文档库 最新最全的文档下载
当前位置:文档库 › 什么是定轴性和进动性

什么是定轴性和进动性

什么是定轴性和进动性
什么是定轴性和进动性

陀螺特性——定轴性陀螺在旋转的过程中不会倒下,要归功于陀螺的第一个特性,叫做定轴性.陀螺在转动时,如果作用在它上面的外力的力矩为零,由角动量定理可知,这时陀螺对于支点的角动量守恒,在运动中角动量的方向始终保持不变.陀螺上的每一个点都在一个跟旋转轴垂直的平面里沿着一个圆周转动.按照惯性定律,每一个点随时都极力想使自己沿着圆周的一条切线离开圆周,可是所有的切线都与圆周本身在同一个平面内.因此,每一个点在运动的时候,都极力使自己始终停留在跟旋转轴垂直的那个平面上.角动量守恒在生活中是随处可见的.花样滑冰运动员把手收拢或者抱胸,她身体的一部分到转轴的距离变小,自转角速度变大,运动员就飞速旋转起来了.

陀螺特性——进动性陀螺的第二个特性是进动性.当陀螺高速旋转时,陀螺的中心轴像是绕着一个竖立的杆子在转圈,这种高速自转物体的轴在空间转动的现象叫做进动.这是因为当陀螺受到对于支点的重力的力矩作用时,根据角动量定理,角动量的矢量方向便随着陀螺的转动,描出一个圆锥体.

其实,由于太阳和月球施加的潮汐力,我们的地球一直在不断地缓慢地进动着,长期的进动就成为岁差.在我们的日常生活中,也可以常常看到进动,例如自行车在行驶过程中,如果它稍有歪斜,只要把车头向另一方稍微转动一下,车子就平衡了.这是重力对于轮胎支点形成了进动力矩,促使车子恢复了平衡.

陀螺的特性——章动性陀螺的第三个特点是章动性.陀螺不可能永无止境地旋转下去,当陀螺由于摩擦而开始慢慢下落时,所做的运动就是章动.章动是指刚体做进动时,绕自转轴的角动量的倾角在两个角度之间变化,拉丁语的意思就是点头.陀螺在做进动的同时,它的顶部还在做着“点头”运动.

章动在天体中是一个非常常见的运动,地球也存在着章动,地球“点一次头”要花18.6年.我国古代历法将19年称为一章,因此这种运动就被称为章动.

转轴的可靠性设计与分析

% 转轴的可靠性设计与分析 disp ' ****** 转轴的可靠性设计*******' M=input(' 输入转轴危险截面上的弯矩(Nmm) M = '); T=input(' 输入转轴危险截面上的扭矩(Nmm) T = '); Kmsa=32*M/pi; fprintf (1,' 对称循环弯曲应力幅系数Kmsa = %3.3f \n',Kmsa) Kcsa=0.08*Kmsa; fprintf (1,' 弯曲应力幅标准离差系数Kcsa = %3.3f \n',Kcsa) Kmsm=16*sqrt(3)*T/pi; fprintf(' 稳定扭转平均应力系数Kmsm = %3.3f \n',Kmsm) Kcsm=0.08*Kmsm; fprintf(' 扭转平均应力标准离差系数Kcsm = %3.3f \n',Kcsm) rb=Kmsa/Kmsm; fprintf(' 应力幅与平均应力的比值rb = %3.3f \n',rb) Kmrb=sqrt(1+1/rb^2); fprintf(' 应力比均值系数Kmrb = %3.3f \n',Kmrb) Kmsf=Kmsa*sqrt(1+1/rb^2); fprintf(' 复合疲劳平均应力系数Kmsf = %3.3f \n',Kmsf) Kcsf=Kcsa*sqrt(1+1/rb^2); fprintf(' 复合疲劳平均应力标准离差系数Kcsf = %3.3f \n',Kcsf) Cb=input(' 输入转轴材料的弯曲强度极限(MPa) Cb = '); Csjdc=0.43*Cb; % 袖珍机械设计师手册(第2版),P17,表1-18,结构钢 fprintf(' 试件的对称循环弯曲疲劳极限(MPa) Csjbc = %3.3f \n',Csjdc) B=input(' 输入转轴的表面质量系数 B = '); Ec=input(' 输入转轴的弯曲绝对尺寸系数Ec = '); Et=input(' 输入转轴的扭转绝对尺寸系数Et = '); E=(Ec+Et)/2; fprintf(' 转轴的弯曲绝对尺寸系数 E = %3.3f \n',E) Kc=input(' 输入转轴的弯曲疲劳应力集中系数Kc = '); Kt=input(' 输入转轴的扭转疲劳应力集中系数Kt = '); Q=input(' 输入转轴的敏感系数Q = '); Kf=1+Q*(Kc*Kt-1); fprintf(' 转轴的复合疲劳应力集中系数Kf = %3.3f \n',Kf) Cdc=Csjdc*B*E/Kf; fprintf(' 转轴的对称循环弯曲疲劳极限(MPa) Cdc = %3.3f \n',Cdc) % 复合疲劳应力下强度的均值Sj,按照应力线与最佳拟合均值线的交点求出 Sj=sqrt(Cdc^2*Cb^2*(1+rb^2)/(Cb^2*rb^2+Cdc^2)); fprintf(' 转轴强度的均值(MPa) Sj = %3.3f \n',Sj) Cs=0.08*Sj; fprintf(' 转轴强度的标准离差(MPa) Cs = %3.6f \n',Cs) R=input(' 输入可靠度R = '); % 根据失效概率F求联结系数z时,用累积分布反函数z=norminv(F,mu,sigma) % 根据联结系数z求失效概率F时,用累积分布函数F=normcdf(z,mu,sigma) % 根据联结系数z求失效频数f时,用概率密度函数f=normpdf(z,mu,sigma)

电子陀螺仪工作原理【详述】

电子陀螺仪工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 电子陀螺仪其实就是机械式陀螺仪的进化,机械式是利用真实的陀螺等机械制作的,而电子是利用芯片来实现陀螺仪的功能,其工作原理类似(电子只不过是模拟出来的而已)。 所有陀螺仪的工作原理是一样的:广泛应用于航海、航空和航天领域,种类很多,其中陀螺罗盘就是代替罗盘的装置。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 最基础的陀螺仪的结构:基础的陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内; 历史: 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转

动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

陀螺仪传感器分类及原理

【悠牛仪器仪表网】陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。用来感测和维持方向的装置,它是航空、航海及太空导航系统中判断方位的主要依据,并且在汽车安全,航模,望远镜等领域广泛应用。 主要检测空间某些相位的倾角变化、位置变化,主要用于空间物理领域,特别在航空、航海方面有较多的用途,如:飞机上的陀螺仪,当飞机在做360°翻转的时候,陀螺仪将会保持原始的基准状态不变,从而让驾驶员找到本飞机在空间状态的相位变化,也就是:当时飞机处在什么相位。 陀螺仪传感器原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。陀螺仪传感器应用领域以及发展方向现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。 传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。 由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。 和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 陀螺仪传感器分类 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有: 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。 根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型: 积分陀螺仪(它使用的反作用力矩是阻尼力矩);速率陀螺仪(它使用的反作力矩是弹性力矩); 无约束陀螺(它仅有惯性反作用力矩); 现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。 三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 直流电流传感器 https://www.wendangku.net/doc/c08510875.html,/subject/zhiliudianliuchuanganqi.html

MEMS陀螺仪工作原理

陀螺仪是用来测量角速率的器件,在加速度功能基础上,可以进一步发展,构建陀螺仪。 陀螺仪的内部原理是这样的:对固定指施加电压,并交替改变电压,让一个质量块做振荡式来回运动,当旋转时,会产生科里奥利加速度,此时就可以对其进行测量;这有点类似于加速度计,解码方法大致相同,都会用到放大器。 角速率由科氏加速度测量结果决定 - 科氏加速度 = 2 × (w ×质量块速度) - w是施加的角速率(w = 2 πf) 通过14 kHz共振结构施加的速度(周期性运动)快速耦合到加速度计框架 - 科氏加速度与谐振器具有相同的频率和相位,因此可以抵消低速外部振动 该机械系统的结构与加速度计相似(微加工多晶硅) 信号调理(电压转换偏移)采用与加速度计类似的技术 施加变化的电压来回移动器件,此时器件只有水平运动没有垂直运动。如果施加旋转,可以看到器件会上下移动,外部指将感知该运动,从而就能拾取到与旋转相关的信号。

上面的动画,只是抽象展示了陀螺仪的工作原理,而真实的陀螺仪内部构造是下面这个样子。

PS:陀螺仪可以三个一起设计,分别对应于所谓滚动、俯仰和偏航。 任何了解航空器的人都知道,俯仰是指航空器的上下方向,偏航是指左右方向,滚动是指向左或向右翻滚。要正确控制任何类型的航空器或导弹,都需要知道这三个参数,这就会用到陀螺仪。它们还常常用于汽车导航,当汽车进入隧道而失去GPS信号时,这些器件会记录您的行踪。 无人机在飞行作业时,获取的无人机影像通常会携带配套的POS数据。从而在处理中可以更加方便的处理影像。而POS数据主要包括GPS数据和

IMU数据,即倾斜摄影测量中的外方位元素:(纬度、经度、高程、航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa))。 GPS数据一般用X、Y、Z表示,代表了飞机在飞行中曝光点时刻的地理位置。 飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。IMU提供飞行器在空间姿态的传感器原始数据,一般由陀螺仪传感器/加速度传感器/电子罗盘提供飞行器9DOF数据。 IMU中的传感器用来感知飞行器在空中的姿态和运动状态,这有个专有名词叫做运动感测追踪,英文Motion Tracking。运动感测技术主要有四种基础运动传感器,下面分别说明其进行运动感测追踪的原理。 微机电系统(MEMS) IMU中使用的传感器基本上都是微机电系统(MEMS),是半导体工业中非常重要的一个分支。 微机电系统(MEMS, Micro-Electro-Mechanical System)是一种先进的制造技术平台。微机电系统是微米大小的机械系统,是以半导体制造技术为基础发展起来的。 我们的四轴飞行器上用到的加速度陀螺仪MPU6050,电子罗盘 HMC5883L都是微机电系统,属于传感MEMS分支。传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。 加速器(G-sensors) 加速器可用来感测线性加速度与倾斜角度,单一或多轴加速器可感应结合线性与重力加速度的幅度与方向。含加速器的产品,可提供有限的运动感测功能。 加速度计的低频特性好,可以测量低速的静态加速度。在我们的飞行器上,就是对重力加速度g(也就是前面说的静态加速度)的测量和分析,其它瞬间加速度可以忽略。记住这一点对姿态解算融合理解非常重要。 当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值。加速度计在自由落体时,其输出为0。为什么会这样呢?这里涉及到加速度计的设计原理:加速度计测量加速度是通过比力来测量,而不是通过加速度。

摆式陀螺原理

第二章陀螺全站仪 §2.1 陀螺仪及其基本特性(龚建) 一、陀螺仪及其分类 陀螺仪 凡是绕定点高速旋转的物体,或绕自身轴高速旋转的任意刚体,都称为陀螺。如图2-1所示,设刚体上有一等效的方向支点O。以O为原点,作固定在刚体上的动坐标系O-XYZ。刚体绕此支点转动的角速度在动坐标轴上的分量分别为ωx、ωy、ωz,若能满足以下条件: ωz>>ωx ωz>>ωy ωz≈Const (2-1) OZ 为进动运动。 转的地球,而近代物理中广义的定义是:凡是能测量物体相对惯性空间作旋转的装置都叫陀

螺仪,如激光陀螺仪。 陀螺仪的自由度 陀螺仪基本上是一个匀质的转子,其质量大部分集中在轮缘,它能围绕其质量对称轴高速旋转。将转子安置在特殊的悬挂装置上,没有外力作用,使其具有两个或三个回转轴的整个装置,称为具有两个或三个自由度的陀螺仪。 自由陀螺仪的结构如图2-2所示。转子1支撑在内平衡环2上可绕其对称轴作高速度转动,这个轴称为陀螺仪的自转轴,即陀螺主轴,或称X轴。由于转子只能围绕本身轴旋转,因此它具有一个自由度。 转子支撑在内平衡环上,内平衡环又支撑在外平衡环3上,转子和内平衡环一起可绕陀螺仪的内环轴转动,这个轴一般称为Y轴。由于转子既绕本身轴旋转,又可绕内环轴旋转,因此他具有两个自由度。 转子支撑在内平衡环上,内平衡环又支撑在外平衡环上,外平衡环又支撑在底座上,转子和内平衡环、外平衡环一起绕陀螺仪的外环轴转动,这个轴一般称为Z轴。此时由于转子既可绕本身轴旋转,又可绕内、外环轴旋转,因此它具有三个自由度。一般把由内环和外环构成的支架称为万向支架。 如果把陀螺仪的重心与陀螺仪的中心相重合,这种陀螺仪称为三自由度平衡陀螺仪。如果把三自由度陀螺仪限制Y轴或Z轴其中一个自由度,这种陀螺仪称为二自由度陀螺仪。如果把陀螺仪的外环轴下移,偏离陀螺仪的中心,这种陀螺仪称为下悬式陀螺仪或摆式陀螺仪。 摆式陀螺仪如图2-3所示,即在陀螺仪轴上加上悬重G,则重心由陀螺仪中心O下移到

进动和陀螺

进动仪(陀螺仪) 【实验目的】 演示刚体的进动和陀螺的定轴性这一物理现象。 【实验原理】 当物体(如陀螺)不转动时,由于受到重力矩的作用,便倾倒下来,但当陀螺急速旋转时,尽管同样也受到重力矩的作用,却不会到下来。这时陀螺在绕本身对称轴线转动的同时,对称轴还将绕竖直轴回转,这种回转现象称为进动。进动角速度为 式上中,为在 时间内,该自转轴相应的角位移。由此可知,进动角速度与外力矩成正比,和进动仪自转的角动量成反比,因此,在进动仪自转角速度很大时,进动角速度就较小,反之,在自转角速度变小时,进动角速度就增大。 【实验操作与现象】 1.刚体的定向转动将进动仪保持水平,转动自转轮,达到一定速度时,操作者旋转或移动演示仪下部转盘时,自转方向保持不变。 2.刚体的进动把进动仪调节成不水平状态,略有倾斜,转动自转轮,则发现公转轴开始作进动。 【注意事项】 操作时,注意进动仪在开始和结束进动时,防止自转轮掉下摔坏仪器和伤害操作者。

【实验拓展】 试举出陀螺仪在实际工程应用中的一个实例。 陀螺仪可算是非常复杂的物体,因为它们以独特的方式运动,甚至像在抵抗重力。正是这些特殊属性使其在各个方面(包括自行车和宇宙飞船上的先进导航系统)都有极为重要的用途。一般的飞机要用约10多个陀螺仪,遍布在罗盘和自动驾驶仪等各个地方。俄罗斯米尔空间站(Russian Mir space station)曾使用11个陀螺仪保持其方向对准太阳。哈勃太空望远镜也安装了大量导航陀螺仪。同样,陀螺效应对溜溜球和飞盘等玩具也至关重要。 在本文中,我们将了解陀螺仪的应用为何如此广泛,以及它们的奇妙运动的成因! 如果您玩过陀螺玩具,就知道它能表演各种各样有趣的绝技。陀螺能在细线或手指上保持平衡;能以非常奇妙的方式抵制自转轴运动;但最有趣的陀螺效应还数进动。这是陀螺仪抵抗重力的表现。 根据这一原理,回转的自行车轮能够像下图所示的那样悬在空中: 陀螺仪“抵抗重力”的能力令人莫名惊诧! 它是怎么做到的? 这种神秘的效应就是“进动”。一般情况下,进动的发生过程是:如果有一个陀螺仪正在旋转,而您施力转动它的自转轴,则陀螺仪反而会围绕与力轴成直角的轴转动,如下列图形所示:

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

陀螺的力学原理及其生活中的应用

陀螺的力学原理及其生活中的应用学号:05110202 姓名: 史泽清 一(摘要:陀螺与地面只有一个接触点,但是却不会翻倒,就是因为其在绕轴不停旋转,本文运用理论力学中的动力学知识来对其进行分析。此外陀螺力学在生活中有各种各样的应用。在我们开得车,骑的自行车,乘坐的飞机中都有着广泛的应用。相信将来陀螺效应在科学研究上产生更重要更深远的影响。 二(关键词:陀螺理论力学进动翻转不倒 三(正文: 在准备写这篇论文,正好看到了战斗陀螺这部动画片,然后联系到了我们小时候玩过的陀螺:当我们用力抽打陀螺时,陀螺非但不会倒下,反而会越抽越稳,我就意识到其中有非常有趣的力学知识,于是写下了这篇文章。 1 陀螺的力学特点 1.1 陀螺的定义:绕质量对称轴高速旋转的定点运动刚体 结构特征:有质量对称轴. 运动特征:绕质量轴高速转动(角速度大小为常量)。 陀螺的动力学特征:陀螺力矩效应,进动性,定向性。 进动性是陀螺仪在外力矩的作用下的运动特征,然而陀螺仪是一个定点转动的刚体,因而,它的运动规律必定满足牛顿第二定律对于惯性原点的转动方程式,即定点转动刚体的动量矩定理.

进动本为物理学名词,一个自转的物体受外力作用导致其自转轴绕某一中心旋转,这种现象称为进动。进动(precession)是自转物体之自转轴又绕著另一轴旋转的现象,又可称作旋进。 下面就右图就进动分析: 陀螺绕起对称轴以角速度w高速旋转,如右图 对固定点O,它的动量矩L近似 (未计及进动部分的动量矩) 表示为 0L,J,r 0r式中J为陀螺绕其对称轴Z0的转动惯量,为沿 陀螺对称轴线的单位矢量其指向与陀螺旋转方向间满足右螺旋 法则作用在陀螺上的力对O点的力矩只有重力的力矩M0(P),

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

二自由度陀螺与三自由度陀螺的区别

二自由度陀螺仪的转子支撑在一个框架内,没有外框架,因而转子自转有一个进动自由度,即少了垂直于内框架轴和自转轴方向的转动自由度。因此二自由度陀螺仪与三自由度陀螺仪的特性也有所不同。 进动性是三自由度陀螺仪的基本特征之一,当绕内框轴作用外力矩时,将使高速旋转的转子自转轴产生绕外框架轴的进动,而绕外框架轴作用外力矩是,将使转子轴产生绕内框架轴的进动。 定轴性是三自由度陀螺仪的另一基本特征。无论基座绕陀螺仪自转轴转动,还是绕内框架轴或外框架轴方向转动,都不会直接带动陀螺转子一起转动(指转子自转之外的转动)。由内、外框架所组成的框架装置,将基座的转动与陀螺转子隔离开来。这样,如果陀螺仪自转轴稳定在惯性空间的某个方位上,当基座转动时,它仍然稳定在原来的方位上。 对于二自由度陀螺仪,当基座绕陀螺仪自转轴或内框架轴方向转动时,仍然不会带动转子一起转动,即内框架仍然起隔离运动的作用。但是,当基座绕陀螺仪缺少自由度的X轴方向以角速度ωX转动时,由于陀螺仪绕该轴没有转动自由度,所以基座转动时,就通过内框架轴上的一对支承带动陀螺转子一起转动。但陀螺仪自转轴仍尽力保持其原来的空间方位不变。因此,基座转动时,内框架轴上的一对支承就有推力F作用在内框架轴的两端,而形成作用在陀螺仪上的推力矩mx,其方向垂直于动量矩H,并沿X轴正向。由于陀螺仪绕内框架轴有转动的自由度,所以这个推力矩就使陀螺仪产生绕内框架轴的进动,进动角速度β指向内框架轴y的正向,使转子轴趋向与x轴重合。 因此,当基座绕陀螺仪缺少自由度的方向转动时,将强迫陀螺仪跟随基座转动,同时陀螺仪转子轴绕内框架轴进动。结果使转子轴趋向与基座转动角速度的方向重合。即二自由度陀螺仪具有敏感绕其缺少转动自由度方向旋转角速度的特性。 二自由度陀螺仪受到沿内框架轴向外力矩作用时,转子轴绕内框轴运动。 沿内框架轴向作用力矩时转子轴的运动。设沿内框架轴y的正向有外力矩My作用,则二自由度陀螺仪的转子轴将力图以角速度My/H绕x轴的负向进动,由于陀螺转子轴绕x轴方向不能转动,这个进动是不可能实现的。但其进动趋势仍然存在,并对内框架轴两端的支承施加压力,这样,支承就产生约束反力F作用在内框架轴两端,而形成作用在陀螺仪上的约束反力矩mx,其方向垂直于动量矩H并沿x轴的正向。由于转子轴绕内框架轴存在转动自由度,所以在这个约束反力矩mx的作用下,陀螺仪转子轴就绕内框架轴以β德角速度沿y轴正向进动。简单地说,如果陀螺绕x轴方向不能转动,那么在绕内框架轴向德外力矩作用下,陀螺仪的转子轴也绕内框架轴转动。

陀螺仪(gyroscope)原理

内容 MID中的传感器 1 加速计 2 陀螺仪 3 地磁传感器 4

MID中的传感器——已商用的传感器 ◆触摸屏 ◆摄像头 ◆麦克风(ST:MEMS microphones……) ◆光线传感器 ◆温度传感器 ◆近距离传感器 ◆压力传感器(ALPS:MEMS气压传感器……) ◆陀螺仪(MEMS) ◆加速度传感器(MEMS) ◆地磁传感器(MEMS)

集成电路(Integrated Circuit,IC) 把电子元件/电路/电路系统集成到硅片(或其它半导体材料)上。 微机械(Micro-Mechanics) 把机械元件/机械结构集成到硅片(或其它半导体材料)上。 微机电系统(Micro Electro Mechanical Systems,MEMS)MEMS = 集成电路+ 微机械

陀螺仪(Gyroscope) ?测量角速度 ?可用于相机防抖、视频游戏动作感应、汽车电子稳定控制系统(防滑)加速度传感器(Accelerometer) ?测量线加速度 ?可用于运动检测、振动检测、撞击检测、倾斜和倾角检测 地磁传感器(Geomagnetic sensor) ?测量磁场强度 ?可用于电子罗盘、GPS导航

陀螺仪+加速计+地磁传感器 ?电子稳像(EIS: Electronic Image Stabilization)?光学稳像(OIS: Optical Image Stabilization)?“零触控”手势用户接口 ?行人导航器 ?运动感测游戏 ?现实增强

1、陀螺仪(角速度传感器)厂商: 欧美:ADI、ST、VTI、Invensense、sensordynamics、sensonor 日本:EPSON、Panasonic、MuRata、konix 、Fujitsu、konix、SSS 国产:深迪 2、加速度传感器(G-sensor)厂商: 欧美:ADI、Freescale、ST、VTI、Invensense、Sensordynamics、Silicon Designs 日本:konix、Bosch、MSI、Panasonic、北陆电气 国产:MEMSIC(总部在美国) 3、地磁传感器(电子罗盘)厂商: 欧美:ADI、Honeywell 日本:aichi、alps、AsahiKASEI、Yamaha 国产:MEMSIC(总部在美国)

图说陀螺舵原理、陀螺的进动性

刚才在一个F22的视频贴里,很多朋友对AIM-9M在发射中的蛇形轨迹有疑问,我去搜索9M 所用的陀螺舵的原理图却发现网上没有。(因为文字叙述比较费解,效果肯定不好) 在自己画完这个图解之后,考虑到那帖子可能已经沉底,我就新开个帖子进行说明了。字难 看啊,拍砖别打脸 这个知识是从航模相关的地方学到的(后来花钱多不玩了,汗...)。 很多朋友可能觉得导弹有飞行轨迹控制就可以了,但导弹的滚转对控制和寻的都有影响。对于控制系统采用直角坐标系的AIM-9M来说,以及对所有采用直角坐标系、两对相互垂直的控制面的导弹譬如霹雳xx来说,滚转都是需要摈除的。它们都和最早的响尾蛇导弹一样用了陀螺舵来抑制滚转。陀螺舵是个纯粹机械的设备,滚转抑制是独立于导弹制导控制的。而旋转弹体的导弹譬如拉姆(它的名字RAM就是那个意思),采用极坐标控制,需要一对控制面,每一圈滚转,气动面动作两次。 AIM-9M沿袭了梯形尾翼和陀螺舵,而且陀螺舵轴倾斜,它在飞行中靠这个陀螺舵处在一个不断地抵抗自己在导弹轴向的滚转、在纵向和航向阻尼俯仰和偏转的过程。 陀螺是一圆金属饼,上有锯齿,锯齿垂直的一面迎向前面承接气流导致其绕轴高速旋转。陀螺效应也就是人们常说的陀螺稳定,其原因有进动性和定轴性两个。 进动性是--陀螺自转时,如若陀螺受到一个在某作用平面内的力,给予主轴这力矩,主轴的运动方向并不发生在力的作用平面内,而是与力垂直,主轴的运动平面与力的作用平面垂直。依照这个情况,一旦导弹滚转,陀螺舵的运动将导致其突出尾翼翼面,成为一个气动面而带来抑制滚转的控制力。在连续的滚转倾向和滚转抑制中,导弹可以基本安定。这对于不能塞进姿态传感器进行伺服控制的格斗弹来说是个简洁明快的处理方法。 然后如果把轴做成一个夹角,让它在进动时向外撇,它产生的气动效果就不光抑制滚转,还

车辆前轴的可靠性设计新方法

车辆前轴的可靠性设计新方法 将可靠性优化设计理论与鞍点逼近理论相结合,讨论了车辆前轴的可靠性设计的问题,提出了车辆前轴可靠性的计算方法。在基本随机参数概率分布已知的前提下,应用鞍点逼近技术,通过计算机程序可以实现机械零部件的可靠性设计,迅速准确地得到机械零部件可靠性设计信息。在基本随机参数概率分布已知的前提下,应用鞍点逼近技术,通过计算机程序可以实现了整体法兰的可靠性设计,迅速准确地得到法兰的可靠性设计信息。 标签:可靠性优化设计;鞍点逼近技术;车辆前轴 1 前言 众所周知,可靠性设计的核心是预测机械零部件在规定的工作条件下的可靠性或是失效概率。这就需要知道其概率密度函数或联合概率密度函数,但是在工程实际中是很难有足够的资料来确定它们的。即使是近似地指定概率分布,在大多数情况下也很难进行积分计算而获得可靠度或失效概率。为了解决这个问题,对机械结构的可靠性进行准确的评估,很多专家和学者致力于这方面的研究,至今已出现的计算显性功能函数可靠度的方法主要有:一阶可靠性方法(FORM)、二阶可靠性方法(SORM)、高次高阶矩法、Monte-Carlo法。这些方法在机械结构的可靠性设计方面起发挥了巨大的作用,机械结构可靠性工程也日趋完善,但是国内外专家仍在不断的寻求更高效、计算精度更高的可靠性分析方法。 国内主要将鞍点逼近应用在经济、统计学领域。本文将鞍点逼近应用到螺栓的可靠性稳健设计中。鞍点逼近法发展了机械产品的可靠性设计理论与方法,提高了机械产品的可靠性和安全性,从而提高产品的质量,提高产品的市场竞争能力。 2 结构可靠性设计的鞍点逼近法 Y=g(X)概率密度函数(PDF)可以由下式表示 (1) 式中y表示的是随机变量Y的取值,K”是Y=g(X)的累积母函数的二阶导数,ts是鞍点,可以通过下式求得 K’Y(t)=y (2) 式中K’表示的是Y=g(X)累积母函数的一阶导数。根据Lugannani和Rice[16]逼近样本均值尾概率的分布的鞍点逼近公式计算结构响应的的分布函数为 (3)

陀螺的进动性

陀螺的进动性 陀螺是一个既能绕自转轴高速旋转,又能够绕其它轴旋转的物体。利用陀螺的特性制作的测量装置就是陀螺仪。能够绕2个轴旋转的陀螺称为二自由度陀螺,能够绕3个轴旋转的陀螺称为三自由度陀螺。利用陀螺的特性制作的测量仪器(或装置)就称为陀螺仪。 不论是二自由度陀螺,还是三自由度陀螺,都有一个重要的特性——进动性。 一、定义 所谓“进动性”,就是当陀螺转子以高速旋转时,如果施加的外力矩是沿着除自转轴以外的其它轴向,陀螺并不顺着外力矩的方向运动,其转动角速度方向与外力矩作用方向互相垂直,这种特性,叫做陀螺仪的进动性。例如:对于三自由度陀螺来说,若外力矩绕外环轴作用,陀螺仪将绕内环轴转动;若外力矩绕内环轴作用,陀螺仪将绕外环轴转动。对于二自由度陀螺(没有外框)来说,当强迫其绕第三轴(假想的外框轴)运动时,则陀螺将绕内框轴转动。 二、进动规律 1.进动方向 进动角速度的方向取决于转子动量矩H的方向(与转子自转角速度矢量方向一致)和外力矩M的方向,而且是动量矩矢量以最短的路径追赶外力矩。这是三自由度陀螺的情况,如右图。 这可用右手定则判定。即伸直右手,大拇指与食指垂直,手指顺着自转轴的方向,手掌朝外力矩的正方向,然后手掌与4指弯曲握拳,

则大拇指的方向就是进动角速度的方向。 对于二自由度陀螺来说,进动角速度的方向也可用右手定则判定。即伸直右手,大拇指与食指垂直,手指顺着自转轴的方向,手掌朝强迫转动的角速度矢量的正方向,然后手掌与4指弯曲握拳,则大拇指的方向就是进动角速度的方向。 2.进动角速度 对于三自由度陀螺来说,进动角速度的大小取决于转子动量矩H的大小和外力矩M的大小。其计算式为=M/H。即外力矩愈大,其进动角速度也愈大;转子的转动惯量愈大,进动角速度愈小;转子的角速度愈大,进动角速度愈小。 对于二自由度陀螺来说,其进动角速度的大小取决于转子动量矩H的大小和强迫转动角速度的大小。 三、进动性的应用 对于三自由度陀螺来说,利用其进动性,可对自转轴的漂移进行修正或跟踪等;对于二自由度陀螺来说,利用其进动性,可测量运动物体的角速度或角加速度。这些也都广泛地应用于航空、航天、航海等领域.

陀螺仪原理

英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(退化为平衡棒)仿生得来。 在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例。 陀螺仪 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。 现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 早于874年,中国陕西省法门寺供奉佛指舍利的贡品中,曾出现过用陀螺仪制作的香囊1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现在,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。

陀螺仪的基本特性

3.2 陀螺仪的基本特性 双自由度陀螺的两个基本特性是:进动性和定轴性。 3.2.1 陀螺仪的进动性 简单的说陀螺的进动性是指当陀螺受到外力矩的作用时,所产生的一种复合扭摆运动,其进动角速度的方向垂直于外力矩的方向,其进动角速度的大小正比与外力矩,或者说,陀螺进动的方向为角动量以最短距离导向外力矩的方向。 为了便于理解,我们以二自由度的框架陀螺为例,其进动表现为:外力矩如沿着内框轴作用时,则陀螺仪绕外框转动;若外力矩沿外框轴作用时,则陀螺绕内框转动。 3.2.2 陀螺仪的定轴性 陀螺的定轴性是指转子绕自转轴高速旋转时,如果不受外力矩的作用,自转轴将相对于惯性空间保持方向不变。换言之,双自由度陀螺具有抵抗干扰力矩,力图保持转子轴相对惯性空间的方位稳定的特性。 在实际的陀螺仪中,由于结构和工艺的不尽完善,总是不可避免的存在干扰力矩,因此,考查陀螺仪的定轴性,更有实际意义的是考查有干扰情况下,在有限的时间内,自转轴保持方位稳定的能力。由陀螺仪的进动性可以知道,在干扰力矩的作用下,陀螺将产生进动,使得自转轴偏离原有的方位,这种方位偏差就称为漂移。

一般说来,框架陀螺仪的漂移较大,从几度每小时到几十度每小时不等,这就是为什么框架式陀螺测斜仪在测量前要求标桩对北,测量结束后还必须校北的原因。 3.3 陀螺仪的表观进动 由于陀螺仪自转轴相对于惯性空间保持方位不变(当陀螺仪的漂移足够小;同地球自转引起的地球相对惯性空间方位变化比较,可近似的认为陀螺仪相对惯性空间的方位不变),而地球以其自转角速度绕极轴相对惯性空间转动,所示观察者若以地球为参考基准,将会看到陀螺仪自转轴相对地球转动,这种相对运动称为陀螺仪的表观运动。 表观运动的实质是陀螺仪可以跟踪测量地球自转角速度。例如在地球任意纬度处,放置一个高精度的二自由度陀螺仪,并使其自转轴处于当地垂线位置,如图所示,可以看到陀螺的自转轴将逐渐偏离当地的地垂线,而相对地球作圆锥面轨迹的表观进动,每24小时进动一周。若使得自转轴处于当地子午线位置,此时将看到陀螺仪自转轴逐渐偏离当地子午线,也相对地球作圆锥面轨迹的表观进动,每24小时一周。 3.4 坐标系

轴的可靠性设计

轴的可靠性设计 4.1 已知条件和基本参数 这里分析的是安装在立式减速器和小车主动轮之间的浮动轴,其两端均采用联轴器与减速器和车轮轴连接,其受弯矩很小可忽略不计,应按扭转强度设计。 由2.14中计算结果,参考[卢玉明,机械零件的可靠性设计[M],北京:高等教育出版社,1989]建立浮动轴的可靠性模型。 这里认为扭矩、扭转疲劳极限均服从正态分布: 扭矩() (),782.2,80T T S =,45钢扭转疲劳极限均值149MPa τ=,查[卢玉明,机械零件的可靠性设计[M],北京:高等教育出版社,1989]表3-4B ,45钢的疲劳极限变异系数0.07S C τ= 则扭应力τ及S τ: () ()()33 3 ,782.2,803985732407643,,16 T T T S S MPa W d d d τ τπ ??=== ?? ? 扭转疲劳极限S τ及S S τ: ()() ()(),,149,1490.07149,10.43S S S S S S C MPa ττ=?=?= 4.2 联结方程的推导 设应力Y 、强度X 均为正态随机变量,概率密度函数分别为: 22 ()()2y y y g y μσ?? -=-?????? y -∞<<∞ 22 ()()2x x x f x μσ??-=-???? x -∞<<∞ 式中y μ、x μ及y σ、x σ分别为Y 及X 的均值和标准差。 令z x y =-,由概率论可知,z 的概率密度函数为

) () () 2 122 222 1 ()exp 2 x y x y x y z h z μμ σσ σσ ?? ?? -- ?? ?? =- ?? + ?? +?? z -∞<<∞ 由上式可知,() h z亦为正态分布,其均值 z x y μμμ =- ,标准差 z σ= z<的概率就是失效概率,所以 ()( ) ()2 00 2 2 z F z z P P z h z dz dz μ σ -∞ ?? - =<==-?? ?? ?? ?? 为了便于查用正态分布表,现将上式变换为标准正态分布。 令标准正态变量z z z u μ σ - =,则 z d z d uσ =。当0 z=时,z p z u u μ σ ==-;当z=-∞时, u=-∞,代入上式可得 () 22 22 z p z u u u u F p P e du e du u σ - -- -∞-∞ ===Φ ? 上式为标准正态分布,式中的积分上限 z p z u μμ μ σ - =-= 反映了强度随机变量X,应力随机变量Y和概率之间的关系,称为联结方程。它 是可靠性设计的基本公式。 p u称为失效概率系数。 相应的可靠度 ( )2222 2222 11p p u u u u u F p u R P u du du du du ∞∞∞ ---- -∞ =-=-Φ=-== ???? 由于正态分布是个对称分布,因此,上式可变换成 () 2 2 z z u R R e du u μ σ - -∞ ==Φ ? R u μμ - =,其中R u为可靠性系数 上式即为联结方程。

相关文档