文档库 最新最全的文档下载
当前位置:文档库 › 客车碰撞乘员保护

客车碰撞乘员保护

汽车车门门板的修复方法

汽车车门门板的修复方法 【摘要】为了提高汽车车门门板(以下简称汽车门板)的修复质量及效率,对汽车门板的修复方法进行探讨及总结。结果表明:只要按照科学的方法对汽车门板进行修复,门板修复的质量及效率将就会得到提高。 【关键词】汽车车门门板修复方法 一、汽车门板修复前的准备工作 劳保用品的穿戴。劳保用品可以保证门板修复操作人员在工作中的人身安全。在操作中需穿戴的劳保用品有口罩、护目镜、工作帽、耳罩和棉纱手套等。 确定损伤区域。检查损伤面积,用记号笔画出损伤区域.这样我们才能更好的保证修复的面积不至于过大或者过小。 二、对于损伤不严重的门板修复 打磨损伤区域。使用盘式打磨机,打磨旧漆膜。把80号砂纸粘结在盘式打磨机的磨头上面,注意要砂纸的孔和磨盘的孔相对应,这样在打磨时旧漆膜产生的粉尘会被吸尘袋收容。打磨时要始终使打磨机与工件表面保持一个倾斜角,施加压力在磨盘上面,以尽快的打磨旧漆膜,这里需要注意的是直接损伤区的凹陷比较深,可能单纯的使用盘式打磨机是不能够彻底的打磨干净的。这时我们使用带式打磨机打磨直接损伤区更容易些,带式打磨机还可以整理其他未打磨干净的表面积。直到需要修复的区域表面没有旧漆膜为止。 使用介子机修复。使用介子机,首先把搭铁线紧固好,再试焊,因为介子机的可调节参数过于放宽,必须要调节一个最适合本次维修的适当电流和适当通电时间,这个过程需要调节三到五次才能找到一个最合适的参数。 焊接时总是要遵循车身表面局部修复应先里后外、先大后小、先强后弱、有筋先做筋的原则,(建议)因压痕深浅的不同和个人对介子机操作技能的高低(是指对拉低打高技法的理解与运用),在不违反操作原则的情况下,操作中因根据板面修理的变化分层次灵活操作。最先拉拔最后损伤的部位(是指间接损伤的区域),建议直线拉拔。 收火。收火,记得住每一次的收火都是不得已而为之的,都是板件表面积的增大造成的表面凸起或用手轻轻地可以按下去,然后放开手的压力其表面又会自由弹起来的一种现象。此时必须使用收火才能将其恢复原始状态。较小面积的收火可以使用电极头单点加热配合吹尘枪快速冷却,将其表面积强制恢复至原始状态。收火不易反复在一个点连续收火。 清洁与检查。表面的清洁和作品的检查,使用盘式打磨机清洁表面,打磨掉

汽车主动安全控制方法

(1)随着科技的进步,汽车的安全被细化,目前汽车安全分为主动安全、被动安全两种概念[1]。交通安全问题已成为世界性的大问题。全世界每年因交通事故死亡的人数约50万,汽车的安全性对人类生命财产的影响是不言而喻的。随着高速公路的发展和汽车性能的提高,汽车行驶速度也相应加快,加之汽车数量增加以及交通运输日益繁忙,汽车事故增多所引起的人员伤亡和财产损失,已成为一个不容忽视的社会问题,汽车的行车安全更显得非常重要[2]。传统的被动安全已经远远不能避免交通的事故发生,主动安全的概念慢慢的行成并不断的完善。 (2)为预防汽车发生事故,避免人员受到伤害而采取的安全设计,称为主动安全设计,如ABS,EBD,TCS,LDWS等都是主动安全设计。它们的特点是提高汽车的行驶稳定性,尽力防止车祸发生。其它像高位刹车灯,前后雾灯,后窗除雾等也是主动安全设计。目前安全技术逐渐在完善,有更多的安全技术将被开发并得到应用[3,4]。 ①ABS(防抱死制动系统)——它通过传感器侦测到的各车轮的转速,由计算机计算出当时的车轮滑移率,由此了解车轮是否已抱死,再命令执行机构调整制动压力,使车轮处于理想的制动状态(快抱死但未完全抱死)。对ABS功能的正确认识:能在紧急刹车状况下,保持车辆不被抱死而失控,维持转向能力,避开障碍物。在一般状况下,它并不能缩短刹车距离。 ②EBD(电子制动力分配系统)——它必须配合ABS使用,在汽车制动的瞬间,分别对四个轮胎附着的不同地面进行感应、计算,得出摩擦力数值,根据各轮摩擦力数值的不同分配相应的刹车力,避免因各轮刹车力不同而导致的打滑,倾斜和侧翻等危险。 ③ESP(电子稳定程序)——它实际上也是一种牵引力控制系统,与其它牵引力控制系统比较,ESP不但控制驱动轮,而且控制从动轮。它通过主动干预危险信号来实现车辆平稳行驶。如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会放慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会放慢内后轮,从而校正行驶方向。 ④EBA(紧急刹车辅助系统)——电脑根据刹车踏板上侦测到的刹车动作,来判断驾驶员对此次刹车的意图,如属于紧急刹车,则指示刹车系统产生更高的油压使ABS发挥作用,从而使刹车力更快速的产生,缩短刹车距离。 ⑤LDWS(车道偏离预警系统)——该系统提供智能的车道偏离预警,在无意识(驾驶员未打转向灯)偏离原车道时,能在偏离车道0.5秒之前发出警报,为驾驶员提供更多的反应时间,大大减少了因车道偏离引发的碰撞事故,此外,使用LDWS还能纠正驾驶员不打转向灯的习惯,该系统其主要功能是辅助过度疲劳或长时间单调驾驶引发的注意力不集中等情况。 ⑥胎压监控——美国国家公路交通安全管理局(NHTSA) 已经做出要求,截止2003产品年车重小于或达到4536公斤的所有美国乘用车辆都必须配备胎压监控系统,事后宝马公司就已经把该系统用在全系轿车中。驾驶者可以通过车内提示警告系统来判断轮胎胎压情况是否正常,首先避免了因轮胎亏气出现的行车跑偏,其次在高速行驶时也对乘坐者安全是一种保障。 ⑦倒车警告/倒车影像/车外摄像头——倒车警告这项技术用于在驾驶期间以及驻车时,针对您盲区中的轿车或物体向您发出警告。通常,该系统会在您行车时已经进行响应;它可能会使后视镜内的一个警告标示进行闪烁,同时会发出声音警告,该系统是一个短程检测系统。如:上海通用别克君越车内后视镜就配备此功能,反光镜左边会有一个车体形状的图标,前/后雷达在侦测障碍物时警告

汽车碰撞安全法规大全

汽车碰撞安全法规大全(中文版) 中国篇 乘用车正面碰撞的乘员保护(GB 11551-2003) 汽车侧面碰撞的乘员保护(GB 20071-2006) 乘用车后碰撞燃油系统安全要求(GB 20072-2006) 防止汽车转向机构对驾驶员伤害的规定(GB 11557-1998) 汽车座椅、座椅固定装置及头枕强度要求和试验方法(GB 15083-2006)汽车安全带固定点(GB 14167-2006) 汽车前、后端保护装置(GB 17354-1998) C-NCAP 前部正面刚性壁障碰撞试验方法 C-NCAP 前部偏置碰撞试验方法 C-NCAP 侧面碰撞试验方法 C-NCAP 评分方法 欧洲篇 防止汽车碰撞时转向机构对驾驶员伤害认证的统一规定(ECE R12) 关于汽车安全带安装固定点认证的统一规定(ECE R14) 关于车辆座椅、座椅固定装置及头枕认证的统一规定(ECE R17) 关于车辆内部安装件认证的统一规定(ECE R21) 关于后面碰撞汽车结构特性认证的统一规定(ECE R32) 关于正面碰撞汽车结构特性认证的统一规定(ECE R33) 关于车辆火险预防措施认证的统一规定(ECE R34) 关于汽车前后端保护装置(保险杠等)认证的统一规定(ECE R42) 关于车辆正面碰撞乘员保护认证的统一规定(ECE R94)

关于车辆侧面碰撞乘员保护认证的统一规定(ECE R95)EuroNCAP 前部碰撞试验方法 EuroNCAP 侧面碰撞试验方法 EuroNCAP 侧面撞柱评估标准 EuroNCAP 车辆对乘员颈部保护的动态评估试验方法EuroNCAP 行人保护试验方法 EuroNCAP 儿童保护评估方法 EuroNCAP 评估方法与生物力学极限 GTR 行人保护法规 EC 行人保护法规 北美篇 内饰件碰撞特性要求及试验方法(FMVSS 201) 头枕的碰撞保护(FMVSS 202a) 转向机构对驾驶员的碰撞保护(FMVSS 203) 对方向盘后移量的要求(FMVSS 204) 座椅系统(FMVSS 207) 乘员碰撞保护(FMVSS 208) 乘员离位(OOP)保护(FMVSS 208) 儿童约束系统要求(FMVSS 208) 安全带安装固定点认证的统一规定(FMVSS 210) 儿童约束系统(FMVSS 213) 侧面碰撞保护(FMVSS 214)

各种汽车防撞系统

第三章汽车主动防撞系统的总体工程 3.1 各种汽车防撞系统的比较 对于车辆安全来说,最主要的判断依据是两车之间的相对距离和相对速度信息,当本车以较高的速度接近前方车辆时,如果两车之间的距离太近,很容易造成追尾事故。因此,常用的防装系统都将车辆之间的相对距离最为最主要检测任务。 汽车雷达按照其探测方向的不同,主要分为倒车雷达和前视雷达两种,汽车倒车雷达由于探测距离较短,一般运用超声波或红外探测两种方式构成,该项技术已经比较成熟,国内外已经有相应的产品。而相比较来说,在高速公路中由于车速快,要求防撞雷达探测距离要长,故高速公路的防撞系统要求较高。而且在恶劣天气情况下,如雨,雪,雾等天气,以及前方车辆尾部卷起的气沫灰尘所造成视野不良等情况时,防撞预警系统应向驾驶人员提供前方车辆和障碍物的距离,相对速度等信息;在危险临近的情况下,通过警报系统发出声光警报,在极度危险的情况下可以采取转向和制动措施,从而避免碰撞,追尾等事故的发生。 目前的高速公路防撞系统按工作方式分主要有激光,超声波,红外等一些测量方法,不同的方式工作过程和工作原理上有不同之处,但它们主要作用都是通过不同的测量方法判断前方车辆与本车辆的相对距离,并根据两车之间的危险性程度做出相应的预防措施。为了更好的了解各种系统的工作原理,下面对不同的探测方式进行详细的介绍。 2.4激光测距 激光测距仪是一种光子雷达系统,它具有测量时间短,量程大,精度高等优点,在许多领域得到了广泛应用。目前在汽车上应用较广的激光测距系统可以分为非成像式激光雷达和成像式雷达。 非成像式激光雷达根据激光束传播时间确定距离。激光束在传播路上遇到前车发生反射。测量从发射时刻到反射回到发射点经过的时间t,便可以计算出车距。其计算公式同超声波测距共识,不同的是速度v为光速,v=3×108m/s。 从高功率窄脉冲激光器发射出来的激光脉冲经发射物镜聚焦成一定形状的光束后,用扫描镜左右扫描,向空间发射,照射在前方车辆或者其他目标上,其反射光经扫描镜,接受物镜及回输光纤,被导入到信号处理装置内光电二极管,利用计算器计数激光二极管启动脉冲与光电二极管的接受脉冲间的时间差,即可求得目标距离。利用扫描镜系统中的位置探测器测定反射镜的角度即可测出目标的方位。 成像式激光雷达又可分为扫描成像激光雷达和非扫描成像激光雷达。扫描激光成像雷达把激光雷达同二维光学扫描镜结合起来,利用扫描器控制出射激光的方向,通过对整个现场进行逐点扫描测量,即可获得视场内目标目标的三维信息。但扫描成像激光雷达普遍纯在成像速度过慢的问题。这有待于软件,硬件的进一步改善。非扫描成像式激光雷达将光源发出的经过强度调制的激光经分束器系统分为多束光后沿不同方向射出。照射待测区域。被测物体表面散射的光经微通道图像增强板(MCP)混频输出后,由面阵CCD等二维成像器接收,CCD每个像元的输出信号提供了相应成像区的距离信息。利用信息融合技术即可重建三维图像。由于非扫描成像激光雷达测点数目大大减少,从而提高了三维成像速度。 在汽车测距系统中,非成像激光雷达更具有使用价值。同成像式激光雷达相比,具有造价低,速度快,稳定性高等特点。 由于激光雷达测距仪工作环境处于高速运动的车体重,震动大,对其稳定性,可靠性提出了较高的要求,其体积也受到了一定的限制,同时还要考虑省电,低价,对人眼安全等因素。这些决定了其光源只能采用半导体激光器。已处于使用阶段的激光雷达所需要的光学元件在市场上有售,价格比较高。目前,在汽车

汽车侧面碰撞安全防护措施分析标准版本

文件编号:RHD-QB-K6516 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 汽车侧面碰撞安全防护措施分析标准版本

汽车侧面碰撞安全防护措施分析标 准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 引言 我据国外机构统计表明,在汽车碰撞发生的交通事故中,大约有30%为侧面碰撞引发的交通事故。在公路交通发达的美国,平均每年约8,000名驾驶员由于侧面碰撞致死,在24,000受重伤的人中,约有67%的人是由于汽车对汽车的侧面碰撞,我国道路交通较为复杂,车型混杂,这更容易发生车辆的侧面交叉碰撞。在世界范围内,汽车侧面碰撞的研究及相应安全性法规的制定已成为当前研究的热点。 侧面碰撞事故中伤害情况分析

据有关机构调查研究,交通事故类型中最多的就是碰撞事故,在各种汽车碰撞事故形式中,侧面碰撞事故约占事故总数的30%,仅次于正面碰撞,而在造成死亡和重伤的事故中,侧碰事故约占35%。在中国,由于城市道路交通以平面交叉路口为主,侧面碰撞事故发生概率最高,大约有1/3侧面碰撞交通事故。在对1998年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达37.4%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到62.6%。在对1999年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达33%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致

汽车碰撞安全法规大全(中文版)

汽车碰撞安全法规大全(中文版)

汽车碰撞安全法规大全(中文版) 中国篇 乘用车正面碰撞的乘员保护(GB 11551-2003) 汽车侧面碰撞的乘员保护(GB 20071-2006) 乘用车后碰撞燃油系统安全要求(GB 20072-2006) 防止汽车转向机构对驾驶员伤害的规定(GB 11557-1998) 汽车座椅、座椅固定装置及头枕强度要求和试验方法(GB 15083-2006) 汽车安全带固定点(GB 14167-2006) 汽车前、后端保护装置(GB 17354-1998) C-NCAP 前部正面刚性壁障碰撞试验方法 C-NCAP 前部偏置碰撞试验方法 C-NCAP 侧面碰撞试验方法 C-NCAP 评分方法 欧洲篇 防止汽车碰撞时转向机构对驾驶员伤害认证的统一规定(ECE R12)关于汽车安全带安装固定点认证的统一规定(ECE R14) 关于车辆座椅、座椅固定装置及头枕认证的统一规定(ECE R17)关于车辆内部安装件认证的统一规定(ECE R21) 关于后面碰撞汽车结构特性认证的统一规定(ECE R32) 关于正面碰撞汽车结构特性认证的统一规定(ECE R33) 关于车辆火险预防措施认证的统一规定(ECE R34) 关于汽车前后端保护装置(保险杠等)认证的统一规定(ECE R42)

关于车辆正面碰撞乘员保护认证的统一规定(ECE R94)关于车辆侧面碰撞乘员保护认证的统一规定(ECE R95)EuroNCAP 前部碰撞试验方法 EuroNCAP 侧面碰撞试验方法 EuroNCAP 侧面撞柱评估标准 EuroNCAP 车辆对乘员颈部保护的动态评估试验方法EuroNCAP 行人保护试验方法 EuroNCAP 儿童保护评估方法 EuroNCAP 评估方法与生物力学极限 GTR 行人保护法规 EC 行人保护法规 北美篇 内饰件碰撞特性要求及试验方法(FMVSS 201) 头枕的碰撞保护(FMVSS 202a) 转向机构对驾驶员的碰撞保护(FMVSS 203) 对方向盘后移量的要求(FMVSS 204) 座椅系统(FMVSS 207) 乘员碰撞保护(FMVSS 208) 乘员离位(OOP)保护(FMVSS 208) 儿童约束系统要求(FMVSS 208) 安全带安装固定点认证的统一规定(FMVSS 210) 儿童约束系统(FMVSS 213)

汽车碰撞后的车门修复

汽车车门碰撞后的修复 摘要:车门碰撞损伤恢复程度的好坏,将直接影响到该车修复后的使用性能和安全结构。主要体现在,车门的防撞性能,车门的密封性能,车门的开合便利性,当然还有其它使用功能的指标等。防撞性能尤为重要,因为车辆发生侧碰时,缓冲距离很短,很容易就伤到车内人员。因此,好的车门内至少会有2根防撞杠,而防撞杠的 份量是较重的,也就是说,好的车门确实偏重些。但并不能说车门越重就越好。现在的新型汽车,如果在安全性能等能保证的话,设计师都会想方设法减轻车辆包括车门的重量(如用新型的材料)来减少功耗。 关键词:碰撞;裂纹;检测;修复 一、车身侧面修复 汽车碰撞造成汽车车门的损坏,汽车车门是车身的重要部件,所以对其的修复就十分重要了。 汽车车门的构造按其功能来分,如图1所示,连接部件:14-车门皎链、13-车门开度限位器;使用功能部件:1-三角窗、4-车门玻璃、6-车门插销、7-门锁外手柄、8-门锁、10-固定拉手、11-门锁内手柄、12-玻璃升降器手柄;装饰部件:2-门内板、3-门外板、9-车门内护板;密封部件:5-密封条。 汽车车门是通过皎链安装在车身上的,所以车门的修复必须首先对汽车车身进行检 测和修复。 汽车的车门皎链安装在汽车车身的侧车身上,侧车身将前车身、车顶板连接起来形成乘坐室。侧车身构件作为车门的支架,为保证驾驶室整体结构具有足够的强度和刚度,增加了纵横方向的加强板件,形成一个坚固的箱形结构。汽车车门就是箱形结构的“盖”,汽车车门使用时要频繁的开闭,而且对汽车箱体结构的密封、降低噪声都非常重要,因此其修复的技术要求是很高的。 1 .碰撞方向对车门的损伤 汽车碰撞一般有正面、侧面、后面(追尾)3个方向,由丁汽车车身设计时要考虑乘员的安全,通常在车身结构方面都进行了精心设计。汽车的车身碰撞受力的大小、方向是碰撞损伤的重要因素,结合车身结构进行分析,从而对碰撞损伤部位和损伤程度得出正确的结论,是碰

最新整理汽车侧面碰撞安全防护措施分析.docx

最新整理汽车侧面碰撞安全防护措施分析 引言 我据国外机构统计表明,在汽车碰撞发生的交通事故中,大约有30%为侧面碰撞引发的交通事故。在公路交通发达的美国,平均每年约8,000名驾驶员于侧面碰撞致死,在24,000受重伤的人中,约有67%的人是于汽车对汽车的侧面碰撞,我国道路交通较为复杂,车型混杂,这更容易发生车辆的侧面交叉碰撞。在世界范围内,汽车侧面碰撞的研究及相应安全性法规的制定已成为当前研究的热点。 侧面碰撞事故中伤害情况分析 据有关机构调查研究,交通事故类型中最多的就是碰撞事故,在各种汽车碰撞事故形式中,侧面碰撞事故约占事故总数的30%,仅次于正面碰撞,而在造成死亡和重伤的事故中,侧碰事故约占35%。在中国,于城市道路交通以平面交叉路口为主,侧面碰撞事故发生概率最高,大约有1/3侧面碰撞交通事故。在对1998年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中侧面碰撞中所引起的人员致死率高达37.4%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到62.6%。在对1999年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中侧面碰撞中所引起的人员致死率高达33%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到67%。通过对云南省751位因交通事故死亡者的抽样调查发现,有近10.12%的是于侧面碰撞伤害致死,表明在侧面碰撞这一交通事故类型中,车内乘员一旦受害,其致死率往往是很高的。 交通事故形态的不同,造成的后果严重性也不同。在侧面碰撞中导致致命或人体严重伤害的主要部位依次是头部、胸部、腹部、下肢、颈部、脊椎和骨盆,侧面碰撞对乘员的头部和胸部的伤害程度最大。据统计,在我国于侧面碰撞事故导致死亡的案例中有38%是因为乘员的头部撞到树或杆上而造成的,统计资料还表明,侧面碰撞对人体骨盆和下肢的伤害仍占有很大比例。在侧面碰撞事

汽车侧面碰撞法规

汽车侧面碰撞法规 2.1 概述 制定汽车侧面碰撞法规的目的是为了降低在侧碰事故中乘员受重伤和致命伤害的风险,根据法规试验过程中测得的假人加速度,规定汽车的抗撞性能要求、车门加强要求和其他要求,以提高汽车侧面碰撞安全性。汽车碰撞安全法规为消费者提供了一个系统、客观的汽车安全信息,能够促进企业按照更高的安全标准开发和生产,有效减少道路交通事故的伤害及损失。 美国是最旱执行汽车侧面碰撞保护法规的国家,1990年10月美国联邦机动车安全法规FMVSS 214(FMVSS,Federal Motor Vehicle Safety Standards)在美国颁布执行。之后,在1995年10月,欧洲也制定了相应的汽车侧面碰撞法规ECE R95(ECE,Economic Commission for Europe)。日本在侧碰撞方面的研究始于20世纪90年代初,相关法规于1998年正式纳入日本保安基准,其内容基本等同于欧洲ECER95。我国强制性标准体系也采用欧洲ECE标准体系,为了便于与国际接轨,在我国制定侧面碰撞标准时是以ECE R95/02法规为蓝本,并结合我们国内的具体国情制定的。由于我国人体与欧洲人体差异很大,所以在制定该标准时又参考了日本的相关法规。标准于2006年7月1日开始实施,标准规定了汽车进行侧面碰撞的要求和试验程序,还对车辆型式的变更、三维H点装置、移动变形壁障及碰撞假人进行了规定。美国、欧洲现有的侧面碰撞试验方法存在较多的不同之处,例如:碰撞形态不同,移动壁障的台车质量、尺寸,吸能块尺寸、形状、性能不同,试验用侧碰假人不同,碰撞速度不同,碰撞基准点的位置不同以及乘员伤害指标也略有不同。在本章下面的内容中,将就这些方面进行详细的比较分析。 2.2 我国侧碰标准主要内容及评价指标 标准内容主要涵盖碰撞试验方法、碰撞试验假人、假人的伤害指标、移动壁障的质量、吸能块的外形尺寸及刚度。具体介绍如下。

汽车侧面碰撞安全防护措施分析(一)

汽车侧面碰撞安全防护措施分析(一) 引言 我据国外机构统计表明,在汽车碰撞发生的交通事故中,大约有30%为侧面碰撞引发的交通事故。在公路交通发达的美国,平均每年约8,000名驾驶员由于侧面碰撞致死,在24,000受重伤的人中,约有67%的人是由于汽车对汽车的侧面碰撞,我国道路交通较为复杂,车型混杂,这更容易发生车辆的侧面交叉碰撞。在世界范围内,汽车侧面碰撞的研究及相应安全性法规的制定已成为当前研究的热点。 侧面碰撞事故中伤害情况分析 据有关机构调查研究,交通事故类型中最多的就是碰撞事故,在各种汽车碰撞事故形式中,侧面碰撞事故约占事故总数的30%,仅次于正面碰撞,而在造成死亡和重伤的事故中,侧碰事故约占35%。在中国,由于城市道路交通以平面交叉路口为主,侧面碰撞事故发生概率最高,大约有1/3侧面碰撞交通事故。在对1998年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达37.4%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到62.6%。在对1999年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达33%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到67%。通过对云南省751位因交通事故死

亡者的抽样调查发现,有近10.12%的是由于侧面碰撞伤害致死,表明在侧面碰撞这一交通事故类型中,车内乘员一旦受害,其致死率往往是很高的。 交通事故形态的不同,造成的后果严重性也不同。在侧面碰撞中导致致命或人体严重伤害的主要部位依次是头部、胸部、腹部、下肢、颈部、脊椎和骨盆,侧面碰撞对乘员的头部和胸部的伤害程度最大。据统计,在我国由于侧面碰撞事故导致死亡的案例中有38%是因为乘员的头部撞到树或杆上而造成的,统计资料还表明,侧面碰撞对人体骨盆和下肢的伤害仍占有很大比例。在侧面碰撞事故中,侧面柱碰撞是一种特殊形式的碰撞,它对乘员的伤害程度要高于一般的侧面碰撞,对乘员头部和胸部会造成很大的威胁,此外,它对乘员肋骨的伤害程度比一般侧面碰撞要大。在碰撞过程中,四肢受害时如不发生过多的流血,一般较少死亡,人体颈部和脊椎生理构造复杂,即使是轻微冲击,也会造成严重的伤害,导致伤者死亡,所以对道路交通事故中人员伤害的保护应以头部与胸部为重点保护对象。 众所周知,交通事故中大部分的人身伤害都是因为人体受到外力冲击所致,车辆的加速度或减速度是造成人体伤害的主要原因。人体对外力的冲击有一定的承受限度,当外力超过限度时,人体便受到伤害。车内乘员伤亡都是由于汽车碰撞导致乘员与车内部件的碰撞造成的。与汽车正面碰撞相比,汽车侧面吸能构件较少,乘员与门内板之间仅存在20—30mm的空间,一旦受到来自侧面的撞击,乘员将受到强烈

汽车侧面碰撞保护技术

5.2 汽车侧面碰撞保护技术 在道路交通事故中汽车的碰撞位置千变万化,其中来自侧面的碰撞属于汽车侧面碰撞,汽车侧面碰撞可以分为直接碰撞和间接碰撞两种形式,直接碰撞是指车与车之间的碰撞,而间接碰撞是指由于车辆的滑移,跑偏等引起的与障碍物的碰撞,如树木,柱子等,侧面碰撞位居正面碰撞之后,是第二种最常见的碰撞形式。对于整个车辆来说,最薄弱的部位是汽车的侧面,在汽车中占比例最大的轿车来说,轿车的前部及后部、发动机、行李箱、相关车身及底盘部分的结构强度设计要大于车辆侧面结构部分,在正面或者后面碰撞过程中可以通过这些部分的结构变形来吸收碰撞能量。轿车发生侧面碰撞时吸能区域小,没有其前部、后部那样的足够空间发生结构变形来吸收碰撞能量,而且被撞部分与乘员的距离比较近,易于直接撞击乘员。因此与正面、后面碰撞相比,车辆侧面碰撞对乘员造成的伤害更大,对乘员的保护也就显得尤为重要。 第3章 现代汽车底盘新技术 5.2.1汽车侧面碰撞的研究 1. 国内外侧面碰撞的统计 据国外有关机构调查研究表明,交通事故类型中最多的就是碰撞事故,在各种汽车碰撞事故形式中,汽车侧面碰撞事故发生率仅次于正面碰撞,其造成死亡和重伤的事故约占25%,其中有43%~55%是在车对车碰撞事故造成的,另外12%~16%是由于车体侧面撞击到柱状物而造成的。在德国有半数以上的侧面碰撞对象是电线杆或大树等柱状物体,在2002年车祸中死亡的32335人中有23%是死于侧面碰撞的,他们当中的60%是死于侧面碰撞时车辆碰到狭窄物体或者是其他的轻型小货车的碰撞事故中。 在我国,由于我国城市道路的交叉路口以平面 交叉为主,机动车、非机动车混合交通现象极为严 重,导致交通事故类型中汽车侧面碰撞的事故发生 率最高。根据我国道路交通事故统计数据, 2001-2007年我国发生的交通事故中的前两大事故 形态数据统计如表1.1所示,表中数据表明近7 年来我国侧面碰撞事故是发生频率最高的事故形 态,远高于正面碰撞事故形态,其乘员死亡率仅次 于正面碰撞。由此可见,侧面碰撞是我国发生频次 较高、造成严重受伤人数较多的交通事故。提高我 国汽车产品的侧面碰撞安全性能,对改善我国道路 交通安全具有重大意义。 2. 新车评价程序NCAP 对侧面碰撞测试的规定 为了降低在侧碰事故中乘员受重伤和致命伤害的风险,各国都制定有汽车侧面碰撞法 我国不同形态事故统计数据

汽车车身碰撞的损坏修复

案例(二):汽车车身碰撞的损坏修复 1:碰撞对车身的影响 碰撞力分析 ·直接碰撞力 汽车碰撞时所受力的大小与其运动状态、碰撞体的形式、碰撞持续的时间、碰撞后的运动状态等有很大的关系。在碰撞发生后可以根据动量守恒原理和作用力与反作用力原理,对主动碰撞车辆或被动碰撞车辆所受的撞击力进行大致的估算。 碰撞力的大小除与车辆所具备的动能有关外,还与碰撞持续的时间、被碰撞物体所具的总质量和速度、发生碰撞后车辆的运动状态以及两相撞物体吸收动能的能力等因素有关。 车辆与一堵墙正面相撞,因车辆正面面积较大且墙面平直,所以撞击力以均布载荷的形式作用于车身,总体作用力虽然很大,但由平面均匀分配后对车身的影响减小很多;图b为车辆与柱状体相撞,虽然其总体作用力与图a车辆相同,但由于力量作用面积小,所以引起的损伤比前者要严重得多。 惯性力

车辆在碰撞时,直接碰撞力是主要因素,对车身的损伤也最大最直接,但由于碰撞而产生的其他力,如惯性力等也同样对车身造成巨大的影响。 力的合成与分解 前车身承受冲击力的分解实例 2)正向力;b)侧向力 左右弯曲 从一侧采的碰撞冲击经常会引起汽车车架的左右弯曲。 (a)由前端碰撞引起的车架前部左右弯曲;(b)由后端碰撞引 起的车架后部左右弯曲;(c)车架外部受到的双重左右弯曲

上下弯曲 从车辆的外表观察,通常有前部或后部低于正常车辆的现象,整个车身在结构上也有前倾或后倾的现象。上下弯曲一般来自前方或后方的直接碰撞引起,可能发生在汽车的一侧,也可能发生在两侧,判别上下弯曲变形可以查看翼子板与车门之间的缝隙是否在顶部变窄、在下部变宽;也可以查看车门在撞击后是否下垂。 (a)左前端上下弯曲; (b)后尾端上下弯曲; (c)车架上下弯曲的形式 断裂损伤 车辆在有断裂损伤时,车上的某些部件或车架的尺寸会低于原车的技术尺寸。断裂损伤通常表现在发动机盖的前移或后窗的后移。

汽车自动防撞系统历史

维基百科,自由的百科全书【摘】 汽车防撞系统(英语:collision avoidance system)是一种利用通讯、控制与资讯科技侦测车辆周遭的动态状况,以辅助汽车驾驶人的安全科技。依各家车厂不同的命名,另有预防碰撞系统(pre-crash system)、前方碰撞预警系统(forward collision warning system)、减少碰撞系统(collision mitigating system)等异称。 ?车道变换辅助系统(Audi Side Assist):车尾的雷达感测器可侦测是否有车辆位于盲点区域,若系统侦测有车辆,能在驾驶人打方向灯并变换车道时,快速闪烁车侧后视镜的LED灯号,以警告侧边有来车接近。 ?车道偏离警示系统(Audi Lane Assist):运用摄影机侦侧车道标线,若系统发现车辆开始偏移,便以震动方向盘的方式警告驾驶人;万一仍不修正偏移,则会介入并让车辆维持在车道之中。 ?预防追撞前车系统(Audi Pre Sense Front):以雷达侦测与前车的距离,若系统判断车距过近,先是透过警示信号提醒驾驶人减速;若驾驶人并未减速,刹车辅助系统便会介入刹车,甚至加强刹车力道。假设碰撞无可避免,此系统能够在碰撞发生前0.5秒完成所有的减速,大约可降低车速达40km/hr,同时启动警示灯后告知后方来车,且维持紧闭车窗与天窗、紧缩安全带,以减少追撞意外对乘员的伤害。

BMW 德国BMW在2013年中期发表互联驾驶系统(BMW ConnectedDrive),整合了资讯、娱乐、行车辅助等多项功能,其中跟汽车防撞相关的功能包含下列: ?主动式定速控制系统(Active Cruise Control):此系统可与碰撞警示暨刹车启动系统、车道变换警示系统、怠速熄火功能等一同连动。在巡航定速的状态下,当前方车辆进入感测器的监控范围时,系统会自动降速以保持安全间距; 等到前方车道净空时又恢复原先设定的时速。此系统除了兼具怠速熄火功能外,和其他车厂的定速装置最大的差异是在定速状态下,可踩油门以高于定速的速度超车,放掉油门后又恢复成原先订定的时速。当前车突然刹车时,碰撞警示暨刹车启动系统会先在抬头显示器显示视觉警告,若驾驶人没有反应,系统会介入并闪烁警示灯、发出声响,驾驶人再未反应,系统直接启动刹车。 ?夜视系统:红外线感应器可在夜间侦测到行人,万一系统侦测到车辆可能撞击到行人,智能预先警示系统会将两个光点打向行人以警告之,但不会造成任何目眩影响。 ?车道偏离与车道变换警示系统:雷达与摄影镜头可监控路况,并在变换车道及与他车距离过近时发出警示。邻车处于驾驶人的视线死角或从后方快速接近时,系统会在后视镜上亮灯警告;当驾驶人浑然未觉仍要变换车道时,系统会以震动方向盘的方式发出警告,且后视镜也会出现闪烁的警告符号。当车速超过时速70公里时,系统便会监控路标、与他车的相对位置、路面或线道边缘与车辆的距离等。只要车辆不慎偏离目前的车道,系统便会震动方向盘以警告驾驶人。

汽车碰撞试验

细说乘用车碰撞试验 文/图景升 随着汽车数量的增加和行驶速度的不断提高,行车安全越来越重要。 而在所有汽车事故当中,与碰撞有关的事故占90%以上。汽车碰撞是不 可避免的,那么如何减少碰撞时对人员的伤害?世界各国都在研究制定 日趋严格的碰撞试验方法和标准。 相信大多数的读者都没有见过车辆的碰撞试验,对国内目前乘用车 所做的碰撞试验种类以及试验方法也缺乏了解。为了能让大家全面、细 致、直观地了解关于乘用车碰撞试验方面的知识,笔者深入碰撞试验的 第一线,在国家轿车质量监督检验中心碰撞实验室同事的帮助下,将目 前国内所做的所有乘用车碰撞试验总结整理出来,与大家共赏。 “乘用车正面碰撞的乘员保护”是目前国内在汽车碰撞方面惟一强制实施的标准,所有车辆都必须通过此项试验。自2006年7月1日开始又有两项碰撞标准将实施,分别是:“汽车侧面碰撞的乘员保护”和“乘用车后碰撞燃油系统安全要求”。另外,还有一项推荐性标准是“乘用车正面偏置碰撞的乘员保护”,3、5年后很可能也会被纳入国标当中。除此之外,还有四项碰撞试验偶尔也会做,不过都是厂方的行为,主要是作为安全带和安全气囊的匹配试验和车辆研发阶段的性能试验。 对于以上八项碰撞试验,本文都将从国内外情况、试验方法和考核指标三方面进行详细地介绍。100%重叠正面碰撞 美国和日本都比较注重100%重叠刚性固定壁障的碰撞试验,美国的碰撞速度是56km/h,日本的碰撞速度是55km/h,两者相差不多,并且都采用了40%的偏置碰撞作为补充。我国目前惟一施行的强制性检验项目便是100%重叠刚性固定壁障的碰撞试验,试验速度为48~50km/h。欧洲在碰撞试验方面比较注重对事故形态的模拟,而完全发生正面100%重叠的碰撞事故并不多见,所以欧洲并没有强制实施100%重叠的正面碰撞试验,相反,对40%重叠的偏置碰撞要求相当严格。 试验方法看起来比较简单,只要保证试验车辆以一定的速度撞击壁障便可以了(厂方可以要求以高于国标的速度撞击,只要检测指标满足要求,同样认为该车合格;厂方也可以要求以更低的速度撞击,不过只能作为安全带和安全气囊的匹配试验),不过对试验场地和设施的要求非常严格,试验车辆的准备工作也非常严谨复杂。首先,试验场地应足够大,以容纳跑道、壁障等试验设施,并且必须保证壁障前至少5m 的跑道水平光滑。其次,作为主要试验设施的刚性碰撞壁障,其实就是一个钢筋混凝土制成的水泥墩子,其长、宽、高和总质量都有明确规定:前部宽度不小于3m,高度不小于1.5m,厚度应保证其质量不低于70吨。刚性壁障的前表面必须平整并且与地面垂直,就像一面墙一样, 并要覆以2cm厚的胶合板。其它设施如灯光、高速摄像机等也有相当 严格的要求。 车辆准备是一项非常细腻并且十分重要的工作,首先试验车辆应 能反映出该系列产品的特征,应包括正常安装的所有装备,并处于正 常运行状态,一些零部件可以被等质量代替,但不得对测量结果造成 影响。其次,试验车辆质量应是整备质量,燃油箱应注入90%油箱容 积的水,所有其它系统(制动系、冷却系等)应排空,排除液体的质量应予以补偿。最后,对乘员舱进行相当严格的调整:转向盘应处于中间位置,在加速过程结束时,转向盘处于自由状态,且处于制造厂规定的车辆直线行驶时的位置;车窗玻璃应处于关闭位置,为便于测量,经厂商同意,车窗玻璃也可以打开,

汽车侧面碰撞安全防护措施分析

汽车侧面碰撞安全防护措施分析 摘要:碰撞安全性,尤其是侧碰安全性越来越受到重视,各大车厂与相关研究机构无不投入许多人力、物力、财力来设计或研发各式各样的车体结构与安全配备:如侧面防撞钢梁、侧面防护气囊等等的设计,均是以降低人体在车祸事故中的伤害程度为主要目标。 关键词:侧面碰撞;防护策略 引言 我据国外机构统计表明,在汽车碰撞发生的交通事故中,大约有30%为侧面碰撞引发的交通事故。在公路交通发达的美国,平均每年约8,000名驾驶员由于侧面碰撞致死,在24,000受重伤的人中,约有67%的人是由于汽车对汽车的侧面碰撞,我国道路交通较为复杂,车型混杂,这更容易发生车辆的侧面交叉碰撞。在世界范围内,汽车侧面碰撞的研究及相应安全性法规的制定已成为当前研究的热点。 侧面碰撞事故中伤害情况分析 据有关机构调查研究,交通事故类型中最多的就是碰撞事故,在各种汽车碰撞事故形式中,侧面碰撞事故约占事故总数的30%,仅次于正面碰撞,而在造成死亡和重伤的事故中,侧碰事故约占35%。在中国,由于城市道路交通以平面交叉

路口为主,侧面碰撞事故发生概率最高,大约有1/3侧面碰撞交通事故。在对1998年XX省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到%。在对1999年XX省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达33%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到67%。通过对XX省751位因交通事故死亡者的抽样调查发现,有近%的是由于侧面碰撞伤害致死,表明在侧面碰撞这一交通事故类型中,车内乘员一旦受害,其致死率往往是很高的。 交通事故形态的不同,造成的后果严重性也不同。在侧面碰撞中导致致命或人体严重伤害的主要部位依次是头部、胸部、腹部、下肢、颈部、脊椎和骨盆,侧面碰撞对乘员的头部和胸部的伤害程度最大。据统计,在我国由于侧面碰撞事故导致死亡的案例中有38%是因为乘员的头部撞到树或杆上而造成的,统计资料还表明,侧面碰撞对人体骨盆和下肢的伤害仍占有很大比例。在侧面碰撞事故中,侧面柱碰撞是一种特殊形式的碰撞,它对乘员的伤害程度要高于一般的侧面碰撞,对乘员头部和胸部会造成很大的威胁,此外,它对乘

汽车侧面碰撞安全防护措施分析实用版

YF-ED-J2005 可按资料类型定义编号 汽车侧面碰撞安全防护措施分析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

汽车侧面碰撞安全防护措施分析 实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 引言 我据国外机构统计表明,在汽车碰撞发生 的交通事故中,大约有30%为侧面碰撞引发的交 通事故。在公路交通发达的美国,平均每年约 8,000名驾驶员由于侧面碰撞致死,在24,000 受重伤的人中,约有67%的人是由于汽车对汽车 的侧面碰撞,我国道路交通较为复杂,车型混 杂,这更容易发生车辆的侧面交叉碰撞。在世 界范围内,汽车侧面碰撞的研究及相应安全性 法规的制定已成为当前研究的热点。

侧面碰撞事故中伤害情况分析 据有关机构调查研究,交通事故类型中最多的就是碰撞事故,在各种汽车碰撞事故形式中,侧面碰撞事故约占事故总数的30%,仅次于正面碰撞,而在造成死亡和重伤的事故中,侧碰事故约占35%。在中国,由于城市道路交通以平面交叉路口为主,侧面碰撞事故发生概率最高,大约有1/3侧面碰撞交通事故。在对1998年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显示,交通事故中由侧面碰撞中所引起的人员致死率高达37.4%,仅次于正面碰撞所引起的致死率,而侧面碰撞中所引起的人员致伤率则高于正面碰撞,达到62.6%。在对1999年云南省内各种交通事故形态所引起的人员致死及致伤率进行的统计中显

汽车碰撞后的车门修复

汽车车门碰撞后的修复 摘要:车门碰撞损伤恢复程度的好坏,将直接影响到该车修复后的使用性能与安全结构。主要体现在,车门的防撞性能,车门的密封性能,车门的开合便利性,当然还有其它使用功能的指标等。防撞性能尤为重要,因为车辆发生侧碰时,缓冲距离很短,很容易就伤到车内人员。因此,好的车门内至少会有2根防撞杠,而防撞杠的份量就是较重的,也就就是说,好的车门确实偏重些。但并不能说车门越重就越好。现在的新型汽车,如果在安全性能等能保证的话,设计师都会想方设法减轻车辆包括车门的重量(如用新型的材料)来减少功耗。 关键词:碰撞;裂纹;检测;修复 一、车身侧面修复 汽车碰撞造成汽车车门的损坏,汽车车门就是车身的重要部件,所以对其的修复就十分重要了。 汽车车门的构造按其功能来分,如图1所示,连接部件:14-车门铰链、13-车门开度限位器;使用功能部件:1-三角窗、4-车门玻璃、6-车门插销、7-门锁外手柄、8-门锁、10-固定拉手、11-门锁内手柄、12-玻璃升降器手柄;装饰部件:2-门内板、3-门外板、9-车门内护板;密封部件:5-密封条。 图1 汽车车门的构造图

汽车车门就是通过铰链安装在车身上的,所以车门的修复必须首先对汽车车身进 行检测与修复。汽车的车门铰链安装在汽车车身的侧车身上,侧车身将前车身、车顶板连接起来形 成乘坐室。侧车身构件作为车门的支架,为保证驾驶室整体结构具有足够的强度与刚度,增加了纵横方向的加强板件,形成一个坚固的箱形结构。汽车车门就就是箱形结构的“盖”,汽车车门使用时要频繁的开闭,而且对汽车箱体结构的密封、降低噪声都非 常重要,因此其修复的技术要求就是很高的。 1、碰撞方向对车门的损伤 汽车碰撞一般有正面、侧面、后面(追尾)3个方向,由于汽车车身设计时要考虑乘 员的安全,通常在车身结构方面都进行了精心设计。汽车的车身碰撞受力的大小、方向就是碰撞损伤的重要因素,结合车身结构进行分析,从而对碰撞损伤部位与损伤程度得 出正确的结论,就是碰撞修复的重要前提。汽车的正面碰撞,表示正面碰撞的传力途径与碰撞力的分散状况。从而得到从正面 碰撞以后,车门受碰撞力的影响较小。通常可以修复的车身损伤,只会影响到侧车身的前门柱;可以通过对前车身的基准检测点进行测量,就可以确定修复方案。而后面(追尾)的碰撞对车门影响通常也不大。本文主要对此类的碰撞损伤及修复进行分析。 2、侧面碰撞的损伤分析与修复 钣金技师应首先目测车身受碰撞的损伤程度,如果判定侧车身的门框受到损伤,应 先将车门拆下。拆卸车门应先将“车门开度限位器”拆除,然后拆除车门铰链螺栓。拆除时应细心观察有无损伤情况。车门拆除后应先对车身测量检测基准点的变形情况进行观察与检测,如果碰撞后发生了变形则应校正。如果侧车身车门门槛中心受到严重碰撞,则车身底板会弯曲变形,校正可以采用牵拉的方法。牵拉时可根据作业的设备及碰撞损伤情况选择修复方案。需要强调的就是承载式车身都就是薄板结构,因此在恢复车身构件的原始形状的同时还应使金属板件恢复原来的晶格状态。通常可采用局部加热与捶击的方法,加热的范围、温度要依据有关修理规范与经验实施,切勿随意操作。汽车设计人员为了保证乘员的安全,在车身前纵梁与前挡泥板的加强板上,都设置 了某些结构,目的就是利用受力时突变部位的变形来控制碰撞,有效的吸收碰撞能量,使结构突变部位首先发生卷褶,减少碰撞能量的传递。由于车身部位的材料强度的差异,能使碰撞力分散到整个结构上,从而减少结构的变形量。在车身修复中,修复人员应根据不同的车身结构与材料采用不同的修复工艺。例如承载式的车身构件修复后不起承载作用,必然会带来整车强度的下降,反之对承载式车身构件按非承载式构件修复,

相关文档
相关文档 最新文档