文档库 最新最全的文档下载
当前位置:文档库 › 钢筋混凝土梁试验报告

钢筋混凝土梁试验报告

钢筋混凝土梁试验报告
钢筋混凝土梁试验报告

混凝土梁正截面试验报告(全)

钢筋混凝土简支梁的正截面破坏实验报告 一、试验目的及要求 1、学习钢弦传感器,荷载传感器和百分表的使用。 2、通过试验理解适筋梁、少筋梁及超筋梁的破坏过程及破坏特征。 3、观察适筋梁纯弯段在使用阶段的裂缝宽度及裂缝间距。 4、学习如何确定开裂荷载、梁的挠度及极限荷载。 5、掌握试验数据处理的方法并绘制曲线。 二、试验仪器及设备 JMZX-215型钢弦传感器、JMZX-212型钢弦传感器、JMZX-200X综合测试仪、MS-50位移传感器,磁性表座,千斤顶。 三、试验内容及步骤 1、将钢弦传感器的底座黏贴在画好的黏贴的位置,再将钢弦传感器安装在底座上,固定好传感器,调整初始读数,并记录初始读数。 2、将百分表安放好,记录钢弦传感器和百分表的初始读数。 3、加载,并记录每级荷载下的钢弦传感器的读数,每一级荷载下观察裂缝的宽度变化。 四、试验报告 1、计算钢筋混凝土梁的开裂荷载和极限荷载。 开裂荷载计算: 极限荷载计算: 2、简述钢弦传感器的使用步骤,数显百分表的使用方法。 钢弦传感器的使用步骤:1、首先确定测试位置,并画出定位线。2、用标准杆将钢弦底座固定在定位线上。3、将标准杆拆下,并将传感器固定在底座上,并记录初始读数。4、分级加载,记录读数。 数显百分表的使用步骤:1、将数显百分表固定在磁性表座上。2、将磁性表座安放在固定支墩上,调整磁性表座到合适位置,使百分表垂直于被测构件的表面。3、记录初始读数,分级加载,记录读数。 3、实验数据记录(荷载、混凝土应变、跨中位移计读数)。 见试验数据记录表 4、根据实验数据绘制荷载荷载-挠度曲线,荷载-应变曲线,沿截面高度砼应变变化曲线。 5、观察裂缝的发展趋势,并解释原因。 在跨中纯弯段,最先出现裂缝并沿着梁高方向发展,裂缝大致与梁长方向垂直;在支座附近弯剪区域,裂缝大致与梁长方向呈45度角出现并发展延伸。 其原因是:在跨中纯弯段,因为混凝土只承受弯曲应力,混凝土承受的主应力方向与梁长方向平行,故此区域的混凝土因主应力而出现的裂缝方向与主应力方向垂直,沿梁高方向出现并发展;在支座附近弯剪区域,因为混凝土同时承受弯曲应力和剪切应力,混凝土承受的主应力方向与梁长方向呈45度,故此区域的混凝土因主应力而出现的裂缝方向与主应力方向垂直,沿梁长方向呈45度角出现并发展延伸。

混凝土抗压强度试验报告

试验表18 委托单位:市政建设(集团)有限公司试验委托人:王孟芝 工程名称:将军污水泵站过河管工程部位:支墩砼 设计强度等级: C20 拟配强度等级: C20 要求坍落度: 7-9cm 实测坍落度 8cm 水泥品种及等级: P.C 32.5级厂别:抚顺出厂日期:试验编号: 砂子产地及品种:浑河细度模数:中砂含泥量: % 试验编号: 石产产地及品种:浑河最大粒径: 20-40mm 含泥量: % 试验编号: 掺合料名称:产地:占水泥用量的: % 外加剂名称:产地:占水泥用量的: % 施工配合比:水灰比: 0.47 砂率: 28 % 制模日期: 2005.10.20 要求龄期: 28 要求试验日期: 2005.11.17 试验收到日期: 2005.10.20 试块养护条件:标养试块制作人:寇俊峰 负责人:审核:计算:试验: 报告日期: 2005年 11 月 17 日

试验表18 委托单位:市政建设(集团)有限公司试验委托人:王孟芝 工程名称:将军污水泵站过河管工程部位:支墩砼 设计强度等级: C20 拟配强度等级: C20 要求坍落度: 7-9cm 实测坍落度 8cm 水泥品种及等级: P.C 32.5级厂别:抚顺出厂日期:试验编号: 砂子产地及品种:浑河细度模数:中砂含泥量: % 试验编号: 石产产地及品种:浑河最大粒径: 20-40mm 含泥量: % 试验编号: 掺合料名称:产地:占水泥用量的: % 外加剂名称:产地:占水泥用量的: % 施工配合比: C20 水灰比: 0.47 砂率: 28 % 制模日期: 2005.9.22 要求龄期: 28 要求试验日期: 2005.10.20 试验收到日期: 2005.9.22 试块养护条件:标养试块制作人:寇俊峰 负责人:审核:计算:试验: 报告日期: 2005年 10 月 20 日

钢筋混凝土模拟试题及答案

模拟试题 一、判断题 1.采用边长为100mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.95。 2.钢材的含碳量越大,钢材的强度越高,因此在建筑结构选钢材时,应选用含碳量较高的钢筋。 3.在进行构件承载力计算时,荷载应取设计值。 4.活载的分项系数是不变的,永远取1.4。 5.承载能力极限状态和正常使用极限状态都应采用荷载设计值进行计算,这样偏于安全。 6.在偏心受压构件截面设计时,当时,可判别为大偏心受压。 7.配筋率低于最小配筋率的梁称为少筋梁,这种梁一旦开裂,即标志着破坏。尽管开裂后仍保留有一定的承载力,但梁已经发生严重的开裂下垂,这部分承载力实际上是不能利用的。 8.结构设计的适用性要求是结构在正常使用荷载作用下具有良好的工作性能。 9. 对于一类环境中,设计使用年限为100年的结构应尽可能使用非碱性骨料。 10.一些建筑物在有微小裂缝的情况下仍能正常使用,因此不必控制钢筋混凝土结构的小裂缝裂缝。 11.混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 12.对任何类型钢筋,其抗压强度设计值。 13.在进行构件变形和裂缝宽度验算时,荷载应取设计值。 14.以活载作用效应为主时,恒载的分项系数取1.35 。 15.结构的可靠指标越大,失效概率就越大,越小,失效概率就越小。 16.在偏心受压破坏时,随偏心距的增加,构件的受压承载力与受弯承载力都减少。 17.超筋梁的挠度曲线或曲率曲线没有明显的转折点。

18.结构在预定的使用年限内,应能承受正常施工、正常使用时可能出现的各种荷载、强迫变形、约束变形等作用,不考虑偶然荷载的作用。 19.对于一类环境,设计使用年限为100年的结构中混凝土的最大氯离子含量为0.06%。 20.钢筋混混凝土受弯、受剪以及受扭构件同样存在承载力上限和最小配筋率的要求。 21.钢筋经冷拉后,强度和塑性均可提高。 22.适筋破坏的特征是破坏始自于受拉钢筋的屈服,然后混凝土受压破坏。 23. 实际工程中没有真正的轴心受压构件. 24.正常使用条件下的钢筋混凝土梁处于梁工作的第Ⅲ阶段。 25.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。 26.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。 27.当计算最大裂缝宽度超过允许值不大时,可以通过增加保护层厚度的方法来解决。 28.结构在正常使用和正常维护条件下,在规定的环境中在预定的使用年限内应有足够的耐久性。 29.对于一类环境中,设计使用年限为100年的钢筋混混凝土结构和预应力混凝土结构的最低混凝土强度等级分别为C10和C20. 30.对于钢筋混凝土结构,在掌握钢筋混凝土构件的性能、分析和设计,必须注意决定构件破坏特征及计算公式使用范围的某些配筋率的数量界限问题。 二、单项选择题题 1.与素混凝土梁相比,钢筋混凝上梁承载能力(B)。 A 相同 B 提高许多 C 有所提高D不确定

混凝土正截面受弯试验报告

目录 一、实验目的: (1) 二、实验设备: (1) 三、实验成果与分析,包括原始数据、实验结果数据与曲线、根据实验数据绘制曲线 (1) 3.1实验简图 (1) 3.2少筋破坏: (2) 3.3超筋破坏: (3) 3.4适筋破坏: (4) 四、实验结果讨论与实验小结。 (6)

仲恺农业工程学院实验报告纸 (院、系)专业班组课学号姓名实验日期教师评定 实验一钢筋混凝土受弯构件正截面试验 一、实验目的: 1、了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程; 2、观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征; 3、测定或计算受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。 二、实验设备: 1、试件特征 1)梁的混凝土强度等级为C30(=14.3N/mm2,=1.43N/mm2,=3.0×104N/mm2,f tk=2.01N/mm2),纵向受力钢筋强度等级HRB335级(=300N/mm2,=2.0×105N/mm2),箍筋与架立筋强度等级HPB235级(=210N/mm2,=2.1×105N/mm2)。 2)纵向钢筋的混凝土保护层厚度为25mm,试件尺寸及配筋如下图所示。 3)少筋、适筋、超筋的箍筋分别为φ8@200、φ10@200、φ10@100,保证不发生斜截面破坏。 4)梁的受压区配有两根架立筋,通过箍筋与受力钢筋扎在一起,形成骨架,保证受力钢筋处在正确的位置。 2、实验仪器设备 1)静力试验台座、反力架、支座及支墩 2)20T手动式液压千斤顶 3)20T荷载传感器 4)YD-21型动态电阻应变仪 5)X-Y函数记录仪 6)YJ-26型静态电阻应变仪及平衡箱 7)读数显微镜及放大镜 8)位移计(百分表)及磁性表座 9)电阻应变片、导线等 三、实验成果与分析,包括原始数据、实验结果数据与曲线、根据实验数据绘制曲线 3.1实验简图

混凝土无损检测实验报告

无损混凝土检测技术实验报告 班级: 组号: 姓名: 指导教师: 2015年6月3日

目录 实验一、混凝土配制实验 (2) 实验二、回弹法检测混凝土的强度 (3) 实验三、超声法检测混凝土强度 (6) 实验四、综合法检测混凝土的强度 (9) 五、实验总结与分析 (11) 参考文献 (12)

学生实验守则 1.实验前必须预习有关实验指导书,了解实验内容、目的和方法, 并写出预习报告。否则,不得进行实验; 2.学生进入实验室,不得大声喧哗、打闹,应严格遵守实验室各项 制度; 3.实验室内各种仪器设备未经有关人员同意,不得任意动用; 4.使用仪器设备应严格遵守操作规程,发现异常现象立即停止使用, 并及时向指导教师报告。因违反操作规程(或未经允许使用)而造成设备损坏,按学校规定处理; 5.实验时应严肃认真,亲自动手,并及时记录和整理实验数据。实 验结束,应将实验结果交指导教师审阅; 6.实验完毕,应将仪器设备擦洗、整理,清扫地面,经指导教师同 意后,方可离开; 7.实验报告应及时完成,不得转抄他人结果,并按指定时间交给指 导教师批阅。

实验一、混凝土配制实验 实验条件:湿度51 %,温度25 ℃实验时间:2015 年 4 月 2 日 1. 实验目的: 制作强度为C45混凝土试块,为之后的强度检测实验做准备 2. 实验仪器: 搅拌机,磅秤,天平,台秤,拌板,拌铲,盛器等 3. 实验原材料: 1.配制 25 L混凝土材料用量: 水泥 9.92 kg 砂 13.60 kg 卵石 31.74 kg 水 4.25 kg 外加剂 g ( %) 水泥标号:42.5;石料最大粒径30㎜;砂表观密度2600㎏/ m3;石子表观密度2630㎏/m3; 2.普通混凝土配合比:水泥:砂:卵石:水=397:544:1270:170 3.砂率:30% 4.水胶比:W/B=aa×?b/(?cu,0+aa×ab×?b)=0.43 4. 试验方法: 1.根据计算所得的配合比配置25L混凝土并拌合 2.将配制好的混凝土装模,在振动台上振实成型 3.将成型后试件编号并静置,一天后进行拆模将混凝土试块放入标准养护室中养护28d

钢筋混凝土结构试验指导书及试验报告

《结构设计原理》试验指导书 及试验报告 班级 姓名 学号 淮阴工学院建筑工程学院结构试验室 二O一五年九月

试验一矩形截面受弯构件正截面承载力试验 一、试验目的 1、了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程; 2、观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征; 3、测定受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。 二、试件、试验仪器设备 1、试件特征 (1)根据试验要求,试验梁的混凝土强度等级为C25,纵向受力钢筋为HRB335。 (2)试件尺寸及配筋如图1所示,纵向受力钢筋的混凝土净保护层厚度为20mm。 图1 试件尺寸及配筋图 (3)梁的中间500mm区段内无腹筋,在支座到加载点区段配有足够的箍筋,以保证梁不发生斜截面破坏。 (4)梁的受压区配有两根架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。 2、试验仪器设备 (1)静力试验台座、反力架、支座 (2)30T手动式液压千斤顶 (3)30T荷载传感器 (4)静态电阻应变仪 (5)位移计(百分表)及磁性表座 (9)电阻应变片、导线等 三、试验装置及测点布置 1、试验装置见图2(支座到加载点的距离根据实际情况标出) (1)在加荷架中,用千斤顶通过梁进行两点对称加载,使简支梁跨中形成长500mm的纯弯曲段(忽略梁的自重); (2)构件两端支座构造应保证试件端部转动及其中一端水平位移不受约束,基本符合铰支承的要求。 2、测点布置 (1)在纵向受力钢筋中部预埋电阻应变片,用导线引出,并做好防水处理,设ε1、ε2为跨中受

拉主筋应变测点; (2)纯弯区段内选一控制截面,侧面沿截面高度布置四个应变测点,用来测量控制截面的应变分布。 千斤顶 压力传感器 分配梁 2 f 500 2000 图2正截面试验装置图 四、试验步骤 1.加载方法 (1)采用分级加载,每级加载量为10kN; (2)试验准备就绪后,首先预加一级荷载,观察所有仪器是否工作正常; (3)每次加载后持荷时间为不少于10分钟,使试件变形趋于稳定后,再仔细测读仪表读数,待校核无误,方可进行下一级加荷。 2.测试内容 (1)试件就位后,按照试验装置要求安装好所有仪器仪表,正式试验之前,应变仪各测点依次调平衡,并记录位移计初值,然后进行正式加载; (2)测定每级荷载下纯弯区段控制截面混凝土和受拉主筋的应变值ε1和ε2,以及混凝土开裂时的极限拉应变εcr与破坏时的极限压应变εcu; (3)测定每级荷载下试验梁跨中挠度,并记录于表中; (4)仔细观察裂缝的出现部位,并在裂缝旁边用铅笔绘出裂缝的延伸高度,在顶端划一水平线注明相应的荷载级别,试件破坏后,绘出裂缝分布图; (5)测定简支梁开裂荷载、正截面极限承载力,详细记录试件的破坏特征; (6)绘制M-f变形曲线。 五、注意事项 务必明确这次试验的目的、要求,熟悉每一步骤及有关注意事项,如有不清楚的地方可以进行研究、讨论或询问指导人员,对与本次试验无关的仪器设备不要随便乱动。 在试验时一定要听从指导人员的指挥,特别是试件破坏时要注意安全。

钢筋混凝土梁产生裂缝的原因及处理

现浇混凝土梁裂缝的分析及预防 【摘要】本文分析了钢筋混凝土梁的裂缝产生原因和部位,并提出了相应的预防措施。【关键词】钢筋混凝土梁裂缝热胀冷缩 1前言 钢筋混凝土梁在外荷载的直接应力和次应力的作用下,引起结构变形而裂缝。构件在使用过程中受年温差的长期作用,当温差的胀缩应力大于构件极限抗拉强度时就会裂缝。构件裂缝的因素是多方面的,包括结构设计、地基沉降差异、施工质量、材料质量、环境影响等,无论何种原因产生的裂缝,都会给建筑物肢体结构带来影响。 2裂缝形成原因 钢筋混凝土梁出现裂缝的原因很复杂。主要有:材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等。通常可归纳为以下几种: (1)收缩裂缝。混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。 (2)水泥水化硬化时的裂缝。水泥在水化及硬化的过程中,散发大量热量,使混凝土内外部产生温差.超过一定值时.因混凝土的收缩不一致而产生裂缝。 (3)温变裂缝。现浇钢筋混凝土梁随着温度变化会产生热胀冷缩变形。即温度变形。 AL=L(t1-t2)﹠△AL——钢筋混凝土梁的变形值 L――梁的长度 ((t1—t2))——温度变化值 d——材料的线嘭胀系数、混凝土为10a×10-b由于混凝土截面高度较大或较特殊环境下施工.如较寒冷地区施工。梁的上下表面温度不一致,梁会产生温度弯矩。如温度弯矩与荷载弯矩迭加超过梁所能承担的能力。梁便会产生裂缝。预防产生温度裂缝的措施主要有:①设置温度裂缝。②运用水化热小和收缩小的水泥。③浇筑后.表面应及时覆盖并洒水养护.复季应延长养护时间,寒冷季节混凝土表面采取保温措施。 (4)设计欠周全。如钢筋混凝土梁的截面不够,梁的跨度过大,高度偏小,或者由于计算错误,受力钢筋截面偏小、配筋位置不当、节点不合理等。都会导致混凝土梁出现结构裂缝。 (5)施工质量造成的裂缝。

混凝土结构实验指导书及实验报告(学生用)

土木工程学院 《混凝土结构设计基本原理》实验指导书 及实验报告 适用专业:土木工程周淼 编 班级:姓 名:学号: 河南理工大学 2018 年9 月

实验一钢筋混凝土梁受弯性能试验 一、实验目的 1.了解适筋梁的受力过程和破坏特征; 2.验证钢筋混凝土受弯构件正截面强度理论和计算公式; 3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术 和有关仪器的使用方法; 4.培养学生对钢筋混凝土基本构件的初步实验分析能力。 二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。梁开裂标志着第一阶段的结束。此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。压区混凝土中压应力也由线性分布转化为非线性分布。当受拉钢筋屈服时标志着第二阶段的结束。此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。此时,梁承担的弯矩M u称为极限弯矩。适筋梁的破坏始于纵筋屈服,终于混凝土压碎。整个过程要经历相当大的变形,破坏前有明显的预兆。这种破坏称为适筋破坏,属于延性破坏。 三、试验装置

混凝土抗压强度试验

混凝土抗压强度试验 (一)概述 水泥混凝土抗压强度就是按标准方法制作得150mm×l50mm×l50mm ,100mm×l00mm×l00mm立方体试件, 在温度为20±3℃及相对湿度 90%以上得条件下, 养护 28d 后, 用标准试验方法测试, 并按规定计算方法得到得强度值。 (二)试验仪具 1.压力试验机:压力试验机得上、下承压板应有足够得刚度, 其中一个承压板上应具有球形支座,为了便于试件对中,球形支座最好位于上承压板上。压力机得精确度(示值得相对误差)应在±2%以内,压力机应进行定期检查,以确保压力机读数得准确性。 根据预期得混凝土试件破坏荷载,选择压力机得量程,要求试件 破坏时得读数不小于全量程得 20%,也不大于全量程得 80%。 2.钢尺:精度 lmm。 3.台秤:称量 100kg,分度值为 lkg。 (三)试验方法 1.按试验一成型试件,经标准养护条件下养护到规定龄期。 2.试件取出,先检查其尺寸及形状,相对两面应平行,表面倾 斜偏差不得超过 0、5mm。量出棱边长度,精确至 lmm。试件受力截面积按其与压力机上下接触面得平均值计算。试件如有蜂窝缺陷,应在

试验前 3d 用浓水泥浆填补平整,并在报告中说明。在破型前,保持试件原有湿度,在试验时擦干试件,称出其质量。 3.以成型时侧面为上下受压面,试件妥放在球座上,球座置压力机中心, 几何对中(指试件或球座偏离机台中心在 5mm 以内,下同),以 0、3~0、8MPa/s 得速度连续而均匀地加荷,小于 C30 得低强度等级 混凝土取 0、3~0、5MPa/s 得加荷速度, 强度等级不低于 C30 时取 0、5~0、8MPa/s 得加荷速度,当试件接近破坏而开始变形时, 应停止调整试 验机油门,直至试件破坏,记下破坏极限荷载。 1MPa=1N/m㎡4. 4.试验结果计算 (1)混凝土立方体试件抗压强度 fcu(以 MPa 表示)按式(3—1)计算: 式中:F—极限荷载(N); A—受压面积(mm2)。 龄期与强度经验公式 在标准养护条件下,混凝土强度得发展,大致与其龄期得常用对数成正比关系(龄期不小于3d)。 式中 fn———nd龄期混凝土得抗压强度(MPa);

混凝土抗压强度试验报告_百度文库.

混凝土抗压强度试验报告 工程名称 原始记录 编号 2016-76 委托单编号2016-76 砼生产单位 记录单编号2016-76 砼使用部 位 强度等级C30 取样人及证书号取样见证 人及证书 号 配合比单 编号 HP16-09 搅拌方法机械搅拌配合比设 计的稠度坍落度(mm)160―180 拌和物实 测稠度 坍落度 (mm) 180 维勃稠度(s) ~ 维勃稠度(s) 养护条件表 准 条 件 龄期(d)28 试验 日期 2016.7.22 600℃·d /

试验方法GB/T50081-2002 取样日期2016.6.24 试验结果 试件面积 (mm2)破坏荷载(kN) 抗压强度 (Mpa) 折算系数 抗压强度 代表值 (Mpa) 10000 445 44.5 0.95 41.9 439 43.9 440 44.0 备 注 委托单位:报告编号:HFK16-63 单位:负责人:审核:试验: 2016年 7月22日 甘肃省工程质量监督总站编制(版权所有不准翻印) 混凝土抗压强度试验报告 工程名称 原始记录 编号 2016-80 委托单编号2016-80 砼生产单位

记录单编号2016-80 砼使用部 位 强度等级C30 取样人及证书号取样见证 人及证书 号 配合比单 编号 HP16-09 搅拌方法机械搅拌配合比设 计的稠度坍落度(mm)160―180 拌和物实 测稠度 坍落度 (mm) 180 维勃稠度(s)~ 维勃稠度(s) 养护条件表 准 条 件 龄期(d)28 试验 日期 2016.7.24 600℃·d / 试验方法GB/T50081-2002 取样日期2016.6.26 试验结果 试件面积 (mm2)破坏荷载(kN) 抗压强度 (Mpa) 折算系数 抗压强度 代表值 (Mpa)

预制混凝土梁(板)静载试验要求

《预制混凝土梁(板)静载试验要求》 一、试验目的 1、对成批生产的预应力混凝土梁(板)的承载能力进行检验。 2、验证预制混凝土梁(板)在正常工作状态下的刚度和应力变化情况是否与原设计相吻合。 二、试验荷载 正常使用换算荷载定义为:换算到预制混凝土梁(板)的跨中截面所承担的正常使用状态的恒载+活荷载(不含冲击系数和张拉后预应力损失)产生的设计荷载弯矩;正常使用换算荷载换算方式参照《公路桥涵设计通用规范》(JTG D60-2004) 计算; 换算消压弯矩定义为:消除施工阶段预制预应力混凝土梁(板)的跨中截面下缘压应力的荷载弯矩; 根据不同的上部结构形式,换算到试验预制混凝土梁(板)所承担的试验荷载分为以下几种形式: 1、预制预应力混凝土简支梁(板),其试验加载弯矩为正常使用换算荷载与换算消压弯矩的较小值; 2、普通钢筋预制混凝土简支梁(板),其试验加载弯矩为预制截面正常使用换算荷载; 3、先简支后连续的预应力混凝土梁(板),其试验加载弯矩为预制阶段的换算消压弯矩。

三、其他要求 1、预应力混凝土结构荷载试验以控制预制混凝土梁(板)下缘不出现拉应力,梁体受拉区不出现裂缝为原则; 2、钢筋混凝土结构严格控制梁体可能出现的裂缝宽度不得大于《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 控制值; 3、试验加载的方式可以根据加载弯矩和加载位置换算成加载集中力或加载均布力; 4、集中力加载试验荷载由设计单位根据预制梁(板)的具体情况确定试验弯矩并在试验表格(附后)中给出。加载可采用两点或多点的形式进行,由检测单位根据加载方式计算出相应的理论挠度,作为试验评定参考。 四、评定标准 1、梁体抗裂性合格评定 每级加载后仔细检查梁体下缘和梁底有无新裂缝出现或(和)初始裂缝的延伸。全预应力及A类预应力梁如出现受力裂缝,则评定该梁抗裂不合格;B类预应力梁如出现受力裂缝,且对于采用钢丝、钢绞线裂缝宽度大于或对于精轧螺纹钢裂缝宽度大于,则评定该梁抗裂不合格。 2、梁体刚度合格评定 根据实测梁体的强度、线形等数据,建立梁模型,模型在各工况条件下的最大理论挠度为,实测各级荷载下梁体的最大挠度为,梁体刚度合格评定标准为: 3、梁体合格评定

浅议钢筋混凝土梁与钢-混凝土组合梁

浅议钢-混凝土组合梁与钢筋混凝土梁 摘要:分析钢-混凝土组合梁与钢筋混凝土梁的设计和计算的异同,重点探讨钢-混凝土组合梁与钢筋混凝土梁的变形特点、裂缝、受弯承载力,在分析的基础上,加深对其的了解,从而知道钢-混凝土组合梁是组合结构中最常见的组合构件之一,是在钢结构和混凝土结构基础上发展起来的一种新型梁,它是由钢筋混凝土翼缘板,钢梁肋部和抗剪连接件组成的整体受力构件。钢与混凝土组合梁结构充分利用了钢材受拉性能好和混凝土受压性能好的特点,是将两种材料通过连接件组合成整体而共同工作发挥作用的一种新型结构。钢筋混凝土梁形式多种多样,是房屋建筑、桥梁建筑等工程结构中最基本的承重构件,应用范围极广。 关键词:钢-混凝土组合梁、钢筋混凝土梁、变形、受弯、裂缝 前言:钢-混凝土组合梁是由钢梁、连接件和钢筋混凝土板组成,而钢筋混凝土梁是用钢筋混凝土材料制成的梁。钢-混凝土组合梁的上翼缘有截面面积较大的钢筋混凝土板承受压力,致使钢梁上翼缘截面减小,从而节约钢材,钢梁下翼缘则承受拉力,这是组合梁的受力特点。钢筋混凝土梁既可作成独立梁,也可与钢筋混凝土板组成整体的梁-板式楼盖,或与钢筋混凝土柱组成整体的单层或多层框架。 1、变形 1.1钢-混凝土组合梁 1.1.1 在荷载保持不变的情况下,由于混凝梁发生收缩徐变,组合梁的变形将不断增加。 1.1.2 混凝土的收缩徐变受到钢梁的约束,组合梁截面中将产生内力重分布,这种内力重分布也会对组合梁的长期变形产生影响[1]。 中国现行《钢结构设计规范))(G B50017,送审稿) [2] 和《公路桥涵钢结构及木结构设计规范》(JTJ025-86)[3]中均采用降低棍凝土弹性模量的方法来考虑混凝土收缩徐变对组合梁长期变形的影响,混凝土长期荷载作用下的有效弹性模量E为

混凝土梁实验心得

混凝土矩形梁正截面破坏试验心得 一开始,我们接触混凝土工程的时候,学起来觉得相当的困难,好多东西真的不知道讲 什么,真的有种晕晕的感觉。但是,听到老师说我们要做实验,那时的心情就相当激动,因为我们一直以来都对实验十分感兴趣。 接下来,我们就根据老师的要求,开始设计我们的混凝土矩形梁。矩形梁的设计过程中,由于我们经验的不足,我们进行了一次又一次的修改,力求做到更符合经济质量的综合要求。在这修改的过程,我们对学习到的理论知识进行了巩固以及加深了理解,更深入地体会理论 与实际操作的之间联系与差距。 接下来,我们绑钢筋,装模,最后浇捣,经过28天标准条件下的养护,我们就进入最 重要的环节一一钢筋混凝土矩形梁正截面的破坏试验。在整个实验过程中,我们分工合作,历经半个多小时的钢筋混凝土矩形梁正截面的破坏试验终于完成了。 通过对钢筋混凝土矩形梁正截面的破坏试验,我们更加清楚地了解梁的构造、正截面计 算的基本内容、受弯构件的工作阶段、破坏特征。我们进一步巩固本专业基础课程的知识。 结合本课程的专业内容,使我们能够系统性的掌握从钢筋、混凝土材料性能,设计和计算分析方法,提高了我们综合知识的水平,了解在纯弯曲段内正截面的受力状态和变形规律,从而加深对所学理论知识的理解,培养了我们试验研究的能力。 混凝土矩形梁正截面破坏试验心得 ,经过几个星期的折腾,混凝土矩形梁正截面破坏实验终于把实验做完了。 首先要感谢小组各个同学之间的配合,让我们懂得了团队的合作,这个实验如果没有我们八个人的齐心协力是不可能完成的,只有真正去实践的时候才知道我们学到的书本知识 和实践是由区别的,通过合作让我们解决了一个个的难题,但是在尊敬的老师和几位实验助 理员不厌其烦的指导下,我们一波三折的完成了一次次的实验,体会到了什么是苦尽甘来。 把理论基础搞扎实,平时多听课,实践少犯错,是我这次实验的另外个体会。同时非常期待下一次理论与实践相结合的机会。 混凝土矩形梁正截面破坏试验心得 本次实验从设计到浇筑,再到测量实验数据都是全组齐心合作,共同完成的,虽然本次实验还有一些不足,但我认为本次实验的效果已经收到了。全过程参与实验的相关工作以及亲身操作使得我们将课本上的理论知识转化为实际性的试验结果,这二者的转变既加深了 我对理论知识的理解,又学会了如何将理论应用于实际,这次实验的意义极大。当然,面对 实验过程中出现的不足,我将继续加强学习,尽早的完善自己的理论体系,多动手操作。我

混凝土轴心抗压强度试验报告

混凝土轴心抗压强度试验 (一)试验目的 测定混凝土棱柱体轴心抗压强度,比较素混凝土和钢筋混凝土的强度差异,分析钢筋骨架对混凝土的作用。 (二)试验仪器 试模尺寸为150mm×l50mm×300mm卧式棱柱体试模,电脑全自动恒应力试验机,微机控制压力试验机测控系统。 (三)试验步骤和方法 1.按混凝土配制强度计算配合比,制作150mm×l50mm×300mm棱柱体试件2根,其一为素混凝土试件,其一为钢筋混凝土试件。隔天拆模并把试件在标准养护条件下,养护28d。 2.取出试件,清除表面污垢,擦干表面水份,仔细检查后,在其中部量出试件宽度(精确至lmm),计算试件受压面积。在准备过程中,要求保持试件湿度无变化。 3.在压力机下压板上放好棱柱体试件,几何对中;球座最好放在试件顶面并凸面朝上。 4.以立方抗压强度试验相同的加荷速度,均匀而连续地加荷,当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记录最大荷载。试验时观察裂缝的发展情况。 5.若试件的试验数据或钢筋未发生屈服可再进行抗压试验。 6.因条件有限所以取所得数据为该试件的轴心抗压强度。 (四)注意事项 1.钢筋应放置在混凝土试件的中央。 2.进行试验时,压力板应对准几何中心再进行加载。 3.箍筋时要保证钢筋箍紧,防止影响试验结果。 4.开始试验时要清零。 5.试验完后将试件分解回收。 (五)试验记录

素混凝土(强度为29.4Mb): 钢筋混凝土(强度为34.9Mb): (六)试验结果分析 据试验得出的数据来看,有些素混凝土的轴心抗压强度比钢筋混凝土的轴心抗压强度大。其原因有可能是: 1.试验时,试件放置的位置使受力点不在几何中心,形成了偏心受压。 2.制作钢筋骨架时,未将箍筋箍紧,导致试验时钢筋骨架松动或散架,影响试验结果。 (七)裂缝发展变化

混凝土结构基本原理——答案

混凝土结构基本原理题库 选择题: 1、混凝土若处于三向压应力作用下,当(B) A.三向受压会降低抗压强度 B.三向受压能提高抗压强度 C.横向受拉,纵向受压,可提供抗压强度 D.横向受压,纵向受拉,可提供抗压强度 2、混凝土的弹性模量是指(A) A.原点弹性模量 B.变形模量 C.割线模量 D.切线模量 3、混凝土强度等级由150mm立方体抗压试验,按测定值的(B)确定 A.平均值 B.平均值减去2倍标准差 C.平均值减去1.645倍标准差 D.平均值减去一倍标准差 4、规范规定的受拉钢筋锚固长度l a(C) A.随混凝土强度等级的提高而增大 B.随钢筋等级提高而降低 C.随混凝土强度等级提高而降低,随钢筋等级提高而增大 D.随混凝土及钢筋等级提高而减小 5、属于有明显屈服点的钢筋是(A) A. 冷拉钢筋 B. 钢丝 C. 热处理钢筋 D. 钢绞线 6、钢筋的屈服强度是指(D) A.屈服上限 B.弹性极限 C.比例极限 D.屈服下限 7、规范确定f cu,k所用试块的边长是(A) A. 150mm B. 200mm C. 100mm D. 250mm 8、混凝土强度等级是由(A)确定的 A.f cu,k B. f ck C. f cu D.f tk 9、边长为100mm的非标准立方体试块的强度换算成标准试块的强度,则需乘以换算系数(C) A. 1.05 B. 1.0 C. 0.95 D. 0.90

10、以下说法,正确的是(A) A.C25表示混凝土的立方体抗压强度标准值是25N/mm2 B.C25表示混凝土的棱柱体抗压强度标准值是25N/mm2 C.C25表示混凝土的轴心抗压强度标准值是25N/mm2 D.混凝土的棱柱体抗压强度比立方体抗压强度高 11、混凝土的侧向约束压应力提高了混凝土的(D) A.抗压强度 B.延性 C.抗拉强度 D.抗压强度和延性 12、减小混凝土徐变的措施是(D) A.加大骨料用量,提高养护时的温度,降低养护时的湿度 B.加大水泥用量,提高养护时的温度和湿度 C.延迟加载龄期,降低养护时的温度和湿度 D.减小水泥用量,提高养护时的温度和湿度 13、截面上同时存在正应力和剪应力时() A.剪应力降低了混凝土抗拉强度,但提高了抗压强度 B.不太高的压应力可以提高混凝土的抗剪强度 C.剪应力提高了混凝土的抗拉强度和抗压强度 D.不太高的拉应力可以提高混凝土的抗剪强度 14、下面有关测定混凝土立方体抗压强度的说法,正确的是(C) A. 试件截面尺寸越小,测得的数值越小 B. 加荷速度越快,测得的数值越小 C. 加荷表面涂润滑剂时,测得的数值小 D. 测得的混凝土立方体抗压强度与试件截面尺寸无关 15、减小混凝土徐变,可采用的措施是(A) A.蒸汽养护混凝土 B.增加水用量 C.提早混凝土的加载龄期 D.增加水泥用量 16、地面上放置的一块钢筋混凝土板,养护过程中发现其表面出现细微裂缝,原因是(B) A. 混凝土徐变变形的结果 B. 混凝土收缩变形的结果 C. 混凝土收缩和徐变变形的共同作用结果 D. 混凝土与钢筋之间由于热胀冷缩差异变形的结果 17、钢筋混凝土结构对钢筋性能的要求不包括(C) A. 强度 B. 塑性 C.冲击韧性 D.与混凝土的粘结力

混凝土抗压强度试验流程

混凝土抗压强度试验流程 一、试验目的 掌握混凝土抗压强度的测定和评定方法,作为混凝土质量的主要依据。 二、试验原理 测定混凝土抗压强度是检验混凝土的强度是否满足设计要求。我国采用边长150mm立方体试件为标准试件。 三、仪器设备 压力试验机、振动台、试模、捣棒、小铁铲、镘刀等。 四、试验步骤 1、取三个试件为一组。拌和物的坍落度小于70mm时,用振动台振实,将拌和物一次装满试模,振实后抹平。拌和物的坍落度大于70mm时,用捣棒人工捣实,将拌和物分两层装入试模,每层插捣25次。 2、试件成型后24~36h拆模,在标准养护条件(温度20+2℃,相对湿度95%以上)下养护至规定龄期进行试验。 3、试件取出后,在试压前应先擦干净,测量尺寸,并检查其外观,试件尺寸测量精确至lmm,并据此计算试件的承压面积值(A)。试件不得有明显缺损,其承压面的不平度要求不超过0.05%,承压面与相临面的不垂直偏差不超过土1o。 4、把试件安放在试验机下压板中心,试件的承压面与成型肘的顶面垂直。开动试验机,当上压板与试件接近时,调整球座,使接触均衡。 5、加压时,应持续而均匀地加荷。加荷速度为:混凝土强度等级小于C30时,取0.3—0.5MPa /s;当等于或大于C30时,取0.5—0.8MPa/s。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,然后记录破坏荷载(F)。 五、试验结果 1、混凝土立方体抗压强度fcu按公式计算(精确至0.1 Mpa):fcu=F/A 式中 F—破坏荷载,N;A—受压面积,mm2。 2、以3个试件测定值的算术平均值作为该组试件的抗压强度值。当3个测定值中的最大或最小值有一个与中间值的差值超出中间值的15%时,则把最大及最小值一并舍去,取中间值作为该组试件的抗压强度值。如果两个测值与中间值的差都超出中间值的15%,则该组试件的试验结果无效。

钢筋混凝土模拟试题及答案

模拟试题 一、??? 1.采用边长为100mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.95。 2.钢材的含碳量越大,钢材的强度越高,因此在建筑结构选钢材时,应选用含碳量较高的钢筋。 3.在进行构件承载力计算时,荷载应取设计值。 4.活载的分项系数是不变的,永远取1.4。 5.承载能力极限状态和正常使用极限状态都应采用荷载设计值进行计算,这样偏于安全。 6.在偏心受压构件截面设计时,当时,可判别为大偏心受压。 7.配筋率低于最小配筋率的梁称为少筋梁,这种梁一旦开裂,即标志着破坏。尽管开裂后仍保留有一定的承载力,但梁已经发生严重的开裂下垂,这部分承载力实际上是不能利用的。 8.结构设计的适用性要求是结构在正常使用荷载作用下具有良好的工作性能。 9. 对于一类环境中,设计使用年限为100年的结构应尽可能使用非碱性骨料。 10.一些建筑物在有微小裂缝的情况下仍能正常使用,因此不必控制钢筋混凝土结构的小裂缝裂缝。 11.混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 12.对任何类型钢筋,其抗压强度设计值。 13.在进行构件变形和裂缝宽度验算时,荷载应取设计值。 14.以活载作用效应为主时,恒载的分项系数取1.35 。 15.结构的可靠指标越大,失效概率就越大,越小,失效概率就越小。

16.在偏心受压破坏时,随偏心距的增加,构件的受压承载力与受弯承载力都减少。 17.超筋梁的挠度曲线或曲率曲线没有明显的转折点。 18.结构在预定的使用年限内,应能承受正常施工、正常使用时可能出现的各种荷载、强迫变形、约束变形等作用,不考虑偶然荷载的作用。 19.对于一类环境,设计使用年限为100年的结构中混凝土的最大氯离子含量为0.06%。 20.钢筋混混凝土受弯、受剪以及受扭构件同样存在承载力上限和最小配筋率的要求。 21.钢筋经冷拉后,强度和塑性均可提高。 22.适筋破坏的特征是破坏始自于受拉钢筋的屈服,然后混凝土受压破坏。 23. 实际工程中没有真正的轴心受压构件. 24.正常使用条件下的钢筋混凝土梁处于梁工作的第?阶段。 25.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。 26.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。 27.当计算最大裂缝宽度超过允许值不大时,可以通过增加保护层厚度的方法来解决。 28.结构在正常使用和正常维护条件下,在规定的环境中在预定的使用年限内应有足够的耐久性。 29.对于一类环境中,设计使用年限为100年的钢筋混混凝土结构和预应力混凝土结构的最低混凝土强度等级分别为C10和C20. 30.对于钢筋混凝土结构,在掌握钢筋混凝土构件的性能、分析和设计,必须注意决定构件破坏特征及计算公式使用范围的某些配筋率的数量界限问题。 ?? ??????

混凝土少筋梁试验报告

《混凝土结构基本原理》试验课程作业 L ENGINEERING 混凝土受弯构件少筋梁破坏试验报告 试验名称混凝土少筋受弯梁破坏试验 试验课教师 姓名 学号 手机号 任课教师 日期2013年10月25日

1. 试验目的 通过试验研究认识少筋梁受弯破坏的全过程,;理掌握测试钢筋混凝土受弯构件基本性能的试验法。 参加并完成规定的少筋梁试验容,掌握和理解钢筋混凝土受弯构件的试验法和试验结果,通过实践掌握试件的设计,对试验结果进行整理并写出试验报告。 通过试验加深对混凝土机构基本构件的受力性能的理解。 2. 试件设计 2.1 材料和试件尺寸 根据试验目的合理地制定试验计划,按照试验目的和试验计划的要求对钢筋和混凝土等试验材料进行选取。本次少筋梁受弯破坏试验选取的纵向受拉钢筋及箍筋均为HPB235,且采用不经切削加工原截面钢筋,选取的混凝土强度等级为C20。 试件尺寸(矩形截面):1152051500b h l mm mm mm ??=?? 2.2 试件设计 2.2.1试件设计的基本原理及依据 钢筋混凝土受弯构件发生少筋破坏时,构件抗弯承载力等于开裂弯矩。实际工程常为避免少筋破坏,有最小配筋率的要求。本试验中,为保证发生少筋破坏,有配筋率要求: 0.36 t y f f ρ≤ 同时,抗弯承载力设计公式为: s E c E E α= ,E 2s A A bh αα=g 2 0.292(1 2.5)u cr A t M M f bh α==+ 另外,基于构件设计中出现的抗剪箍筋需要满足抗剪要求,抗剪承载力公式为: 00 1.75 1sv u cs t yv A V V f bh f h s λ== ++ 2.2.2 试件的主要参数 ①试件尺寸(矩形截面):b ×h ×l = 115mm ×205mm ×1500mm ; ②混凝土强度等级:C20; ③纵向受拉钢筋的种类:HPB235(少筋梁); ④箍筋的种类:HPB235(纯弯段无箍筋); ⑤纵向钢筋混凝土保护层厚度:15mm ;

混凝土抗压强度试验规程

混凝土抗压强度试验规程 1、混凝土试件的制作应采用与预应力混凝土轨枕相同的混凝土,同时间、同样的条件进行振动成型和养护。用15cm×15cm ×15cm的立方体三件为一组的铸铁试模制作混凝土试件。制作时,应将混凝土拌合物一次装入试模,用双手轻扶试模进行振动。振动结束后,刮除试模周围多余的混凝土,并用抹刀抹平。将制作好的试模随轨枕钢模放入同一个养护池内。 2、当养护周期结束,试件从养护地点取出后,应尽快进行试验,以免试件内部的温湿度发生显著变化。试验前应将试件擦拭干净,测量尺寸,并检查其外观。试件承压面的不平度为每100mm 不超过0.05mm,承压面与相邻界面的不垂直度不应超过±1°。 将试件安放在试验机的下压板上,试件的承压面应与成型时的顶面垂直。试件的中心应与试验机下压板中心对准。试验时应连续而均匀地加荷。当试件接近破坏而开始迅速变形时,停止调整试验机油门,直至试件破坏,然后记录破坏荷载。 以三个试件测值的算术平均值作为该组试件的抗压强度值。三个测值中的最大值或最小值中如有一个与中间值的差值超过中间值的15﹪时,则取中间值作为该组试件的抗压强度值。如有二个测值与中间值的差值均超过中间值的15﹪,则该组试件的试验结果无效。 3. 当试验抗压强度结果大于或等于50Mpa时,由试验员填写出池通知单一式两份,一份交给看养护人员通知车间生产人员允许该池轨枕出池脱模,另一份存档。若抗压强度试验结果低于45Mpa时,试验员应告诉看养护人员盖池继续养护,并确定延长养护时间。试验员应对此执行过程进行监督。到时取出第二组试件

试压,当第二组试件抗压强度大于或等于45Mpa时,试验员方可填写出池通知单同意该池轨枕出池脱模。若抗压强度仍小于45Mpa ,应由质检中心报总工程师和生产副总,组织技术部、质检中心、车间研究处理。 用作检验28天强度的试件,由看养护人员拆模后送试验室进行标准养护。 4、混凝土抗压强度应按照TB10425的规定进行检验评定。

预应力钢筋混凝土轨枕的冲击试验

预应力钢筋混凝土轨枕的冲击试验 摘要:伍伦贡大学采用了大功率重锤冲击试验机以评估预应力钢筋混凝土轨枕在冲击荷载下的脉冲应变影响。本文不仅详细介绍了大功率重锤冲击试验机,试验的仪表化和标准化,还包括故障模型分析、裂纹扩展、弯曲刚度和能量吸收机制。测试用的预应力轨枕由澳大利亚制造,现场的轨道基床已由实验室模型获得的频率响应函数进行了模拟和校准。试验主要利用大功率重锤冲击试验机研究了预应力轨枕的能量转移机制。 关键字:预应力钢筋混凝土轨枕,冲击试验,有砟铁轨 Abstract: The wollongong university high power hammer impact test enginery prestressed concrete sleeper to assess the impact of the load in pulse strain effects. This paper not only introduces detailed high-power hammer impact test enginery, test instrument, and standardization, including failure model analysis, crack propagation, bending stiffness and energy absorption mechanism. Test of prestressed sleeper by Australia manufacturing, the scene of rail and the bed had been obtained by laboratory model frequency response function and calibration of the simulation. Test the main use high power hammer impact test enginery studied energy transfer mechanism of prestressed sleeper. Key word: prestressed concrete sleeper, impact test track a frantic jumble 1.引言 本文通过对轨道环境的模拟,使用冲击试验方法研究了预应力钢筋混凝土轨枕的能量转移机制,并重点用试验验证了轨枕的极限抗冲击性和破坏模型。试验所用的预应力钢筋混凝土轨枕基于澳大利亚标准AS1085.14[2]设计制造,轨道的支撑环境由弹性材料模拟,该材料已被现场和实验室震动测定所验证[3]。本次试验采用的是大功率冲击试验机,以评估柔性支撑环境下预应力钢筋混凝土轨枕的冲击响应,测试结果可用于验证设计的数值模型,和预测其他不同轨道环境下的应力转移机制。 2.试验综述 2.1试样 试验所用的钢筋混凝土轨枕由澳大利亚的一家生产商供应,这也是“澳大利

相关文档
相关文档 最新文档