文档库 最新最全的文档下载
当前位置:文档库 › 聚合物基导电复合材料的导电机理

聚合物基导电复合材料的导电机理

聚合物基导电复合材料的导电机理
聚合物基导电复合材料的导电机理

1998年 玻璃钢/复合材料 1998第5期 Fiber Reinforced Plastics/Composites №5

聚合物基导电复合材料的导电机理

熊传溪 闻荻江

(武汉工业大学材料科学与工程学院 武汉 400070) (苏州大学化学化工学院)

摘要: 本文对炭黑填充聚合物和金属填充聚合物的导电特性和影响导电性能的因素进行了综述。简要地介绍蒙特卡罗统计方法、凝胶化理论、有效电场理论以及隧道效应等

关键词: 炭黑 金属 复合材料 导电机理

长期以来,高分子材料一般作为电绝缘材料使用。一旦能赋予其导电性;可拓宽其应用领域。为此,近年来,有关导电聚合物基复合材料的研究受到普遍的重视。所谓聚合物基导电复合材料是指以聚合物为基体,加入不同导电物质后,经过“无规分布法”和“隔离分离法”等方式处理后,得到的具有导电功能的多相复合体系〔1~3〕。由于它既有导电功能,又保持了许多高分子拓料的优异特性,因而被广泛采用.本文主要分炭黑填充聚合物、金属填充聚合物以及导电机理进行文献综述。

1 炭黑填充聚合物材料

炭黑与聚合物的复合源于炭黑补强橡胶,导电性炭黑填充聚合物可赋予聚合物材料一定的导电功能。由于炭黑种类不同。炭黑颗粒大小不同、炭黑本身的聚集态结构和表面化学结构的差异以及填充的工艺条件不同,所制备的复合材料的导电率变化范围可达14~15个数量级〔4~8〕。众多的研究结果表明,炭黑粒子的尺寸越小、结构越复杂、粒子中的孔越多、炭黑粒子的比表面积越大、表面极性基团越多以及极性越强,越易形成具有优良导电性的复合材料。炭黑的结构化、比表面积和表面化学性质为其三大基本性质。炭黑的结构越高,则形成链状或葡萄状结构的炭黑粒子聚集体数目越多,越易形成空间导电网络。炭黑的比表面积除炭黑本身的粒度的大小是其重要的决定性因素外,多孔性也是重要的因素。比表面积越大,粒度一般就越小,单位质量下的粒子数目越多,形成空间导电网络的几率就越大,炭黑粒子结构上所带的活性极性基团的含量严重影响炭黑粒子的导电性能,因为这些基团能够捕捉π电子,对自由电子的迁移有很大的阻碍作用〔9〕。

典型炭黑/聚合物复合材料的精细结构的研究结果表明,导电性不仅可以由炭黑粒子聚集时产生的紧密接触面形成,而且同样可以借助电子通道而形成。但有一些研究者认为,控制复合材料电阻率的不是炭黑本身而是炭黑粒子之间的间隙〔10、11〕。实际上也有很多证据支持这一观念〔2〕,包括①电阻率依赖于炭黑种类;②电阻率依赖于温度;③复合材料的非线性电流-电压特性;④复合材料的电镜观察;⑤电阻率的压力依赖性。但这些大部分并不是最后结论,导电通道毫无疑问是起作用的。

炭黑填充聚合物导电复合材料还有以下四个特性〔12〕:(1)炭黑的表面化学处理非常重要,如果在配方和其它工艺条件相同的情况下,要保持结构的完整性,增加体系的导电性,而且在成型加工过程中的能耗较低,则需要对炭黑进行表面处理。例如,用15%炭黑填充聚氯乙烯,如果把炭黑用1.5%的硬脂酰氯处理,复合体系的熔体表观粘度比没有处理的熔体的表观粘度下降一个数量级。(2)用偶联剂对母体进行改性,会使体系的体积电阻率与炭黑用量的关系反“S”曲线发生改变,随着交联剂的用量的增加,使反“S”曲线的高台更高,低台更低;而且渗流阈值减小。(3)复合材料的体积电阻率与炭黑用量的关系对频率有很大的依赖性,高频,有利于电荷的迁移。(4)当频率一定时,复合材料介电常数随着炭黑用量的增加而显著增加。例如,聚乙烯/热裂解炭黑复合材料,当炭黑体积用量从9.1%增为33%时,介电常数可增加近1000倍。

2 金属填充聚合物

与炭黑填充聚合物的导电性复合材料相比,聚合物/金属导电性复合材料是相当年轻的,但由于金属比炭黑具有更好的导电性而格外引人注目〔13〕。在50年

63

代,Coler 〔14〕发表了一个专利,采用细小的铜颗粒在丙烯酸类聚合物上进行涂覆而形成导电体,他认为,为了使铜粒子形成导电网络,所用金属颗粒的有效直径应比塑料颗粒小1/3。这一思想使科学家们意识到一种降低金属填料用量的重要途径,即改变聚合物颗粒半经R p 与金属颗粒半径R m 之比。在以后的30年中,出现了两种在聚合物母体中填充金属颗粒的方法,即所谓的“无规分布法”和,“隔离分离法”。在无规分布方法中,依循的是渗流理论,颗粒的连续性完全取决于邻近位置的相互接触机会,种类不周的颗粒在有效尺寸和形状相同时,可以占据任何一个位置。与此相反,在隔离分布中,由于有体积的限制,形成网络的可能性增加,

其中任何金属颗粒都能占据树脂颗粒间的间隙。无规导电性复合材料适用于注塑模塑或挤出工艺,而隔离的导电性复合材料,通常采用模压工艺。

影响聚合物金属复合材料导电性的因素至少有七种:(1)金属与聚合物的颗粒尺寸比。对颗粒尺寸比在决定是否形成网络起关键作用。图1是这种关系的定量说明。

图1 颗粒尺寸比(R p /R m )与填料形成网络最低的体积分数Φ的关系

从图1可以看出,在颗粒尺寸比在比较大范围内,

形成网络的金属的临界体积分数显著下降。(2)颗粒形态。一般来讲,设计材料时应尽量降低聚合物相的比表面积,提高金属相的比表面积及连通性。而提高金属比表面的一种方法是降低金属粒子的直径,另一种方法是改变金属填料的形状。片状、针状或带状以及纤维状金属能增加比表面积和连通性。在其它条件完全相同的情况下形成连续网络的临界体积填充量将随填料长径比的增加而降低。(3)金属扩散。即使过度的应力不会降低金属颗粒的长径比,金属在聚合物中的扩散也会破坏良好的空间隔离,使隔离分布材料变为无规分布材料。当延长混合时间或在压实时压力-温度关系不相适应时,都会产生这种情况。如果加工过程中温度适当,由于模压力的增加,能够减少中间相的形成,使电阻率下降。(4)聚合物的粘度。根据

Stoke 定律,密度高的金属颗粒在流动介质中会发生沉

降,如果要得到均匀体系,金属颗粒必须处于悬浮状态,这就要求聚合物具有适宜的粘度。用预聚物溶液混合,必须使反应达到一定的程度。(5)如果金属颗粒粒径小(<5

μm ),二种组分的静电荷差别,可制成隔离复合材料。在正常的共混过程中,由于电荷作用,使每个聚合物微粒周围至少环绕着部分单层的金属。聚合物颗粒聚集时,这种高度结构化的金属变为一种集结

“单元”。(6)氧化层厚度。如果金属颗粒没有受到外部污染,在它的表面自然形成的氧化层对导电率有很大影响。由于氧化层起到了微电阻器的作用,使电子跃迁受到阻碍。(7)聚合物小球的剪切。象金属纤维增强聚合物复合材料在加工过程中增加剪切力会降低金属纤维的长径比一样,剪切力的增加也会导致聚合物小球的破坏;也会造成粒子填充聚合物复合材料的渗流阈值增加。

3 蒙特卡罗统计法预测渗流阈值

Gurland Scheer 〔15〕

等人用蒙特卡罗统计方法对导

电复合材料的临界体积分数Φc 进行了预测,取得了具有研究价值的成果。在复合材料中,填料形成连续网络的几率取决于每个颗粒与邻近颗粒接触的统计平均数和每一个颗粒的空间允许的最大接触数,处于网络形成的临界点时,

C p =P c Z

(1)

这里C p 是每个颗粒的临界接触数,C c 是形成网络的临界几率,Z 是最大可能的接触数或叫配位数。理论

与实践结果证实〔2〕

,在网络形成时,颗粒的临界接触数为1.5,其数值与颗粒的几何形状(如球形、片状、纤

维状等)无关,很明显,每个颗粒的平均接触数C 与颗粒在母体中的加入量Φ(体积分数)有关,即

C =F (Φ)

(2)在临界状态下有:

C p =F (Φc )

(3)

这里Φc 为临界体积分数。

为了计算出临界体积分数Φc ,很多科学家提出F

(Φ)的函数表达式,其中〔27〕

:

F (Φ)=Z

Φ/〔Φm /(1-Φm )-Φ〕(4)所得到的:

Φc =〔1+Z/C p )(1-Φm )/Φm 〕

-1

(5)

对球形颗粒,无规分散来讲Φc =0.35,最接近实测Φc

=0.38。式中Φm ,是填料的最大堆砌体积分数〔2〕。

纤维填充聚合物复合材料的临界体积分数也可采

7

3

用类似的方法进行预测,所不同的是只需要对纤维填料Φm 进行计算就行。Milewisk 研究了完全无规分布时填料长径比与Φm 的关系,其研究结果如图2。从图2可清楚地看出,随着长径比增加,形成连续网络所需

纤维的浓度显著下降。对于球形,形成网络的临界体积分数Φc =0.38,远小于Φm =0.637。因此,当Φm 较低,形成导电通道的Φc 相应地会更低。由于长径比与Φm 成指数关系,长的纤维只需非常低的浓度便可获得连续网络。例如,当长径比为1000∶1时,达到极限的最大填充体积Φm =0.005,其Φc 会更低。

4 凝胶化理论〔

3、16

Buche 〔3〕

将Flory 的高分子逐步缩聚反应的凝胶

化理论应用于计算电阻率-体积分数的关系。根据

Flory 的理论,当官能度为f 的单体聚合到某一程度时,任意一个单体已经进入聚合物链的几率P 为:

P =1-(1-α

)2y/(1-y )2α(6)y 是方程α(1-α

)f -2=Y (1-Y )f -2的最小根;α是当f 个官能度中已有反应时,剩余的(f -1)个官能度中的某一个再参加反应的几率

图2 无规分布时最大填充分数Φm

与填料长径比L/D 的关系

Buche 把每个填充粒子作单体,f 作为粒子的配位

数,把粒子链的形成类似于聚合物链形成;再假定反应

程度正比于Φ,则对球形颗粒有:

ρ/ρm =〔1-Φ+Φρ(ρm /ρp )〕-1

(7)ρm 和ρp 分别代表基体和导电粒子的电阻率,ρ为复合材料的电阻率。

5 有效电场理论

Brnggemen 〔3〕

应用对称有效电场理论推导出粒子

填充聚合物的电导率的公式:

Φ1(σ1-σ)(σ1+2σ)-1+Φ2(σ2-σ)(σ2+σ

)-1

(8)

这个公式的意义是球形粒子分散体系的有效电导率σ

与聚合物的电导率σ1,填充粒子电导率σ2、

聚合物的体积分数Φ1以及填料的体积分数Φ2有关。解这个方程有:

σ=〔 γ+( γ2+8σ1σ2)

1/2

〕/4(9)γ=(3Φ2-1)σ2+(3Φ1-1)σ1

(10)应用这个公式计算出来的Φc =1/3,接近实验值Φc =

0.38

6 量子力学的隧道理论

Polley 和Boonstra 〔11〕

用电子显微镜观察后证实,

作为炭黑填充橡胶的复合体系,在炭黑尚未成链且在橡胶延伸状态下亦有导电现象。因此,他们研究了电阻率与导电粒子间隙的关系,发现在粒子间隙很大时也有导电现象,这被认为是电子迁移的结果。Voet 也认为,导电不是由粒子链长所决定,而是与间隙有关。隧道效应理论认为导电不是靠导电粒子直接接触来导电,而是热振动时,电子在粒子间迁移造成的,满足如下的近似公式:

j (e )=j 0exp 〔-πX ω(│e │/e 0-1)2/2〕

(11)其中j (e )是间隙电压为e 、间隙当量电导率为j 0时的

隧道电流,ω为间隙宽度;│e │

由此方程可见,隧道电流是间隙宽度的指数函数。因而推断,隧道效应几乎仅发生在距离很接近的导电粒子之间,间隙过大的导电粒子之间无电流传导行为。

Beek 等人也认为粒子填充导电复合材料的导电是隧道效应的结果,但他们认为这是内部电场发射的特殊情况。他们认为有些材料电阻非欧姆性是因为导电粒子之间存在着绝缘体,这些粒子之间产生的强大电场所引起的发射电场产生了电流,即场致发射理论。其主要的方程式为:

J =AE n exp (-B/E )(12)式中J 为电流密度,E 为场强;A 、n 和B 为复合材料的

特性常数,如果粒子的分散度增大,n 由2降至1.25,B 从50V/cm 降至0.35V/cm ,同时A 值也增大。

7 小 结

(1)隔离分布法有利于形成导电网络,而且R p /R m

的比值越大,出现渗流效应的临界体积分数Φc 越小。

(2)提高复合体系导电填料的长径比,则其临界体积分数Φc 显著下降。体系的导电性提高。

(3)聚合物填充体系的导电机理众说纷纭,具有代表性有渗流理论和量子隧道理论。根据渗流理论,只有形成填料网络才有导电通道,隧道理论认为在有粒

(下转第42页)

6 DD138077(791010)

7 J P5*******(760724)

8 J P5*******(760724)

9 J P4*******(731026)

10 G B1211235(000000)

11 况水根,周菊兴.热固性树脂.1990,1

12 精细化工丛书.表面活性剂的合成与应用.成都:四川科学出版社出版,1987,5

13 J.W.S.Hear1e,J.Textile Inst,1953,44(T177)

14 Nippon G omu Kyokaishi,Review of Conductive Polymers,Inter.

Polym.Sci.and Tech.1984,(10):57

15 Jachyn,B.et a1.,Electrical conductivity of Polyester resins soped with carbon black,Acta Polymerica.1979,30:616

16 陈香莲,周菊兴.第九届全国玻璃钢/复合材料学术年会论文集.

1991

17 K.K ozlowski,Acta.Polym.1979,30Helf11

18 Jachyh.B.et al.,Ext.Abstr.Program-Bienn,Conf.Carbon1983, 16th,297-8(Eng)

19 J.J.Chang,et al.Phys.Rev.B.1975,12

20 T.Slupkowski,Phys.stai.Sol.(a)1994,83:329

REVIEW ON THE STATIC E L ECTRICAL CON D UCTIVIT Y OF UNSATURATE D POLYESTER RESIN

Chen Xianglian Zhou J uxing

(Department of Chemistry,Beijing Normal University)

Abstract: A review is given on the synthesis methods and mechanism of conducting static electrical unsaturated polyester resin.

K eyw ords: unsaturated polyester static electrical conductivity

收稿日期:1998-01-22

(上接第38页)

子间隙时也能导电。

参考文献

1 Reboul J.P.Malacans Ph.,Piezoconductivity in Carbon Black-Polymer Composites,Sensor Applications,Rev.Phys.Appl.,1990,25(4):347~352

2 Bhattacharya S.K.,Metal-Filled Polymers Properties and Applica2 tions,Marcel Dekker,1986,1~10

3 雀部博之.导电高分子材料.北京:科学出版社,1989

4 US4971726,Electro Conductve Resin Composition,USA,1990

5 US5098601,Conductive Thermoplastic Resin Composition,USA,1992 6 Fenocketti L.P.,EMI/RFI Shielding Plastics,Society of Plastics Engi2 neer,Brookfield,CT,1982;149~151

7 Norman R.H.,Conductive Rubber and Plastics,Appl.Sci.Essex,Eng2

land,1970;10~25

8 张福强.复合型导电高分子材料技术进展.塑料,1995,24(2):7~13 9 李雅丽.新品级导电填料研究进展.山西化工,1993(3):23~25

10 Manson J.A.and Speerling L.H.,Polymer Blend and Composited Composites,Plemum,New Y ark,1976

11 Sichel E.K.G ittleman J.I.and Shceng P.,Carbon Black-Polymer Composies:The Physics of Electrically Conducting Composites,Plastics Engineering,1982,3:53~59

12 Reboul J.P.,The Physics of Electrically Conducting Composites,Plas2 tic Eng.,1982,3:81~86

13 王宏军.化工进展.1990,(6)36

14 Coler,Manufacture of Conductive Plastics,U.S.Patent2761854,1956 15 Scheer H.and Zallen R.,J.Chem.Phys.,1970,53:3759~3764

16 汤浩,陈欣方等.复合型导电高分子材料导电机理研究及电阻率计算.高分子材料科学与工程,1996,12(2):1~6

THE E L ECTRIC CON D UCTIVIT Y MECHANISM OF

POLYMER COMPOSITES FI LL E D WITH CARB ON B LACK METAL

Xiong Chuanxi Wen Dijiang

(Wuhan University of Technology) (Suzhou University)

Abstract: The electric conductivity of polymer filed with carbon black or metal and the factors influencing this property were reviewed.And the Monte Carlo statistics method,gel theory,available electric field theory and channel effect were simply introduced.

K eyw ords: carbon black metal composite the mechanism of electric conductivity

收稿日期:1998-04-26

高强高导铜合金研究进展

高强高导铜合金研究进展 摘要:介绍了高强高导铜合金的常见应用、及基本性能、强化方式与制备方法,同时对高强高导铜合金的发展趋势进行了展望。 关键词:高强高导铜合金;强化;制备 1 引言 作为最早应用在人类历史上的金属材料之一,也是至今应用最为广泛的金属材料之一,铜及铜合金由于具有较高的强度、优良的导电性能、导热性能以及良好的耐蚀性能,被广泛的应用于电工、电力、机械制造等重要工业部门[1]。但随着科学技术以及现代工业的发展,对铜及铜合金的综合性能提出了更高的要求。大规模集成电路的引线框架、大型高速涡轮发电机的转子导线、触头材料、各种点焊、滚焊机的电极、大型电动机车的架空导线、电动工具的换向器、高压开关簧片、微波管以及宇航飞行器元器件等都要求材料在保持本身优良导电性能的同时,更具有较高的强度和硬度。热交换环境中的零器件,比如电厂锅炉内喷射式点火喷孔、气割枪喷嘴、连铸机结晶器内衬以及大推力火箭发动机燃烧室内衬等,不仅要求材料具有十分良好的电导率和热导率,而且还要求材料具有足够高的热强度。因此,人们在不断探索具有优良的综合物理性能和力学性能的功能材料——高强高导铜合金。 国外发达国家自上世纪70年代开始,对高强高导电铜合金进行了大量的研究和开发工作,针对不同的用途开发了多个系列产品,并已商业化生产,其中美国、日本、德国等是主要的生产和出口国。我国在高强高导电铜材料领域的研究起步较晚,许多研究工作仍处于试验阶段,大多数未形成产业化规模,使得我国高性能铜材料大部分依赖于进口。而我国是铜资源大国,拥有众多的铜加工企业,因此,对高性能铜材料进行研究开发,逐步建立拥有自主知识产权的材科体系,具有重要的战略意义和现实意义。 2 高强高导铜合金的应用 铜及铜合金具有多方面的、突出的优良性能。如:①高导电性、高导热性; ②抗磁性;③较高的机械性能和塑性;④较耐蚀性;⑤具有良好的合金化能力,

导电聚合物复合材料

导电聚合物复合材料综述 及其在金属管道防腐方面的应用 摘要 本文主要讨论了复合型导电聚合物材料的分类情况、研究现状和存在问题等,并对于用于金属管道防腐方面的导电聚合物涂料的研究和制备提出了初步的思路和设计方案。 关键字:导电;聚合物;复合材料 引言 聚合物材料易成型,易加工,耐腐蚀,比强度高,由于具有优良的特性,在新一代材料中的应用受到了极大的重视,但由于其本身电阻率多处于10-10-lO-20S/m之间,属于绝缘体材料,使其在电子材料领域的应用受到限制,为使其电阻率得到可观规模的下降,并可以广泛应用于能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术中,有关新型的、具有导电性能的聚合物材料研究具有深刻意义。 1.导电聚合物材料的分类 按照结构与组成,导电聚合物材料可分为两大类:一类是本身或经过掺杂处理后具有导电功能的聚合物材料,称为结构型导电高分子材料;另一类是以聚合物材料为基体添加具有高导电性能的有机、无机、金属等导电填料,经过各种手段使其在基体中分散从而形成具有导电性的复合材料,称为复合型导电聚合物材料,又称导电聚合物复合材料。 对于结构型导电聚合物材料,由于分子主链上刚性共轭双键结构和分子间强范德华力作用力,使结构型导电聚合物通常不熔化不溶解。这些特殊的物理性质导致其加工性能差,限制了其的使用和生产。相比之下,导电复合材料可在较大尺度上控制材料性能,而且成本低、品种繁多,易加工和工业化生产,已经被广泛应用于电子、电器、纺织和煤炭开采等领域。此外,导电聚合物复合材料还具有一些特殊的物理现象,如绝缘体向半导体的突变,电阻率对温度、压力、气体浓度敏感性,电流-电压非线性行为,电流噪音等,从而得到广泛的研究与应用。 导电聚合物复合材料主要是由高电导率的导电填料和绝缘性的聚合物基体组成,其中导电填料提供载流子,通过导电填料之间的相互作用来实现载流子在聚合物复合材料中的迁移。将导体或半导体无机材料分散到高分子材料基体中,

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

碳纤维增强铜基复合材料

碳纤维增强铜基复合材料 姓名: 张洪敏 学号: SX1206088 专业: 材料加工工程 导师:汪涛 日期:2012年11月15日

碳纤维增强铜基复合材料 一、碳纤维增强铜基复合材料的性质及其特点 目前国内外开展金属基复合材料占主导地位的是铝基复合材料及其制品,铜基复合材料的研究虽然不占主导地位,近年来也受到了人们的极大重视。现在有许多关于碳/铜复合材料的报道,证明它又一系列的优异性能。如:可利用其低的膨胀系数和优良的导热、导电、延展性和耐磨性制作功能结构元件;大功率晶闸管支撑电极;大规模集成电路基板;电刷、触头及其他导电滑块;耐磨自润滑轴承和其他耐磨件等。但是由于铜的熔点较高,较其他熔点低的金属来说,制造过程困难,同时由于铜基体与金属基复合材料的主要增强体润湿性差,所以影响了对其的研究和开发。随着人们对界面结构认识的提高及对改善润湿性方法的采用,使铜基复合材料的开发和应用具有广泛的前景。 碳/铜复合材料除具有铜基复合材料的共同特点之外,还具有优良的高温力学性能,根据增强体的体积,可将热膨胀系数减到接近零。这种复合材料的成本比钛低,密度比钢小,且易加工,因此碳/铜复合材料受到人们的广泛关注。 碳纤维增强铜基复合材料是以铜为基体,以碳纤维为增强体的金属基复合材料。选择高强高模、高强中模及超高模量碳纤维,以一定的含量和分布方式与铜基体组成不同性能的碳/铜复合材料。 由于碳纤维具有很高的强度和模量,负的热膨胀系数以及耐磨、耐烧蚀等性能,与具有良好导热导电性的铜基组成复合材料具有很好的导热导电性、高的比强度、比模量,很小的热膨胀系数和耐磨、耐烧蚀性,是高性能的导热、导电功能材料。 二、碳纤维增强铜基复合材料的表面改性 一束碳纤维表面直接沉积铜后,经不同温度的真空热扩散,测试热扩散前后C/Cu复合材料丝的断裂强度,测定结果表明,复合丝经900℃热扩散后强度仍未降低,说明碳纤维与铜基体之间没有发生界面反应。X射线衍射结果也表明,C/Cu界面处无反应物产生。界面成分分析表明,没有发生Cu与C的互扩散及其溶解。因此,C/Cu界面不会发生化学反应,也不会有溶解现象,只是一种已机械结合为主的物理结合。 为改善界面结合特性,有人首先在高强度碳纤维表面上电沉积镍涂层,使界面形成C-Ni互扩散结合特性,然后在镍涂层上电沉积铜。最后把经过电镀的碳纤维预制件在900℃下热压实。由此生产的材料模量不高,仅为180GPa,抗拉强度为380MPa,造成这种情况的主要原因是分层、纤维分布不均匀及基体松孔。 碳纤维与铜具有良好的化学相容性,但二者的润湿性差。目前的研究,主要集中于以下两方面来改善其润湿性。 1、在基体中加入合金元素 在基体中加入适量的合金元素,通过改变基体的化学成分以降低润湿过程的自由能,促进基体与纤维润湿。 2、对碳纤维进行表面处理 用化学镀铜法,使碳纤维与铜箔产生了良好的复合,在碳纤维表面进行化学气相沉积处理后,再浸铜,得到了碳/铜复合丝,这种方法也可促进二者之间的润湿。

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

导电复合材料

导电复合材料

导电复合材料的制备及应用浅析 摘要:随着电子工业及信息技术等产业的迅速发展,对于具有导电功能的高分子材料的需求越来越迫切。本文详细介绍了导电高分子材料的分类,介绍了导电复合材料的导电填料的种类及性质,总结了复合型导电高分子材料的制备方法和应用情况。 关键词:复合型;导电高分子材料;制备及应用; 1.前言 通常高分子材料的体积电阻率都非常高,约在1010-1020Ω·cm之间,作为电器绝缘材料使用无疑是非常优良的。但是,随着科学技术的进步,特别是电子工业、信息技术的迅速发展,对于具有导电功能的高分子材料需求愈来愈迫切。世界各国无论是学术界还是产业界都在积极地对这一新兴功能材料进行研究与开发。 关于导电高分子的定义,到目前为止国内外尚无统一的标准,一般是将体 积电阻率ρ V 小于1010Ω·cm的高分子材料统称为高分子导电材料。其中将ρ V 在106-1010Ω·cm之间的复合材料称为高分子抗静电材料;将ρ V 在100-106Ω·cm 之间的称为高分子半导电材料;将ρ V 小于100Ω·cm的称为高分子导电材料。 按照结构和制备方法的差异又可将导电高分子材料分为结构型导电高分子材料和复合型导电高分子材料两大类。结构型导电高分子材料(或称本征高分子导电材料)是指分子结构本身能导电或经过掺杂处理之后具有导电功能的共扼聚合物,如聚乙炔、聚苯胺、聚毗咯、聚噬吩、聚吠喃等。复合型导电高分子材料是指以聚合物为基体,通过加入各种导电性填料(如炭黑、金属粉末、金属片、碳纤维等),并采用物理化学方法复合制得的既具有一定导电功能又具有良好力学性能的多相复合材料。目前结构型导电高分子材料由于结构的特殊性与制备及提纯的困难,大多还处于实验室研究阶段,获得实际应用的较少,而且多数为半导体材料。复合型导电高分子材料,因加工成型与一般高分子材料基本相同,制备方便,有较强的实用性,故已较为广泛应用。本论文主要研究了复合型导电高分子材料的制备以及应用。 2.复合型导电高分子材料 2.1复合型导电高分子材料概述 复合型导电高分子材料在工业上的应用始于20世纪60年代。复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。按照复合技术分类有:导电表面膜形成法、导电填料分散复合法、导电填料层压复合法三种。 复合型导电高分子材料的分类方法有多种。根据电阻值的不同,可划分为半导电体、除静电体、导电体、高导电体。根据导电填料的不同,可划分为碳系(炭

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

铜基自润滑复合材料综述

铜基自润滑复合材料综述 前言 铜及其合金不仅具有优良的导热性、导电性、耐腐蚀性、接合性、可加工性等综合物理、力学性能,而且价格适中,所以铜及其合金作为导电、导热等功能材料在电子、电器工业、电力、仪表和军工中用途十分广泛,是不可缺少的基础材料之。但是随着科学技术的发展,纯铜和现有牌号铜合金的导电性与其强度及高温性能难以兼顾,不能全面满足航天、航空、微电子等高技术迅速发展对其综合性能的要求。相对于铜及其合金,铜基复合材料是一类具有优良综合性能的新型结构功能一体化材料.它既继承了紫铜的优良导电性,又具有高的强度和优越的耐磨性,在各种领域都有着广阔的应用前景。所以研制高强度、高电导率的铜基复合材料是发挥铜的优势、开拓铜的应用领域的一种行之有效的方法。目前,研制高强度、高导电铜基材料遇到的首要问题是材料的导电性与强度难以兼顾的矛盾,即电导率高则强度低,强度的提高是以损失电导率为代价的。传统的强化手段(如合金化)由于自身的局限性,在提高铜的强度的同时,很难兼顾铜的导电性。导电理论指出,固溶在铜基体中的原子引起的铜原子点阵畸变对电子的散射作用较第二相引起的散射作用要强得多。因此,相对于合金化而言,复合强化不会明显降低铜基体的导电性.而且由于强化相的作用还改善了基体的室温及高温性能.成为获得高强度、高导电铜基复合材料的主要强化手段。铜基复合材料具有高强度、高耐磨性、高导电性的优势,目前已经成为研究的热点。铜石墨复合材料不仅含有良好强度、硬度、导电导热性、耐蚀性好等特点的铜,而且还含有良好自润滑性、高熔点、抗熔焊性好和耐电弧烧蚀能力好的石墨,从而使得铜石墨复合材料在摩擦材料、含油轴承、电接触材料、导电材料和机械零件材料领域发挥着重大作用,特别是作为受电弓滑板材料和电刷材料,有着广泛的应用。提高铜石墨复合材料的综合性能一直以来都是科研人员研究的主要内容。 复合材料定义:复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。 复合材料分类:复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 1.铜基复合材料的制备方法: 铜基复合材料的制备方法很多,如内氧化法、粉末冶金法、复合铸造法、机械合金化法、浸渍法、燃烧合成法、溅射成型法、原位形变法等,各有其优缺点。下面对主要的制备方法及其大致发展趋势进行叙述,以期对制备工艺进行优化或为开发新的制备方法提供参考。

聚合物基纳米复合材料的近代发展

汽车发动机地技术现状及发展趋势 摘要:自汽车发明以来,为人们地出行运输带来了极大地便利,促进了人类地大发展,一百多年后地今天,相关技术不断创新和走向成熟.但随之而来地问题则是,全球石油能源紧张,空气污染.因此,先进地发动机技术将在汽车节能、环保技术开发中起着关键地决定性地作用. 关键词:汽油直喷技术

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

金属基复合材料

金属基复合材料 姓名:李英杰 班级:材控13-2 学号:201301021048

铜金属基复合材料 摘要:铜基复合材料因其具有优良的力学性能、较高的耐磨性和良好的导电导热性,被广泛应用于电子封装、电刷、电接触元件及电阻焊电极等方面。寻求既具有高导电导热性又具有良好力学性能的新型增强颗粒,对于铜基复合材料的研究和应用具有非常重要的意义。纳米金刚石(ND)具有高硬度、高耐磨性、导热性好和热膨胀系数低等优异性能,将其弥散分布到铜体中有望得到具有优良综合性能的铜基复合材料。本文主要介绍碳纤维增强铜基复合材料,其次还有不同的制备方法和加入不同的增强体的铜基材料。 关键词:碳纤维增强铜基复合材料复合电铸粉末冶金法 Cr3C2颗粒 引言:碳纤维增强铜基复合材料以其优异的导电、导热、减摩 和耐磨性能以及较低的热膨胀系数而广泛应用于航空航天、机械和电子等领域[1-5]。正是由于这种材料优异的性能以及在应用方面的优势,国内外对于碳纤维增强铜基复合材料的研究一直没有间断过。从2O世纪7O年代末开始,国内有关研究机构和高等院校就相继展开了C/Cu复合材料的试验研究,并取得了重要进展[6]。综合合金化强化、固溶强化、颗粒增强复合材料、形变强化以及时效析出强化等多种手段,对高强高导铜基材料展开研究,成功制备了一种新的Cr3C2颗粒增强Cu基复合材料,并探讨了Cr3C2/Cu复合材料的相关机理[7]。粉末冶金法是制备短碳纤/铜基复合材料的一种普遍方法。其中,冷压烧结粉末冶金法只适合制备碳纤维含量较低的碳一铜复合材料[8]。复合电铸工艺制备颗粒增强铜基复合材料,通过工艺研究、优化,成功制备了颗粒分布均匀,含量可控,材料组织致密、完整的Cu/SiC Cu/Al2O3复合材料。通过对力学性能、物理性能及摩擦磨损性能的研究考察,确定了复合电铸工艺制备的不同粒径颗粒增强铜基复合材料的性能特点、强化机制,为材料的实际应用提供理论参考[9]。 一、简述不同类型铜金属基复合材料 1.复合电铸制备颗粒增强铜基复合材料 随着现代航空航天、电子技术、汽车、机械工业的快速发展,对铜的使用提出了更多更高的要求,即在保证铜良好的导电、导热性能的基础上,要求铜具有高强度,尤其是良好的高温力学性能,低的热膨胀系数和良好的摩擦磨损性能。颗粒

高强高导铜合金

近年来,熔体过热处理理论和工艺的发展为改善材料性能提供了一种全新的思路和方法。“熔体过热高强高导铜合金制备新工艺的研发”是一项基于该技术的应用研究项目,在当前合金化及“固溶+时效”热处理工艺基础上,引入熔体过热处理新工艺进行高强高导型Cu-Cr-Zr系、高强中导型Cu-Ni-Si系等高强高导铜合金生产线的研制与开发。 制得的高性能铜合金在保持优异的导电性能的同时,具有高强度、高耐磨性以及良好塑性等多样综合性能,是一类具有优良物理和力学性能的功能材料。可广泛应用于国民经济的各个部门,重要的应用领域有:集成电路引线框架材料、高速电力机车架空导线、点接触头和焊接材料、发电机组、锅炉衬料等,市场前景广阔。 与国内外普遍采用的合金化及“固溶+时效”热处理制备工艺方法相比,本项目从熔体热历史角度出发,制备过程采用熔体过热工序改善合金熔体结构,并结合水冷连续铸造快速凝固,进一步提高铜合金的高强、高导等多样综合性能,其主要创新性如下: (1)开发了熔体过热制备高性能铜合金的新工艺,该工艺流程简单,投资低见效好。其优点主要有:①熔体过热处理增大Zr、Cr、Ni等在铜液中的饱和固溶度,可进一步提高合金元素固溶强化和沉淀强化效果。②熔体过热处理对合金的凝固组织和性能有着重要影响,经过过热处理组织变得更加均匀,晶粒大大细化,冶金质量和综合力学性能可得到不同程度的提高。③熔体过热处理的最大优点是在处理过程中不需要加入变质剂,从根本上防止添加剂元素混入铜合金是所产生的副作用,尤其是降低其导电性能。 (2)由于采用了快速水冷连续铸造,熔体的凝固是在极大过冷度下完成,从而使合金中固溶度较低的合金元素有效的保留下来,同时合金铸锭的组织较致密。由于结晶一直保持顺序结晶,具有明显的方向性,消除了缩孔、缩松等缺陷。由于合金铸锭较长,可根据加工车间工艺要求的需要,进行合理锯切,从而减少了切头、切尾的消耗。与铁模相比,该工艺生产效率高,劳动条件好。 部分项目内容现已通过小试阶段,小试制成的Cu-Cr系铜合金经过熔体过热处理后,与未处理前相比其抗拉强度提高近20%以上,导电性能IACS及塑性均有一定上升,其性能及性价比较国内外同类产品具有一定优势。该项目的成功实施将有效弥补我司在铜合金高端市场上的不足,开拓并掌握市场先机。 一、项目的国内外研究现状和发展趋势 为阐明项目背景和起源,其实际意义及创新点所在,有必要对其相关的研究现状及发展趋势做简要分析如下:

聚合物基纳米复合材料的近代发展

聚合物基纳米无机复合材料的应用与发展 摘要:聚合物基纳米无机复合材料是一种性能优异的新型复合材料,已成为材料科学的新热点。本文概述了聚合物基纳米无机复合材料的发展前景及发展过程中应注意的问题。及相应的解决方法。 关键词:聚合物;纳米;无机物;复合材料 1.纳米复合材料的概念、特性、背景 1.1纳米复合材料的概念 纳米复合材料是指一种或多种组分以纳米量级的微粒,即接近分子水平的微粒复合于基质中构成的一类新型复合材料。因其分散相尺寸介于宏观与微观之间的过渡区域,从而给材料的物理和化学性质带来特殊的变化,纳米复合材料正日益受到关注,被誉为“21世纪最有前途的材料”,其研究的种类已涉及无机物、有机物及非晶态材料等。聚合物基纳米无机复合材料因其综合了有机物和无机物的各自优点,且能在力学、热学、光学、电磁学与生物学等方面赋予材料许多优异的性能,正成为材料科学研究的热点之一[1]。 1.2纳米复合材料的特性 当材料粒子尺寸进入纳米量级时,因其自身具有小尺寸效应、表面效应、量子尺寸效应,以及纳米固体粒子中大量缺陷的存在,使得聚合物基纳米无机复合材料具有与众不同的特点[2]。纳米复合材料是继单组分材料、复合材料和梯度功能材料之后的第四代材料。 1.3纳米复合材料的背景 纳米复合材料的出现先于概念的形成。早在上世纪年代末, 实际上就已出现了聚合物心纳米复合材料, 只是人们还未认识到其特殊的性能与实际应用意义〕。纳米复合材料是年代初〕提出的, 与单一相组成的纳米结晶材料和纳米相材料不同, 它是由两种或两种以上的吉布斯固相至少在一个方向以纳米级复合而成的复合材料, 这些固相可以是非晶质、半晶质、晶质或者兼而有之, 而且可以是无机、有机或二者都有。纳米相与其它相间通过化学共价键、赘合键与物理氢键等作用在纳米水平上复合, 即相分离尺寸不得超过纳米数量级。因而, 它与具有较大微相尺寸的传统的复合材料在结构和性能上有明显的区别, 近些年已成为聚合物化学和物理、物理化学和材料科学等多门学科交叉的前沿领域, 受到各国科学家和政府的重视。 2.纳米无机复合材料相关应用与发展 材料性能与组织结构有密切关系。与其他材料相比,纳米复合材料的物相之间有更加明显并呈规律变化的几何排列与空间结构属性,因此聚合物基纳米复合材料具有灵活的结构可设计性及优于一般传统复合材料的特性,在许多领域有着广泛的应用前景。 2.1吸波材料 根据目前吸波材料的发展现状,一种类型的材料很难满足日益提高的隐身技术提出的“薄、宽、轻、强”的综合要求[3 ] ,采用质量轻的有机聚合物作基体,无机吸收剂作客体进行多元复合制备吸波材料就成了必然趋势。另外,具有共轭电子体系结构,通过掺杂而成的导电聚合物(如聚乙炔、聚苯胺、聚苯硫醚、聚吡咯、聚噻吩) 本身就有较好的微波吸收性能,一些聚合物还具有红外活性或红外特征吸收带[4 ,5 ] ,利于红外吸波。聚合物基纳米无机复合材料可以方便地调节复合物的电磁参数,以达到阻抗匹配的要求,且价廉。美国F117 飞机蒙皮上的隐身材料就含有多种超微粒子,它们对不同频段的电磁波有强烈的吸收能力[6] 。

聚合物基复合材料精彩试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

相关文档