文档库 最新最全的文档下载
当前位置:文档库 › 雷达系统2018_脉冲多普勒雷达 (1)

雷达系统2018_脉冲多普勒雷达 (1)

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

脉冲多普勒雷达测速仿真汇总(可编辑修改word版)

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了 雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively .soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

基于多普勒效应的汽车测速仪的研制

课题类别:(科研部填写) 浙江大学城市学院 大学生科研计划 课题申请表 课题名称:基于多普勒效应的汽车测速仪的研制 申报类别:1.一般课题 2√.重点课题 3.联合资助课题4。立项不资助课题所属领域:1.√科技制作类;2.创业类;3.创意设计类; 4.经济社会发展类; 5.其他; (请在所选项的数字前打钩)课题申请人: 所属分院、年(班)级: 指导老师: 申请时间: 申请经费: 1000元 联系电话: 浙江大学城市学院科研部 2007年12月

申请者的承诺: 我和我小组的成员保证如实填写本表各项内容。如果获准立项,我承诺以本表为有约束力的协议,遵守“浙江大学城市学院大学生科研计划”和学生科研管理的有关规定,认真开展研究工作,按时提交项目执行报告,在规定时间内取得预期研究成果和作好课题的总结报告。 申请者(签名): 2008 年12 月1 日 指导教师承诺: 本人承诺对本课题研究提供学术指导,督促课题研究工作有计划开展,顺利并按时完成本课题的研究计划。 指导老师(签名): 2008 年12 月 2 日

课题介绍:阐明本课题的研究目的意义、主要研究内容、研究难点和创新点、研究工作的计划、研究的方式、产生成果的形式等(限1500字) 目的意义: 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 研究内容: 基于多普勒效应的微波雷达测速传感器,产生与汽车速度对应的多普勒频移,再经过一系列信号调理电路,产生MCU能识别的方波信号,并利用MCU测量该信号的频率,从而计算得到当前行驶汽车的车速。 当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。 各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 研究难点和创新点: 难点:专业知识掌握不深,需克服专业知识方面问题。 创新点:在384Kb/s以上速率时,MCU达到25帧/秒,图像清晰流畅。分辨率强,返回波长越紧密,前进的汽车速度也越快--证明驾驶员超速驾驶的可能性大。 研究工作计划: 1.查阅整合资料硬件设计 2.设计制作 3.系统调试 4.现场测试 5.总结形成报告

多普勒效应

目录 绪论…………………………………………………………………………………………1多普勒及多普勒效应简介…………………………………………………… 1.1多普勒…………………………………………………………………………… 1.2多普勒效应………………………………………………………………………2多普勒效应的原理…………………………………………………………… 2.1多普勒效应的解析……………………………………………………… 2.2多普勒效应及其表达式…………………………………………………… 2.2.1机械波多普勒效应的普遍公式……………………………………………… 2.2.2光波(电磁波)多普勒效应的普遍公式…………………………………… 2.3机械波的多普勒效应……………………………………………………… 2.3.1普遍公式……………………………………………………………………… 2.3.2几种特例……………………………………………………………………… 2.4声波的多普勒效应………………………………………………………… 2.5电磁波的多普勒效应……………………………………………………… 3 多普勒效应的应用……………………………………………………………… 3.1医学上的应用………………………………………………………………… 3.2交通的应用…………………………………………………………………… 结论…………………………………………………………………………………………致谢…………………………………………………………………………………………参考文献……………………………………………………………………………………

脉冲多普勒雷达

脉冲多普勒雷达(pulse Doppler Radar) 学习笔记 1:PD雷达简介 PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。 PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。 它们各具特点,分别适用不同的环境。低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。 1:测速原理 雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。 2:距离模糊产生原因 雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。为保证单值测距, 通常应R max 选取T R>2 C

R max为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为 R=c (m×T r+t r) 式中,t r为测得的回波信号与发射脉冲间的时延。这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。 2:

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

雷达总结

雷达气象学是一门与大气探测、大气物理,天气系统探测相关联的学科 Radar:通过无线电技术对目标物的探测和定位。测定目标位置的无线电技术范畴 气象雷达:是用于探测气象要素和各种天气现象的雷达,“千里眼、顺风耳”。 雷达气象学:利用气象雷达,进行大气探测和研究雷达波与大气相互作用的学科,它是大气物理学、大气探测和天气学共同研究的一个分支。雷达气象学在突发性、灾害性天气的监测、预报和警报中具有极为重要的作用。 气象雷达的分类:探空雷达、测雨雷达、声雷达、多普勒雷达、激光雷达 南方:S波段为主,北方:C波段为主 雷达机的主要构成 RDA -雷达数据采集子系统RPG -雷达产品生成子系统PUP -主用户处理器子系统其次包括:通讯子系统、附属安装设备RDA 主要结构:天伺系统、发射机、接收机、信号处理器 定义:用户所使用的雷达数据的采集单元。 功能:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基数据。 雷达的硬件系统! RDA的扫描方式:雷达在一次体积扫描中使用多少角度和时间。 RDA的天气模式:1.晴空模式:VCP11或VCP21 2.降水模式:VCP31或VCP32 新一代雷达:降水模式 VCP:雷达天线体扫模式 RPG(雷达产品生成系统) 定义:(指令中心)由宽带通讯线路从RDA接收数字化的基本数据,对其进行处理和生成各种雷达数据产品,并将产品通过窄带通讯线路传给用户 功能:产品生成、产品分发、雷达控制台(UCP) PUP(主用户处理系统) 功能:获取、存贮和显示雷达数据产品。预报员通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上 用处:(1)产品请求(获取),(2)产品数据存贮和管理,(3)产品显示,(4)状态监视,(5)产品编辑注释。 粒子对电磁波有散射,衰减,折射的作用 散射:当电磁波束在大气中传播,遇到空气介质或云滴、雨滴等悬浮粒子时,入射电磁波会从这些介质或粒子上向四面八方传播开来,这种现象称为散射现象。 主要物质:大气介质、云滴、水滴,气溶胶等。其它散射现象:光波、声波等 散射的类型:瑞利散射:d<<λ;米(Mie)散射:d≈λ 瑞利散射 散射函数或方向函数: 后向散射能量:雷达天线接收到的只是粒子散射中返回雷达方向(θ=π)的那一部分能量,这部分能量称为后向散射能量。瑞利散射性质 ①粒子的散射能力与波长的四次方成反比。波长越短,散射越强。 ②粒子的散射能力与直径的6次方成正比。粒子半径越大,散射越强。 ③粒子的前向散射和后向散射为最大,粒子无侧向散射。散射截面为纺锤形。 散射截面或后向散射截面 定义:设有一个理想的散射体,其截面为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,该理想散射体散射回雷达天线处的电磁波能流密度,恰好等于同距离上实际散体返回雷达天线的电磁波能流密度,则该理想散射体的截面σ就是实际散射体的后向散射截面。 意义:用来表示粒子后向散射能力的强弱。后向散射截面越大,粒子的后向散射能力越强,在同样条件下,所产生的回波信号也越强。 反射率η:单位体积内全部降水粒子的雷达截面之和。 反射率因子(Z):Z的不同取值,意味着不同天气状况。通常Z的取值从0dBz~70dBz,因此要求天气雷达必需有非常大的检测范围。新一代天气多普勒雷达的接收机动态范围是90~100dBz以内。

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

多普勒雷达测速

多普勒雷达 多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 假设原有波源的波长为λ,频率为f0,介质中波速为c则 (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr 的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、 适用范围 脉冲多普勒(PD )雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、 PD 雷达的定义及其特征 (1) 定义:PD 雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2) 特征:①具有足够高的脉冲重复频率(简称PRF ),以致不论杂波或所观 测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF 很高,通常对所观测的目标产生距离模糊。 3、 PD 雷达的分类 图1 PD 雷达的分类图 ① MTI 雷达(低PRF ):测距清晰,测速模糊 ② PD 雷达(中PRF ):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③ PD 雷达(高PRF ):测距模糊,测速清晰 4、 机载下视PD 雷达的杂波谱分析 机载下视PD 雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 表 1

5、PRF的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线;

多普勒雷达测速

多普勒雷达测速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

多普勒雷达多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 ,介质中波速为c则 假设原有波源的波长为λ,频率为f (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所

以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

多普勒效应

多普勒效应 不知朋友们是否注意过这样的现象:当一辆汽车响着喇叭从你身边疾驶而过时,喇叭的音调会由高变低:好像汽车驶来的时候唱着音符“i”,离开的时候就唱音符“ 7”了。 1842年,奥地利物理学家多普勒(Christian Doppler)带着女儿在铁道旁散步时就注意到了类似的现象,他经过认真的研究,发现波源和观察者互相靠近或者互相远离时,观察到的波的频率都会发生变化,并且做出了解释。人们把这种现象叫做多普勒效应。 多普勒认为声波频率在声源移向观察者时变高,而在声源远离观察者时变低。一个常被使用的例子是火车:当火车接近观察者时,其汽鸣声会比平常更刺耳,你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 把声波视为有规律间隔发射的脉冲,可以想象:若你每走一步,便发射一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己;而在你后面的脉冲则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。 为了了解多普勒效应,还可以做这样一个模拟实验:让一队人沿街行走,观察者站在街旁不动,每分钟有9个人从他身边通过(下图甲),这种情况下的“过人频率”是9人/分。如果观察者逆着队伍行走,每分钟和观察者相遇的人数增加,也就是频率增加(下图乙);反之,如果观察者顺着队伍行走,频率降低(下图丙)。 对于声波和其他波动,情况相似:当波源和观察者相对静止时,1s内通过观察者的波峰(或密部)的数目是一定的,观察到的频率等于波源振动的频率;当波源和观察者相向运动时,1s内通过观察者的波峰(或密部)的数目增加,观察到的频率增加;反之,当波源和观察者互相远离时,观察到的频率变小。 广义的多普勒效应 多普勒效应不仅仅适用于声波,它也适用于其他类型的波,包括光波、电磁波。科学家Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论。他发现远处银河系的光线频率在变低,即移向光谱的红端。这就是红色多普勒频移,或称红移。若银河系正移向他,光线就成为蓝移。

脉冲多普勒雷达的汇总

脉冲多普勒雷达的汇总

————————————————————————————————作者:————————————————————————————————日期:

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 表1

多普勒中心频率变化范围特点 主瓣杂波①强度比雷达接收机的噪声强70-90dB ②与天线主波束的宽度 、方向角 、载机速度 、发射信号波长 有关 旁瓣杂波①当PD雷达不运动时,旁瓣杂波与主瓣杂波在频域上相重合; ②当PD雷达运动时,旁瓣杂波与主瓣杂波就分布在不同的频域上 高度线杂波①机载下视PD雷达做平行于地面的运动 ②在零多普勒频率处总有一个较强的“杂波” 无杂波区①恰当选择雷达信号的PRF,使得其地面杂波既不重叠也不连接 ②其频谱中不可能有地面杂波,只有接收机内部热噪声的部分 5、PRF的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线;

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

物理设计性作业之雷达测速

论述公路牌雷达测定汽车速度的原理, 并估算雷达测速区的范围 一、论述公路睥雷达测定汽车速度的原理 雷达测速主要利用多普勒原理1:当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机率。如此即可借由频率的改变数值,计算出目标与雷达的相对速度。 所谓雷达测速,就是根据接收到的反射波频移量的计算而得出被测物体的运动速度。通俗来说,就是在道路旁边架设雷达发射器,向道路来车方向发射雷达波束,再接收汽车的反射的回波,通过回波分析测定汽车车速,如车速超过设定值,则指令相机拍摄(晚间同时触发闪光灯)。目前,警用的雷达测速仪分固定和流动两种,固定的安装在桥梁或者十字路口,流动的一般安装在巡逻车上。 光(电磁波)的多普勒效应计算公式分为以下三种: ⑴纵向多普勒效应(即波源的速度与波源与接收器的连线共线):f'=f [(c+v)/(c-v)]^(1/2) 其中v为波源与接收器的相对速度。当波源与观察者接近时,v取正,称为“紫移”或“蓝移”;否则v取负,称为“红移”。 ⑵横向多普勒效应(即波源的速度与波源与接收器的连线垂直):f'=f (1-β^2)^(1/2)其中β=v/c ⑶普遍多普勒效应(多普勒效应的一般情况):f'=f [(1-β^2)^(1/2)]/(1-βcosθ) 其中β=v/c,θ为接收器与波源的连线到速度方向的夹角。纵向与横向多普勒效应分别为θ取0或π/2时的特殊情况 1多普勒效应是指物体辐射的波长因为光源和观测者的相对运动而产生变化,在运动的波源前面,波被压缩,波长变得较短,频率变得较高,在运动的波源后面,产生相反的效应,波长变得较长,频率变得较低,波源的速度越高,所产生的效应越大,根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度,恒星光谱线的位移显示恒星循着观测方向运动的速度,这种现象称为多普勒效应。

相关文档
相关文档 最新文档