文档库 最新最全的文档下载
当前位置:文档库 › 基于MATLAB的光纤光栅耦合模理论及其谱线特性

基于MATLAB的光纤光栅耦合模理论及其谱线特性

基于MATLAB的光纤光栅耦合模理论及其谱线特性
基于MATLAB的光纤光栅耦合模理论及其谱线特性

研究生课程论文封面

课程名称光电子学

论文题目基于MATLAB的光纤光栅耦

合模理论及其谱线特性

授课学期 2013 学年至 2014 学年第 1 学期学院物理科学与技术学院专业光学

学号 2012010887 姓名王璐玮任课教师秦子雄

交稿日期 2014年01月01日

成绩

阅读教师签名

日期

广西师范大学研究生学院制

基于MATLAB的光纤光栅耦合模理论及其谱线特性

0.前言

光纤光栅是近二十几年来迅速发展的光纤器件,其应用是随着写入技术的不断改进而发展起来的,逐渐在实际中得到应用。

1978年,加拿大通信研究中心的Hill等发现纤芯参锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅。光纤的光敏性主要是指光线的折射率在收到某些波长的激光照射后,会发生永久改变的特性。通常情况需要紫外光照射,折射率会向着增大的方向改变。具有光敏性的光纤主要是纤芯参锗的光纤,受到紫外光照射后,纤芯折射率会增加,而包层折射率不变。

在光纤光栅的发展过程中,参锗光纤的载氢技术具有重要意义。参锗光纤本身具有光敏性,单当要求折射率改变较大时,相应就要提高纤芯的参锗浓度,这会影响光纤本身的特性。1993年,贝尔实验室的Lemaire等用光纤载氢技术增强了光纤的光敏性,这种发发适用于任何参锗的光纤。通过光纤的载氢能够将在不增加参锗浓度情况下,使光纤的光敏性大大提高。

在平面介质光波导中,布拉格光栅的应用比较早,主要应用于半导体激光器中,而后出现了光纤布拉格光栅,随着光纤光栅写入技术的成熟,光纤光栅在光通信和传感中得到广泛应用,特别是在光通信领域。光纤布拉格光栅和长周期光纤光栅的特性和应用有许多不同之处,也有类似的地方,都可用于通信和传感等领域。

光纤布拉格光栅的周期一般在微米以下,根据耦合模理论,这样的周期表现为使向前传播的纤芯模与向后传播的纤芯模之间发生耦合,结果在输出端表现为很窄的带阻滤波特性。作为一种反射型的光纤无源器件,光纤布拉格光栅对温度,应

变都有相当程度的敏感特性,其在光纤激光器,波分复用,可调谐光纤滤波器,高速光纤通信系统的色散补偿及光纤传感器等反面有许多重要应用。

对于长周期光纤光栅,其光栅的周期较长,根据光波导的耦合模理论,表现为向前传播的纤芯模和同向传播的包层模的耦合。特定长度和耦合系数的长周期光纤光栅可以将纤芯模耦合到包层中而损耗掉。一般来说,与光纤布拉格光纤相比,长周期光纤光栅的光谱带宽较大,其最典型的应用时参铒光纤放大器增益平坦,带阻滤波器和传感。

1.耦合模理论

耦合模方程是从麦克斯韦方程经过一系列推导得到的,其基本思想是:利用可求解光波导的解,研究受到微扰的光波导,或者相互有影响的光波导,其理论基础在于规则光波导的具有正交性,即:

利用麦克斯韦方程组,经过变换可得:

对于电场和磁场矢量,有:

在微扰光波导中,横向电、磁矢量可以看作

的线性叠加,即:

则:

其中,

为模序数为

的本征模的传播常数。

利用模的正交关系,可以得到:

耦合系数:

在无耦合情况下有:

,根据以上两式,可以得出微扰光波导中的电场、磁场分布:

其中,

分别为沿z轴正向传播的模式和反向传播的模式,也就是说,受到微扰后的波导中的模可以看做不同模序的前行模叠加、后行模叠加,或者说是相互叠加;

分别为相应分量的展开系数,均是z的函数,可表示为

于是得到普遍的耦合模方程为:

其中,

为模式

的传播常数;

分别是模式

之间的横向和纵向分量的耦合系数。

分别为:

其中,

为光波的角频率;

分别为模式

的电场的横向矢量分量;

为光波导中由于扰动引起的介电常量的改变量,

,n为未受扰动时的折射率,

为折射率改变量。

位于光纤光栅来说,

小得多(大约为一个数量级),所以在通常情况下可以忽略。

2.光纤布拉格光栅

光纤布拉格光栅使沿z轴传播的纤芯模和沿-z方向传播的纤芯模之间产生耦合,属于两个反向模之间的耦合,取沿z轴传播的模的振幅为A,沿-z方向传播的模的振幅为B,只考虑这两个模之间的耦合,则由上面的方程可得:

从耦合系数方程可知,

。前行模和后行模的自耦合系数相等,即,故可统一记为

对紫外激光写入的均匀正弦布拉格光栅,折射率分布为:

其中,

为光栅的周期;

为折射率调制的缓变包络,通常称为切趾或切趾函数;

相当于坐标z处折射率改变量的幅值。通常情况下,折射率改变量可写为:

代入横向耦合系数

中,并改写为:

其中,

均是z的慢变函数,当两个下标相同时,

为自耦合系数,不同时为互耦合系数。但对于光纤布拉格光栅,只有纤芯模之间的耦合,对单模光纤,

利用关系:

的表达式中余弦表示为指数形式,并代入耦合模方程,则会出现指数项

。在耦合模方程中,只有该项的指数部分为零时,才会使两个模之间发生较强的耦合,其前面的系数才会对方程的解有大的影响,显然,括号中同时取+时,该指数项不可能为零,因此,只能取-。从而得到如下简化后的耦合模方程:

其中,

在上述方程中,起主导作用的是等号右边的第二项,为了简便,可以忽略含有

的项。从而得到如下的耦合模方程:

求解方程组后可以得到A和B。设光栅区在

,上述方程组可化为两个独立的二阶常微分方程,取边界条件,z=0时,

A=A(0);z=L时,B=B(L)。当

时,可以得到方程的解为:

其中,

。对一般情况,可取A(0)=1,B(L)=0,则得到光纤布拉格光栅的反射率和透射率为:

在相位匹配条件下,

,对应了最大反射率和最大透射率,即:

若设光栅的输入端功率为

,则谐振时光功率分别为

,

,下图给出了相位匹配条件下,即对谐振波长的光功率转换。

程序编码:

kL=linspace(0,5);

figure

P_B=(tanh(kL)).^2;

plot(kL,P_B,'r');hold on

P_A=(cosh(kL)).^-2;

plot(kL,P_A,'b');grid

程序运行如下:

FIG1.光纤布拉格光栅的功率转换

光纤布拉格光栅中耦合模的两个模都是纤芯模,但是反向传播,相位匹配条件为

,即:

利用传播常数和有效折射率的关系

,可以将上式改写为:

利用上述光纤布拉格光栅的反射率和透射率公式,可以画出其反射谱和透射谱,程序编码如下:

lambda=linspace(1540,1560,5000);

k=(1.2*pi./lambda)*10^(-3);s=sqrt(k.^2-delta.^2);

delta=3*pi*(lambda-1550)./(1550^2);

y1=(sinh(2e6*s).^2)./(cosh(2e6*s).^2-(delta.^2./k.^2));

subplot(2,1,1);plot(z,y1,'r');

xlabel('波长(nm)'),ylabel('反射率');

title('FBG反射谱');grid;

y2=1./(cosh(2e6*s).^2+(delta.^2./s.^2).*sinh(2e6*s).^2);

subplot(2,1,2);plot(z,y2,'b');

xlabel('波长(nm)'),ylabel('透射率');

title('FBG透射谱');grid;

程序运行如下:

FIG2.光纤布拉格光栅反射谱和透射谱

3.相移光纤布拉格光栅

相移光纤布拉格光栅是在均匀的折射率余弦调制光纤中,在某个或某些位置上出现相位偏移,结果会在反射谱中出现一个较窄的缺口,可以有多个相移,相应会出现多个缺口。

对相移光纤布拉格光栅,折射率变化时分段连续的,因此,不能再用一个函数来表示,需要用分段函数来表示。折射率调制可以写成:

其中,

为第i个相移点的相移量。

相移光纤布拉格光栅的耦合模方程可以通过传输矩阵来表示。传输矩阵是由耦合模方程得到的,可以用于均匀和非均匀光纤光栅。类似的,利用上述方法,并考虑到:

可以得到耦合模方程:

经过复杂的计算,可以得到耦合模方程的解,并写成矩阵的形式为:

其中,

时,令

,得:

时,令

,可以得到:

矩阵

称为传输矩阵。如果光线中只有一段均匀光纤布拉格光栅,通常有

,所以:

则反射率和透射率分别为:

利用上述相移光纤布拉格光栅的反射率和透射率公式,可以画出其反射谱和透射谱,程序编码如下:

function PhaseFiber_by_TransmissionMatrix_mine

n=500;lamda=1e-9*linspace(1545,1555,n);

[R1,R2,R3,R4]=Transmission_FBG;

subplot(2,2,1);plot(lamda*1e9,R1,'r');

title('fai=0');grid

axis([1545,1555,0,1]);

xlabel('波长/nm');ylabel('反射率');

subplot(2,2,2);plot(lamda*1e9,R2,'c');

title('fai=pi/2');grid

axis([1545,1555,0,1]);

xlabel('波长/nm');ylabel('反射率');

subplot(2,2,3);plot(lamda*1e9,R3,'g');

title('fai=pi');grid

axis([1545,1555,0,1]);

xlabel('波长/nm');ylabel('反射率');

subplot(2,2,4);plot(lamda*1e9,R4,'b');

title('fai=3*pi/2');grid

axis([1545,1555,0,1]);

xlabel('波长/nm');ylabel('反射率');

end

function [F1]=Transmission_FBG1(lamda,lamda_B,dn,n_eff,i) delta=2*pi*n_eff*(1./lamda-1./lamda_B);

j=sqrt(-1);

k=pi*dn/lamda_B;L(1)=1e-3;

s=sqrt(k^2-delta.^2);

s11(i,1)=(cosh(s(i)*L(1))+j*delta(i)./s(i).*sinh(s(i)*L(1))).*exp(-j*delta(i)*L(1));

s12(i,1)=j*k./s(i).*sinh(s(i)*L(1)).*exp(-j*delta(i)*L(1));

s21(i,1)=-j*k./s(i).*sinh(s(i)*L(1)).*exp(j*delta(i)*L(1));

s22(i,1)=(cosh(s(i)*L(1))-

j*delta(i)./s(i).*sinh(s(i)*L(1))).*exp(j*delta(i)*L(1));

F1=[s11(i,1) s12(i,1);s21(i,1) s22(i,1)];

End

function [R1,R2,R3,R4]=Transmission_FBG

n=500;n_eff=1.458;

dn=1.2e-3;j=sqrt(-1);

lamda_B=1550e-9;

lamda=1e-9*linspace(1545,1555,n);

delta=2*pi*n_eff*(1./lamda-1./lamda_B);

k=pi*dn/lamda_B;s=sqrt(k^2-delta.^2);

for i=1:n

L(2)=1e-3;

s111(i,2)=(cosh(s(i)*L(2))+j*delta(i)./s(i).*sinh(s(i)*L(2))).*exp( -j*delta(i)*L(2));

s112(i,2)=j*k./s(i).*sinh(s(i)*L(2)).*exp(-

j*delta(i)*L(2)).*exp(j*0);

s121(i,2)=-j*k./s(i).*sinh(s(i)*L(2)).*exp(j*delta(i)*L(2)).*exp(-j*0);

s122(i,2)=(cosh(s(i)*L(2))-

j*delta(i)./s(i).*sinh(s(i)*L(2))).*exp(j*delta(i)*L(2));

F12=[s111(i,2) s112(i,2);s121(i,2) s122(i,2)];

F1=Transmission_FBG1(lamda,lamda_B,dn,n_eff,i);

F12=F12*F1;R1(i)=(abs(-F12(2,1)/F12(1,1)))^2;

s211(i,2)=(cosh(s(i)*L(2))+j*delta(i)./s(i).*sinh(s(i)*L(2))).*exp( -j*delta(i)*L(2));

s212(i,2)=j*k./s(i).*sinh(s(i)*L(2)).*exp(-

j*delta(i)*L(2)).*exp(j*pi/2);

s221(i,2)=-j*k./s(i).*sinh(s(i)*L(2)).*exp(j*delta(i)*L(2)).*exp(-j*pi/2);

s222(i,2)=(cosh(s(i)*L(2))-

j*delta(i)./s(i).*sinh(s(i)*L(2))).*exp(j*delta(i)*L(2));

F22=[s211(i,2) s212(i,2);s221(i,2) s222(i,2)];

图解常见光纤尾纤

图解常见尾纤型号 光纤这东西有时候挺烦人的,总结了常用的几种光纤接头。1. 上面这个图是LC到LC的,LC就是路由器常用的SFP,mini GBIC所插的线头。

2. FC转SC,FC一端插光纤步线架,SC一端就是catalyst也好,其他也好上面的GBIC所插线缆。

3. ST到FC,对于10Base-F连接来说,连接器通常是ST类型,另一端FC连的是光纤步线架。

Sc到Sc两头都是GBIC的

SC到LC,一头GBIC,另一头MINI-GBIC

各种光纤接口类型介绍 ! 各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤 -------------------------------------------------------------------------------- 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头“LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要 连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等. “/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “SC”表示尾纤接头型号为SC接头,业界传输设备侧光接口一般用用SC接头,SC接头是工程塑料的,具有耐高温,不容易氧化优点; ODF侧光接口一般用FC接头,FC是金属接头,但ODF 不会有高温问题,同时金属接头的可插拔次数比塑料要多,维护ODF尾纤比光板尾纤要多。其它常见的接头型号为:ST、DIN 、FDDI。 “PC”表示光纤接头截面工艺,PC是最普遍的。在广电和早期的CATV中应用较多的是APC型号。尾纤头采用了带倾角的端面,斜度一般看不出来,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号。表现在画面上就是重影。尾纤头带倾角可使

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 )(1Z n 为纤芯的折射率,max n ?为光 致折射率微扰的最大值, )0(1n 为纤芯原折射率, Λ为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: )2cos( )0()(max 11Z n n z n Λ ?+=π …………………………………………………(1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程:0),,(}),,({22 2 20 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λπ/20=k ,λ是自由空间的光波长。 2 22 2 1}{1? ??+?Φ???=Φ?Φ r r r r r t …………………………………………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场 可以表示为均匀波导束缚模式),(y x φ之和: ),()}exp()exp()({),()(),,(y x z i a z i z a y x z A z y x l l l l l l l l l φββφ-+-∑=∑=Φ………(2.3)

实验6.3钼阳极X射线特征谱线的精细结构

实验6.3 钼阳极X 射线特征谱线的精细结构 一、实验目的 1. 通过Mo 阳极X 射线在单晶NaCl 上的第5级布拉格反射谱研究其特征谱线的精细 结构; 2. 测定钼元素特征谱K α、K β 及K γ谱线; 3. 解析K α谱线的双线结构,测定其双线结构的波长间隔; 二、实验原理 我们已经知道,Mo 阳极X 射线特征谱K α和K β线都是双线结构,可以通过其在NaCl 单晶上的高阶布拉格衍射谱观测出来,然而它们的物理本质是不一样的。 K β是由纯K β线——M 壳层到K 壳层的原子跃迁和K γ线——N 壳层到K 壳层的原子跃迁组成的,两条谱线的波长差为1.2 pm (见表1),所以只能在高阶衍射谱上分辨开来。 表1 钼特征谱K 、K 及K 线跃迁能量、波长和相对强度 K α的精细结构源于L 壳层的精细结构,即电子的自旋轨道特性。在X 射线谱上,L 壳层实际上是由三个子层L I 、L II 和L III 组成,这些子层向K 壳层的跃迁要遵从选择定则: ?l =±1,?j =0,±1 (1) ?l 为跃迁中轨道角动量l 的变化量,?j 为总角动量j 的变化量。这样一来,只有两种从L 壳层到K 壳层的跃迁:K α1 和K α2 (见图1)。表2中给出了钼元素这两条谱线的参考值,可以看出K α双线的波长间隔?λ=0.43 pm 。 表2 钼元素K 的波长及相对强度 本实验中,通过布拉格反射在NaCl 晶体上的高阶衍射解析出钼X 光谱的精细结构。 按照布拉格反射定理,入射光特征谱线的波长和掠射角存在下列关系时,接受到的反射光强度最大: n ?λ=2?d ?sin θ (2) n : 衍射阶数,d =282.01 pm :NaCl 晶面间距。 可以看出,双线的波长间距?λ 决定布拉格衍射时双线之间的角间距?θ 图1 特征谱K α的精细结构

光纤排列顺序光纤颜色谱卡

光纤排列顺序光纤颜色 谱卡 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

层绞式通信用室外光缆纤芯编号与色谱对应关系 BELLCORE的国标纤芯顺序为: 兰、桔、绿、棕、灰、白、红、黑、黄、紫、粉红,青绿; 松套管序同上. 色标要符合孟塞尔色标,这也是全球最全面执行的色标排列. 国标全色谱:蓝、橙、绿、棕、白、红、黑、黄、紫、粉红、水绿。 国标色谱W:蓝、橙、绿、棕、本色(自然色)、红、黑、黄、紫、粉红、水绿。 国标色谱A:蓝、橙、绿、棕、白、红、黑、黄、紫、粉红、本色。

光纤、光缆色谱排列 l 松套管中光纤的色谱排列(国际光纤色谱) l 层绞式光缆中松套管色谱排列 领示色谱 全色谱 光缆线序色谱排列光纤色谱 光缆线序色谱排列光纤色谱1# -12#一般是蓝、桔、绿、棕、灰、白、红、黑、黄、紫、粉红、浅绿。 如果光缆小于12D,用一根束管就可装下,也叫中心束管式; 如果光缆需要光纤大于12D,就必须用到二根以上的束管,起始束管一般为红色,其次是绿色,接下来按顺序是白1、白2、白3...,如果是144D就用12根束管,每根束管12D,这种光缆由于是多根束管绞在一起做成的,也叫层绞式光缆。

当然有的厂家还用带状光纤,12根光纤并成一排作为一组,色谱排列一样。 应该是红头绿尾,先内后外,先熔大芯数,后熔小芯数........ 目前国内的光纤束状光纤只能做到288芯,一般生产厂家的排列顺序是从能层 向外层数。再大芯数只能是带状的了 国标纤芯顺序为;兰、桔、绿、棕、灰、白、红、黑、黄、紫、海兰(粉)、 本;松套管序为:红起白止。 光纤号 1 2 3 4 5 6 7 8 9 10 11 12 颜色蓝桔绿棕灰白红黑黄紫粉红青绿

实验一 光纤的几何特性测试实验

实验一光纤的几特性测试实验 姓名:学号: 一、实验的目的和意义 1、了解光纤的基本结构 2、学习光纤的处理法,包括光纤的剥线、端面切割和清洗等等法 3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构 4、学会Matlab处理实验数据 5、掌握光学实验注意事项和实验室安全隐患及事故处理法 光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。 光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。 光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。[2]

本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。[3] 二、实验的系统结构和实验步骤 1、实验的系统结构 实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。 实验系统的基本结构图如下: 2、实验仪器 光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑 3、实验步骤

光纤光栅的理论研究

第1章 光纤光栅光学性质的研究 光纤光栅是一种全光纤的滤波器件,它的光学性质决定了它的广泛应用。研究光纤光栅光学性质的基本理论是耦合波理论。基于耦合波理论的传输矩阵法是一种快速数值模拟非均匀光纤光栅光学特性的方法。在本章,系统地总结了应用耦合波理论研究光纤光栅的光学性质的方法。光栅反射带宽是其作为滤波器的主要性能指标,本章研究了光栅参数对光栅反射带宽的影响。其它主要研究包括寻找传输矩阵法中分割段数的最优值,各种参数对线性啁啾光纤光栅光学性质的影响,包括反射谱和时延特性受光栅长度、光纤折射率微扰幅度、啁啾系数和光波从不同方向入射时的影响,以及各种切趾函数对光纤光栅的作用。 第一节 研究光纤光栅的基本理论:耦合波理论 1 光纤光栅中的折射率分布 光纤光栅中的折射率微扰是由制作时所用紫外光的场分布决定的。一般全息曝光和相位 图2.1-1几中典型光纤光栅的折射率微扰分布 a uniform grating b chirped grating c Gauss grating d phas e shift grating e Moire grating f super structure grating

掩模板法制作光纤光栅时的场分布具有余弦函数的形式,所以光栅的折射率微扰也具有余弦函数形式,一般可以写为: ??? ? ????????φ+Λπν+δ=δ)z (z 2cos )z (1)z (n )z (n eff eff (2.1-1) )z (n eff δ是折射率微扰的平均值,可以看成一个光栅周期内折射率变化的直流部分,ν 是光栅条纹的可见度,Λ是光栅的周期,φ(z)可以用来描述光栅的啁啾。光纤光栅的光学性 质就决定于上式中各个参数的选择,我们将它们统称为光栅参数。光纤光栅的光学性质就由这些光栅参数决定,通过选择它们沿光纤方向不同的变化形式,可以得到适用于不同目的的光栅。图2.1-1是几中常见的光纤光栅的折射率微扰的分布示意图: 1. 均匀光纤光栅:各个光栅参数沿光纤方向是常量,这种光栅可以得到解析的理论 分析结果,是耦合波理论分析光纤光栅光学性质的出发点。 2. 线性啁啾光纤光栅:光栅周期Λ沿光纤方向是线性变化的量,应用于色散补偿等方 面。 3. 折射率微扰平均值沿光纤方向是一个高斯型分布:实际制作的光纤光栅很多都属 于这种类型。 4. 相移光栅:在光栅周期性结构中存在一个相位移动,一般是π。可以应用于透射型 滤波器。 5. MOIRE 光栅:折射率微扰幅度的轮廓是一个余弦函数,而平均值是一个常数。 6. 超结构光栅:由间隔一定的微均匀光纤光栅(几百个周期结构)组成。 2 耦合波理论 研究电磁场在光纤光栅这样的周期性波导中传播的基本理论是耦合波理论[1]。假设电磁场横向分量在光纤中的传播可以看成没有折射率微扰时标准光纤的模式的叠加: ()()()()()[] ()y x e z i z B z i z A z y x E j tj j j j j t ,exp exp ,,∑?-+= ββ (2.1-2) 式中A j (z)和B j (z)分别是第j 个模分别沿+z 和-z 方向传播时缓变的幅度函数。()y ,x e tj 是第j 个模的横向分量的场分布,可以是束缚模、包层模和辐射模。在理想的、没有折射率微扰的光纤中,这些模相互正交没有能量交换。在紫外光的照射下,光纤芯部的折射率发生改变。这种变化很小,一般为10-4,是一种微扰。折射率微扰的引入使得模式之间发生能量交换,即发生模式耦合。一个模式沿光纤方向幅度的变化是所有模式相互作用的结果[2]: ∑∑∑∑β-β-K +K -β+βK -K -=β+β-K -K +β-βK +K =k k j k z k j t k j k j k z k j t k j k j k k j k z k j t k j k j k z k j t k j k j ] z )(i exp[)(B i ]z )(i exp[)(A i dz )z (dB ] z )(i exp[)(B i ]z )(i exp[)(A i dz )z (dA (2.1-3) 式中t k j K 是横向耦合因子,可以表示为:

光纤的分类 特性 优缺点 详解

光纤的分类特性优缺点详解 单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。 多模光纤:中心玻璃芯较粗(50或μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。传输距离较近,最多几公里。 我只是知道有单模和多模的,单模就是波长在1310NM上,多模就是850NM的,还有就是接口也不同,分LC ,SC ,FC,因本人专业知识有限,其他的是我在网上查找的!请参考!一,光纤的分类些特种光纤如晶体光纤并未列出 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将Opti cal Fibe(光纤)又简化为Fiber,例如:光纤放大器(Fiber Amplifier)或光 纤干线(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统 中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然 是不可取的。 光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材 料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯 中传播前进的媒体。 光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有 线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一 定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价 廉等。 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上

光纤分类

光纤基本概念 一、光纤接口有哪几种? FC,SC,LC,MTRJ 二、单模(SMF)和多模(MMF)是以什么来区分的? 黄色的为单模光纤,橙色为多模光纤;(从颜色区分) 多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的 纤芯直径为8.3μm,包层外直径125μm。 三、单模和多模的技术是同时产生的吗?是不是哪个更先进? 多模先产生,谈不上那个更先进,一般距离近的用多模(能支持几公里左右),远的只有用单模的,因为多模光纤的收发器比单模的便宜很。 四、单模光纤用于长途的传输,多模光纤用于室内数据传输吧 长途只能用单模,但是室内数据传输不一定都要用多模。 五、服务器和存储设备用的光纤是单模还是多模的?多半是市内数据,FC-SAN架构一般都用多模就可以了。 六、光纤是否都得一对一对地来使用,有没有单孔单模光纤信号转换器之类的设备? 光纤是否都得一对一对地来使用,是的,后半个问题你的意思是不是 在一根光纤上进行收发光?这个是可以的中国电信1600G骨干光纤网就是这样的。 。。。。。 光纤模块只有短波(SX)、长波(LX)和超长波(ZX)之分,没有单模多模之分!只有光纤才分单模多模! 短波光纤模块:发光口大,传输距离近 长波和超长波光纤模块:发光口小,传输距离远 多模光纤:纤芯直径大,传输距离近 单模光纤:纤芯直径小,传输距离远 短波模块-单模光纤-短波模块:不可行!因为短波模块的发光口大于单模光纤的纤芯直径,部分光信号无法进入光纤 长波模块-多模光纤-长波模块:一般可行,因为长波模块的发光口小于多模光纤的纤芯直径,所有光信号能够进入光纤。但传输距离受多模光纤限制,只有几百米,而且本人见过连通性不稳定甚至连不通的情况!长波模块-多模光纤-短波模块:不可行!两端波长必须相同! 如果传输距离较远,必须选择长波模块-单模光纤-长波模块! 1)、光纤接头各符号的含义: A)、FC:常见的圆形,带螺纹光纤接头 B)、ST:卡接式圆形光纤接头 C)、SC:方型光纤接头 D)、PC:微凸球面研磨抛光 E)、APC:呈8度角并作微凸球面研磨抛光

光纤基本特性测试实验报告

实验报告 课程名称: 光通信技术实验 指导老师: 成绩:__________________ 实验名称:光纤基本特性测试(一)实验类型: 基础型 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验1-2 光纤数值孔径性质和测量 一、实验目的和要求 1、熟悉光纤数值孔径的定义和物理意义 2、掌握测量光纤数值孔径的基本方法 二、实验内容和原理 光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。图一表示阶梯多模光纤可接收的光锥范围。因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。 NA 的定义式是: 式中n0 为光纤周围介质的折射率,θ为最大接受角。n1和n2分别为光纤纤芯和包层的折射率。光纤在均匀光场下,其远场功率角分布与理论数值孔径NAm 有如下关系: 其中θ是远场辐射角,Ka 是比例因子,由下式给出: 专业: 姓名: 学号: 日期: 地点: 装 订 线

式中P(0)与P(θ)分别为θ= 0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。计算结果表明,若取P(θ) / P(0) = 5%,在g≥2时Ka的值大于0.975。因此可将P(θ)曲线上光功率下降到 θ的正弦值定义为光纤的数值孔径,称之为有效数值孔径: 中心值的5%处所对应的角度 e 本实验正是根据上述原理和光路可逆原理来进行的。 三、主要仪器设备 He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计一套(功率显示仪1件、短波光探测器1只)。 四、实验步骤 方法一:光斑法测量(如图2) 1、实验系统调整; a.调整He-Ne激光管,使激光束平行于实验平台面; b.调整旋转台,使He-Ne激光束通过旋转轴线; c.放置待测光纤在光纤微调架上,使光纤一端与激光束耦合,另一端与短波光探测器正确连接; d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上,并辅助调节旋转台使光纤的输出功率最大。 2、测输出数值孔径角θo。 a. 移开光探测器,固定光纤输出端; b. 分别置观察屏于距光纤端面L1、L2 距离处,测量观察屏上的光纤输出圆光斑直径D1、D2,计算两次读数差ΔL和ΔD,得输出孔径角为:θo=arctan[ΔD/(2ΔL)]; c. 多次测量求平均值。(注:如果圆光斑边界不清晰,一般是由于出射光功率太强引起的,适当旋转读数台减小耦合效率,直至得到一个清晰圆光斑为止。)

光纤通信的主要特点

光纤通信的主要特点 传输频带宽,通信容量大。 1.传输损耗低。 2.不受电磁干扰 3.线径细,重量轻 4.资源丰富 5.扰信好 6.不怕潮湿,耐高温,抗腐蚀。 7.安全保密。 WLAN本身并不是新概念、新技术,它已存在十多年了。顾名思义,WLAN是用无线通信技术构建的局域网,虽不采用缆线,但也能提供传统有线局域网的所有功能。与有线局域网相比,WLAN具有一定的移动性,灵活性高、建网迅速、管理方便、网络造价低,扩展能力强等特点,但WLAN的网络产品较贵,硬件初始投资比有线局域网高,传输速率较低。WLAN还有一个好处是它使用不需许可证的2.4GHz频段,其运营者不用花钱申请频谱许可证,随时可以建网使用。 WLAN由无线网卡、无线接入点(AP)、计算机和有关设备组成,采用单元称为一个基本服务组(BSS)。BSS的组成方式有集中控制式(每个单元由一个中心站控制)、分布对等式(单元中任意两个终端可直接通信,无须中心站转接)和混合式三种。 一个WLAN可由一个基本服务区(BSA)组成,一个BSA通常包含若干个单元,这些单元通过无线接入点与某骨干网相连。骨干网可以是有线网,也可以是无线网。WLAN可独立使用,也可与有线局域网互连使用。 EPON的优点主要表现在: (1)相对成本低,维护简单,容易扩展,易于升级。EPON结构在传输途中不需电源,没有电子部件,因此容易铺设,基本不用维护,长期运营成本和管理成本的节省很大;EPON 系统对局端资源占用很少,模块化程度高,系统初期投入低,扩展容易,投资回报率高;EPON系统是面向未来的技术,大多数EPON系统都是一个多业务平台,对于向全IP网络过渡是一个很好的选择。 (2)提供非常高的带宽。EPON目前可以提供上下行对称的1.25Gb/s的带宽,并且随着以太技术的发展可以升级到10Gb/s。 (3)服务范围大。EPON作为一种点到多点网络,以一种扇出的结构来节省CO的资源,服务大量用户。 (4)带宽分配灵活,服务有保证。对带宽的分配和保证都有一套完整的体系。EPON可以通过DiffServ、PQ/WFQ、WRED等来实现对每个用户进行带宽分配,并保证每个用户的QoS。 但是作为一种新技术,如何进入市场和被市场所认可,取决于很多方面。EPON产品在严格意义上还没有标准。其次是诸如测距、同步等一些技术难点的解决方案的成熟和突发性光器件成本的进一步降低。 从运营商和服务提供商的角度来看,EPON系统可以带来多方面的好处,包括降低安装、

元素常用光谱特征线解析

元素常用光谱特征线

377.764 206.170 Bi 223.061 222.825 Hg 184.957* 253.652 227.658 306.772 239.356 405.393 Ca 422.673 272.164 Ho 410.384 410.109 393.367 412.716 396.847 417.323 242.4.93 256.015 Co 240.7.25 304.4.00 In 303.936 325.609 352.6.85 410.476 252.1.36 451.132 359.349 263.942 Cr 357.869 360.533 Ir 263.971 266.479 425.437 284.972 427.480 237.277 894.350 404.414 Cs 852.110 455.536 K 766.491 404.720 459.316 769.898 216.509 357.443 Cu 324.754 217.894 La 550.134 392.756 218.172 407.918 327.396 494.977 419.485 Dy 421.172 404.599 Li 670.784 274.120 394.541 323.261 394.470 279.553 308.147 Mg 385.213 202.580 Lu 335.956 328.174

283.306 244.791 319.990 Pd 247.642 276.309 340.458 Ti 364.268 363.546 365.350 399.864 491.403 231.598 Pr 495.136 504.553 513.342 Tl 276.787 237.969 258.014 377.572 214.423 355.082 Pt 265.945 248.717 283.030 U 351.463 358.488 394.382 306.471 415.400 420.185 382.856 Rb 789.023 421.556 V 318.398 318.540 794.760 437.924 345.188 265.654 Re 346.046 242.836 W 255.135 268.141 346.473 294.740 339.685 410.238 Rh 343.489 350.252 369.236 370.091 Y 407.738 412.831 414.285 372.803 266.449 Ru 349.894 379.940 Yb 398.799 267.198 346.437 206.833 202.551 Sb 217.581 212.739 Zn 213.856 206.191 231.147 307.590

光纤光栅的特性

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 ) (1Z n 为纤芯的折射 率,m ax n ?为光致折射 率微扰的最大值, ) 0(1n 为纤芯原折射 率, Λ 为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀

性,光栅区的折射率分布可表示为: )2cos()0()(max 11Z n n z n Λ ?+=π ………………………………………………… (1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程: ),,(}),,({22 220 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λ π/20 =k ,λ是自由空间的光波长。 2 22 2 1}{1???+?Φ???=Φ?Φ r r r r r t ………………………………… ………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场

光纤种类及特点

光纤类型及特点G652光纤纤芯图片 G657光纤纤芯图片

多模光纤纤芯图片 我们常用的光纤有G652B(蓝、橙、绿、棕、灰、白、红、黑)和G657A(蓝、橙、绿、棕、灰、黄、红、紫),两种光纤主要特性的区别是光纤的弯曲半径,G652B 是R30(光纤弯曲半径不可以小于30mm),G657A是R10(光纤弯曲半径不可以小于10mm)

G652光纤的排列顺序 G657光纤的排列顺序 光纤类型知识: ITU—T建议规范分类:G.651、G.652、G.653、G.654、G.655、G.656、G.657 MMF(Multi Mode Fiber多模光纤) - OM1光纤(62.5?125um) - OM2?OM3光纤(G.651光纤)其中:OM2—50?125um;OM3—新一代多模光纤。 SMF(Single Mode Fiber单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) ◆G.651:长波长多模光纤(ITU-T G.651)50/125μm梯度多模光纤工业标准。70年代末到80年代初建立。ITU-T G.651即OM2?OM3光纤或多模光纤(50?125)。

ITU-T推荐光纤中并没有OM1光纤或多模光(62.5?125),但它们在美国的使用仍非常普遍。主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。 ◆G.652:常规单模光纤(色散非位移单模光纤),截止波长最短,既可用于1550NM,又可用于1310NM。其特点在设计和制造时的波长在1310nm附近时的色散为零,1550nm波长时损耗最小,但色散最大。(1310nm窗口的衰减在0.3~0.4dB/km,色散系数在0~3.5ps/nm.km。1550nm窗口的衰减在0.19~ 0.25dB/km,色散系数在15~18ps/nm.km。)主要缺点是在1550波段色散系数较大,不适于2.5Gb/s以上的长距离应用。 G.652A?B是基本的单模光纤,G.652C?D是低水峰单模光纤。 ◆G.653:色散位移单模光纤。在1550nm波长左右的色散降至最低,从而使光损失降至最低。 ◆G..654:截止波长位移光纤。1550nm下衰耗系数最低(比G.652,G.653,G.655光纤约低15%),因此称为低衰耗光纤, 色散系数与G.652相同, 实际使用最少的一种光纤。主要应用于海底或地面长距离传输,比如400千米无转发器的线路。 ◆G.655:非零色散位移光纤(NZ-DSF: Non zero-Dispersion-Shifted Fiber)。G.653光纤在1550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。 第一代非零色散位移光纤,如PureMetro 光纤具有每千米色散等于或低于5ps?nm 的优点,从而使色散补偿更为简便。 第二代非零色散位移光纤,如PureGuide 色散达到每千米10ps?nm左右,使DWDM系统的容量提高了一倍。 ◆G.656:低斜率非零色散位移光纤。非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。

光缆基本知识介绍

光缆基本知识介绍 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、 石英光纤的分类 单模光纤 G.652A(简称B1) (简称B1) G.652C() () G.655A光纤(B4)(长途干线使用) 光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1)

125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。 ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。按结构可分入中心管式光缆与层绞式光缆两类结构中。

光纤布喇格光栅基模到辐射模耦合分析

光纤布喇格光栅基模到辐射模耦合分析 根据耦合模理论和辐射模理论对光纤布喇格光栅(FBG)外界材料折射率大于包层折射率的情况下建立了完整的模型。基于自适应Lobatto算法将基模到辐射模的耦合方程组离散化,利用四阶五级的Runge-Kutta法求解基模到辐射模的离散耦合方程组。定量地分析了FBG的透射谱随它的外界材料折射率、长度、周期以及纤芯半径的变化规律。研究结果对于指导FBG设计、封装和将其作为折射率传感器的应用都有一定意义。 标签:布喇格光纤光栅;辐射模;三层阶跃波导 光纤布喇格光栅(FBG)是一种具有优良光学特性的光纤型无源器件,在光纤通信和光纤传感领域得到了广泛的应用[1.2]。FBG的电磁特性主要表现为纤芯内正、反向传输的基模之间的耦合。随着研究的深入,进一步考虑正向基模与反向包层模或辐射模之间的模式耦合效应显得很重要。 FBG正向基模到反向基模的耦合分析,文獻[3]进行了研究;1997年T.Erdogan等人[4]对FBG纤芯的LP01模和包层模的耦合进行了详细的描述。文献[5]提出了基于FBG 包层模式的折射率传感方案,研究了光纤通过氢氟酸腐蚀后包层模式的耦合波长随外部折射率的变化规律。对于FBG基模到辐射模的耦合研究,报道较少。文献[6]在假定光纤包层半径为无限大的情况下,对FBG 基模到辐射模的耦合进行了研究,显然这与实际情况不吻合。文献[7]首次在外界材料折射率略大于包层材料折射率,且包层半径为有限大的情况下采用泰勒级数展开法研究FBG基模到辐射模的耦合特性。当FBG的基模和辐射耦合较弱时该方法计算简单且误差较小。但基模与辐射模的耦合较强时,需将泰勒级数展开至三阶以上,计算复杂且误差较大。文章在文献[7]的基础上,采用计算简单且精度高的数值积分和数值微分相结合的方法,计算FBG的基模和辐射模的耦合方程,研究了FBG外界材料折射率、长度、周期以及纤芯半径变化对FBG透射谱的影响。 1 基于三层结构的FBG辐射模研究 采用三层阶跃折射率波导结构[8]来模拟FBG,如图1所示,其中n1、n2和n3分别是纤芯、包层和外界材料的折射率,r1和r2分别是纤芯和包层的半径。当外界材料折射率大于包层折射率时,由文献[3]可知在波导中不存在离散的包层模式,只有连续的辐射模。 3.1 外界材料折射率对FBG透射谱的影响 图2为FBG透射谱随外界材料折射率(n3)的变化情况,即n3=n2、n3=1.02n2、n3=1.05n2时的FBG透射谱。所选用FBG的参数为:n1=1.451、n2=1.446、r1=4.1μm、r2=62.5μm、光栅长度L=10mm,折射率调制深度5×10-4和光栅周期Λ=530nm。由它可以看出:(1)当n3=n2时,即类似包层无限大的情况,此时

元素常用光谱特征线(绝大部分元素)

原子吸收光谱各元素常用谱线 元素常用光谱特征线 元素灵敏线次灵敏线元素灵敏线次灵敏线 Ag328.068338.289Er400.797415.110 381.033 393.702 397.360 Al309.271308.216 309.284 394.403 396153 Eu459.403 311.143 321.057 462.722 466.188 As188.990193.696 197.197 Fe248.327 208.412 248.637 252.285 302.064 Au242.795267.595 274.826 312.278 Ga287.424 294.418 403.298 417.206 B249.678249.773Gd368.413371.357 371.748 378.305 407.870 Ba553.548270.263 307.158 350.111 388.933 Ge265.158 259.254 270.963 275.459 Be234.861313.042 313.107 Hf307.288 286.637 290.441 302.053 377.764 Bi223.061206.170 222.825 227.658 306.772 Hg184.957*253.652 Ca422.673239.356 272.164 393.367 396.847 Ho410.384 405.393 410.109 412.716 417.323

Co240.7.25242.4.93 304.4.00 352.6.85 252.1.36 In303.936 256.015 325.609 410.476 451.132 Cr357.869359.349 360.533 425.437 427.480 Ir263.971 263.942 266.479 284.972 237.277 Cs852.110894.350 455.536 459.316 K766.491 404.414 404.720 769.898 Cu324.754216.509 217.894 218.172 327.396 La550.134 357.443 392.756 407.918 494.977 Dy421.172419.485 404.599 394.541 394.470 Li670.784 274.120 323.261 Mg385.213279.553 202.580 230.270 Lu335.956 308.147 328.174 331.211 356.784 Mn279.482222.183 280.106 403.307 403.449 Se196.090 203.985 206.219 207.479 Mo313.259317.035 319.400 386.411 390.296 Si 251.612 250.690 251.433 252.412 252.852 Na588.995330.232 330.299 589.592 Sm429.674 476.027 520.059 528.291 Nb334.371334.906 358.027 407.973 412.381 Sn224.605 235.443 286.333 Nd463.424 468.35 489.693 492.453 562.054 Sr460.733 242.810 256.947 293.183 407.771 Ni232.003231.096Ta271.467255.943

光纤光栅的理论基础研究

高等光学论文 光纤光栅的理论基础研究 光纤光栅的理论基础研究 光纤由于具有损耗低、带宽大、不受电磁干扰和对许多物理量具有敏感性等优点,已成为现代通信网络中的重要传输媒介和传感领域的重要器件。光纤传感以其灵敏度高、抗电磁干扰、耐腐蚀、可弯曲、体积小、可埋入工程材料及进行分布式测量等优点受到了广泛重视。 光纤光栅是近十多年来得到迅速发展的一种光纤器件,其应用是随着写入技术的不断改进而发展起来的。光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,

从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。 第一部分光纤光栅的简介 1 光纤光栅的发展 1978年,加拿大通信研究中心的Hill等发现纤芯掺锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅[1]。 1989年,美国东哈特福联合技术研究中心的Meltz等利用244nm的紫外光双光束全息曝光法成功地制成了光纤光栅[2],用两束相干光相遇时所产生的干涉条纹使光敏光纤曝光,形成折射率的周期性永久改变,从而制成光栅。这种光栅已达到实用阶段。但这种方法有其缺点:一是对光源的相干性要求较高;二是对系统的稳定性要求高。 1993年,贝尔实验室的Lemaire等用光纤载氢技术增强了光纤的光敏性[3],这种方法适用于任何掺锗的光纤。通过光纤的载氢能够将在不增加掺锗浓度的情况下,使光纤的光敏性大大提高。1993年,又提出了制作光纤Bragg光栅的相位掩模法[4,5],是到目前为止最为实用化的一种方法,仍被普遍采用,但这种方法的主要缺点是制作掩模版,一种掩模版只对应一种波段的光纤光栅。 1996年,出现了长周期光纤光栅[6~8],这种光栅的周期较长,可以在数十微米到几百微米之间。光纤Bragg光栅具有选择性反射作用,是将前向传输的纤芯模耦合到后向传输的纤芯模中去,而长周期光纤光栅则是将纤芯模耦合到包层模,而包层模在传播不远后会损耗掉,从而在透射光中形成损耗峰。 2 光纤光栅的类型 根据周期的长短,通常把周期小于1μm的光纤光栅称为短周期光纤光栅,又称为光纤Bragg光栅或反射光栅,Bragg光栅的特点是传输方向相反的纤芯模式之间发生耦合,属于反射型带通滤波器;而把周期为几十至几百μm的光纤光栅称为长周期光纤光栅,又称为透射光栅,长周期光纤光栅的特点是同向传输的纤芯基模和包层模之间的耦合,无后向反射,属于透射型带阻滤波。 光纤光栅按波导类型可分为均匀光栅和非均匀光栅。均匀光纤光栅的特点是光栅的周期和折射率调制的大小均为常数,这是最常见的一种光纤光栅,其反射谱具有对称的边模振荡,但是其边模振荡较大,在通信中容易引起码间串扰,而最典型的均匀光栅为均匀光纤Bragg光栅。而非均匀周期光纤光栅的特点是光栅的周期或

相关文档
相关文档 最新文档