,而研发的新一代实验装置。”配上Lattice公司ispls1032E可完成对复杂逻辑电路进行设计,编译和下载,即可掌握现代数字电子系统的设计方法,跨入EDA 设计的大门。 一、主要技术性能 1、电源:采用高性能、高可靠开关型稳压电源、过载保护及自动恢复功能。 输入:AC220V±10% 输出:DC5V/2A DC±12V/0.5A 2、信号源: (1)单脉冲:有两路单脉冲电路采用消抖动的R-S电路,每按一次按钮开关产生正、负脉冲各一个。 (2)连续脉冲:10路固定频率的方波1Hz、10Hz、100Hz、1KHz、10KHz、100KHz、500KHz、1MHz、5MHz、10MHz。 (3)一路连续可调频率的时钟,输出频率从1KHz~100KHz的可调方波信号。 (4)函数信号发生器 输出波形:方波、三角波、正弦波 频率范围:分四档室2HZ~20HZ、20HZ~200HZ、200HZ~2KHZ、2KHZ~20HZ。 3、16位逻辑电平开关(K0~K15)可输出“0”、“1”电平同时带有电平指示,当开关置“1”电平时,对应的指示灯亮,开关置“0”电平时,对应的指示灯灭,开关状态一目了然。 4、16位电平指示(L0~L15)由红、绿灯各16只LED及驱动电路组成。当正逻辑“1”电平输入时LED红灯点亮,反之LED绿灯点亮。

2020年(电子行业企业管理)模拟电子实验指导书(用)

实验一常用电子仪器的使用及电子元器件的识别与检测 一﹑实验目的 1、熟悉模拟电子技术实验中常用电子仪器的功能,面板标识,及各旋扭,换档开关 的用途。 2、初步掌握用示波器观察正弦波信号波形和测量波形参数的方法,学会 操作要领及注意事项,正确使用仪器。 3、初步认识本学期实验用的全部器件,学习常用电子元器件的识别及用万用表检测和判 断它们的好坏与管脚,并测量其值。 4、了解元器件数值的标注方法(直标法﹑文字符号法﹑色标法),电路中元件数值的 标注方法及元件的标注﹑符号﹑单位和换算。 二、实验仪器 1、双踪示波器 2、多功能信号发生器 3、数字交流毫伏表 4、数字万用表 三、预习要求 1、认真阅读本实验指导书的附录一及附录二。 2、认识本实验的仪器,了解其功能。面板标识及换档开关与显示。 四、实验内容及步骤 实验电子仪器框图

输出信号 输出信号 交流 电压 号 图 1-1 (1) 实验内容 1. 常用电子仪器的使用: 1) 将信号发生器调至频率f = 1000Hz 电压V = 100mv 的正弦波电压输出。 2) 用数字毫伏表测量信号发生器是否为100mv(有效值)。 3) 用示波器通道1经测量探头输入。测量信号发生输出是否为正弦电压,其峰___ 峰值Vpp = 2×√2 ×100 = 282mv 。频率f=1000Hz (即周期T = 1/f = 100ms ) 注意:

a.使用时,将所有仪器接地端联接在一起,即“共地”,否则可能引起外界干扰,导致测量误差增大。 b.调节示波器旋扭,使图形亮度适中,线条清晰。 c.调节示波器同步旋扭,使图形大小适中,稳定。 4)改变信号发生器输出的正弦波频率与电压大小,在下面的三个频率和三个幅度 附近任选三个组合,重新观察,测量。记录下读数。 频率:500Hz ;2KHz ;100KHz ; 幅度:100mV ; 1.8V ;10V ; 记录表格: 2.各种常用电子元器件识别与检测: 1)电阻的测量。 用实际元件为例,进行色环电阻单位换算并用万用表测量电阻和电位器的阻值。作下记录。 2)电容的测量。 电容元件的分类﹑特点﹑主要参数与选用。以实际元件为例。进行电容单位换算练习用

实验3 日光灯电路及功率因数的提高

实验三 交流电路的研究 一、实验目的 1、学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器; 2、学习用交流数字仪表测量交流电路的电压、电流和功率; 3、学会用交流数字仪表测定交流电路参数的方法; 4、加深对阻抗、阻抗角及相位差等概念的理解。 5、研究提高感性负载功率因数的方法和意义; 二、实验原理 1、交流电路的电压、电流和功率的测量 正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。计算的基本公式为: 电阻元件的电阻:I U R R =或2I P R = 电感元件的感抗I U X L L = ,电感f X L π2L = 电容元件的容抗I U X C C = ,电容C 21 fX C π= 串联电路复阻抗的模I U Z = ,阻抗角 R X arctg =? 其中:等效电阻 2 I P R = ,等效电抗2 2 R Z X -= 在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。 电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线 圈的同名端(标有*号端)必须连在一起,如图3-1 方法与电动式功率表相同,电压、电流量程分别选500V 和3A 。 2、提高感性负载功率因数的研究 供电系统由电源(发电机或变压器)通过输电线路向负载供电。负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。由于电感性负载有较大的感抗,因而功率因数较低。

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

电路与模拟电子技术实验指导书

电路与模拟电子技术 实验指导书 王凤歌 1

2 实验一 直流网络定理 一、实验目的 1、加深对叠加原理的内容和适用范围的理解; 2、用实验方法验证戴维宁定理的正确性; 3、学习线性有源二端网络等效电路参数的测量方法。 二、实验属性:验证性实验。 三、实验仪器设备及器材 电工实验装置:DG012T 、DY031T 、DG051T 四、实验要求 实验前些预习报告,凭预习报告参加实验。预习叠加原理和戴维宁定理。实验中听从安排,正确使用仪表,记录测量数据,实验后根据要求认真书写实验报告。 五、实验原理 1、叠加原理 线性电路中,任一电压或电流都是电路中各个独立电源单独作用时,在该处产生的电压或电流的叠加。 2、戴维宁定理 一个含独立电源、线性电阻和受控源的二端网络,对外电路来说,可以用一个电压源和电阻的串联组合等效置换,如图1-1所示。此电压源的电压等于二端网络的开路电压U oc ,电阻等于二端网络的全部独立电源置零后的等效电阻R 0。 图1-1 对于已知的线性有源二端网络,其等效电阻R 0可以从原网络计算得出,也可以通过实验手段测出。下面介绍几种测量方法。 方法一:又戴维宁定理和诺顿定理可知: SC oc o I U R 因此,只要测出线性有源二端网络的开路电压U oc 和短路电流I SC ,R o 就可得出,这种方法最简单。但是,对于不允许将外部电路直接短路的网络,不能采用此法。 方法二:测出线性有源二端网络的开路电压U oc 以后,在端口处接一负载电阻R L ,然后在测出负载电阻的端电压U RL ,因为:

3 L L o oc RL R R R U U += 则等效电阻为: L RL oc o R U U R )1( -= 方法三:令线性有源二端网络中的所有独立电源置零,然后在断口处加一给定电压U ,测得流入短的电流I (如图1-2a 所示),则: U 图1-2a 图1-2b 也可以在端口处接入电流源I ‘,测得端口电压U ‘ (如图1-2b 所示),则: ''I U R o = + _ U S1=10V R R 图1-3 六、实验步骤 1、叠加原理 实验电路如图1-3。 (1)把K 2掷向短路线一边,K 1掷向电源一边,使U S1单独作用,测量各电流、电压,并记录在表1-1中; (2)把K 1掷向短路线一边,K 2掷向电源一边,使U S2单独作用,测量各电流、电压,并记录在表1-1中; 两电源共同作用时,测量各电流、电压,并记录在表1-1中。

相关文档
相关文档 最新文档