文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池的电化学性能表征

锂离子电池的电化学性能表征

锂离子电池的电化学性能表征
锂离子电池的电化学性能表征

五、电池的电化学性能表征

电池序号及材料质量分别为:

(1)循环伏安的测试

1、原理:

对研究电极在一定的电位范围内施加按一定速率线性变化的电位信号,当当电位达到扫描范围的上下限时在反向扫描至下上限,即用三角波电势信号扫描,同时自动测量并记录电位扫描过程中电极上的电流响应,多次扫描得到I与E的关系。本试验可通过CV图研究电极反应过程与可逆性。

2、测试方法:

电位扫描范围:3.0V—4.2V,扫描速度:0.2mV/s-1,循环次数为三次,测试时间为10小时。

3、分析

将实验测得的数据用origin作图得:

由图可知,循环伏安图中出现了明显的氧化还原峰,第一次扫描的氧化还原电对为:3.761/4.12,第二次和第三次扫描后,氧化电位降低,还原电位增大,电势差减小,说明在扫描过程中电极没有发生明显的极化,同时后两次扫描的CV曲线重合度较好,说明电极的可逆性较好。

(2)恒流法充电性能测试

测试三个电池,一个由老师提供的标准电池,两个为实验课制作的电池。

序号5678

材料质量/g0.01290.01180.01200.0118

由I=200*B*倍率求算出每个倍率下的测试电流为:

9号为老师提供的电池,现对5、6、9号电池进行充放电测试。

○一充放电曲线图为:

○9号:

6号:

序号0.2C电流/mA0.5C电流/mA1C电流/mA2C电流/mA3C电流/mA5C电流/mA10C电流/mA

50.240.6 1.2 2.4 3.6612

60.20480.512 1.024 2.048 3.072 5.1210.24

70.21120.528 1.056 2.112 3.168 5.2810.56

80.20480.512 1.024 2.048 3.072 5.1210.24

90.105920.26480.5296 1.0592 1.5888 2.648 5.296

○5号:

如图所示,5号电池几乎不放电,可能是活性物质脱落,导致电极反应不能正常进行。而6号的放电性能较好,较平稳,老师提供的电池比容量最高达到了137mAh/g,同文献中实际容量140mAh/g比较相近,电池质量较好。而本实验中的6号电池的计算容量值达到了190mAh/g,超过文献值比较大,可能是在电池称量和充放电测量时存在误差。

○二循环倍率图

由上可知,6号电池的性能比较,故选用6号进行此项分析

如图可知,电池刚开始循环是比容量较高,随着循环次数的增大,比容量不断下降,但是在相同倍率下时,比容量基本保持稳定(除了大于5C),说明电池放电容量受循环次数和倍率的影响较大。

(3)交流阻抗的测试

1、原理

给电化学系统施加一个频率不同的小振幅的交流正弦电势波,测量交流电势与电流信号的比值随正弦波频率的变化。由此可以测得电极的电阻值。

2、数据分析

由于测量此项时选用了五号,而由充放电测试结果可知五号电池基本未放电,交流阻抗结果发现充放电后并没有明显出现SEI膜的阻抗图,故选用第一小组的测量结果进行与之比较,分析原因。

拟合电路为:LR(QR)(QR)

数据一:

①充放电前:

index fixed symbol start end% error

1 0 L 3.55E-07 3.56E-0718.19

2 0 R 1.215 1.214 3.402

3 0 Q 0.0044810.0044810.5174

4 0 n 0.80.93360.2998

5 0 R 1.47E+04 1.47E+0567.07

6 0 Q 2.63E-05 2.63E-05 4.726

7 0 n 0.80.74840.6253

8 0 R 46.1346.140.5363

②充放电后:

由上图表可知,充电前,电阻值从左到右为:1.215,1.47E+04,46.13,结果可发现在充电前,拟合出来的SEI膜的电阻值很大(1.47E+04),说明此时并未存在SEI膜,同拟合图相对应,只出现一个半圆。充放电后,拟合图中并未明显出现两个半圆,不过从阻值来看,R SEI=425.4,有减小的趋势,说明充放电过程中的确有电流通过,但性能不好,没有明显的充放电痕迹,同充放电测试的结果相对应。原因可能是电极制作时,正极有所缺陷,粘结性不够好,导致锂离子无法正常嵌入\脱出,或是活性材料发生脱落。

数据二(用了第一组的数据):

充电后:

index fixed symbol start

end% error

1 0 L 3.92E-07 3.93E-0718.04

2 0 R 1.158 1.158 3.791

3 0 Q0.0042180.0042180.5772

4 0 n0.80.92920.3389

5 0 R425.4 4.25E+062029

6 0 Q 1.99E-05 1.99E-05 4.836

7 0 n0.80.76520.6219

8 0 R55.7155.710.5602

由上图可知,具有明显的两个半圆,说明通过充放电循环形成了SEI膜,其阻值为35.49欧姆。在锂离子电池首次充放电过程中,电极材料与电解液在固液相界面上发生反应,形成一层覆盖于电极材料表面的钝化层,具有固体电解质的特征,是电子绝缘体,却是Li+的优良导体,Li+可以经过该钝化层自由地嵌入和脱出。所以在电化学阻抗测试的时候,比原先多了一个阻抗值SEI阻值。由测量结果可知,所测的的阻值为:RΩ=1.301欧姆,R SEI=35.49欧姆,Rct=177.6欧姆。

(4)总结扣式电池制备过程中的注意事项

1、将正极材料与导电剂等添加剂混合时应该充分研磨,致使混合均匀,加入PVDF后要研磨适当,不可研磨太过,导致太干燥,会影响电池性能。

2、刮片时注意用力均匀适当,保证材料厚度的均匀。

3、冲片前检查材料是否易脱落,材料易脱落的电极会影响充放电性能,可能不放电。

4、电池组装时应该尽量避免电解液长时间暴露于空气中,电解液的挥发会导致电池性能的下降。

5、从极片制作好之后,减少极片流转过程中的时间,在最短时间内制作成电池,加强质量监督。

混合动力汽车用锂离子电池的研究

作者简介: 余章华(1968-),男,湖北人,武汉大学化学与分子科学学院博士生,研究方向:电化学; 汪 莉(1978-),女,湖北人,武汉力兴电源股份有限公司工程师,研究方向:化学电源; 周运鸿(1940-),男,湖北人,武汉大学化学与分子科学学院教授,博士生导师,研究方向:电化学。?科研论文? 混合动力汽车用锂离子电池的研究 余章华1,2,汪 莉2,周运鸿1 (11武汉大学化学与分子科学学院,湖北武汉 430072; 21武汉力兴电源股份有限公司,湖北武汉 430074) 摘要:混合动力汽车电池主要特点之一是能以15C 以上的大电流放电。用扣式电池测试极片厚度、材料粒度和导电剂含量对电池放电倍率的影响;运用优化的实验参数,做成8Ah 动力电池,并测试电池性能;对8Ah 电池的功率特性进行了讨论。关键词:锂离子电池; 混合动力汽车; 高倍率 中图分类号:TM91219 文献标识码:A 文章编号:1001-1579(2005)04-0248-02 Study on Li 2ion battery for HEV YU Zhang 2hua 1,2,WAN G Li 2,ZHOU Yun 2hong 1 (11College of Chemist ry and Molecular Sciences ,W uhan U niversity ,W uhan ,Hubei 430072,China ; 21W uhan L ixing Power Sources Co 1,L td 1,W uhan ,Hubei 430074,China ) Abstract :HEV battery should be discharged at above 15C high current 1The effects of the thickness of the electrode ,the parti 2 cle sizes of the materials and the amount of the conductive carbon on the dischar ge rate were studied with the coin cell 1The 8Ah power battery was manufactured with optimized experimental parameters 1The performance of the battery was tested 1The power characteristic of the 8Ah power battery was discussed 1 K ey w ords :Li 2ion battery ; hybrid electric vehicles (HEV ); high rate 混合动力汽车主要动力源是内燃机,在启动加速和爬坡时用电池辅助,减速时通过电池回收能量,从而可以使内燃机始终在其最佳负载下工作,因此可以提高燃油的燃烧效率,同时降低油耗和减少污染气体的排放。这样,对电池的容量要求大幅度降低,但功率要求却相应提高[1]。 一般锂离子电池的最大放电倍率为3~5C ,而目前要将放电倍率提高到15C 以上,难免会有发热的问题。为了研究方便,本文作者首先采用扣式电池来研究配方和工艺对大幅减少电池发热的影响,待各方面条件优化后,再测试8Ah 电池。 1 实验 将LiCoO 2、碳黑、PVDF 按质量比93∶3∶4均匀混合,根据不同的涂覆量涂在厚度为0102mm 的铝箔上,正、反面涂覆厚度相同。将负极材料石墨、SBR (丁苯橡胶)、CMC 按质量比95∶3∶ 2混合均匀,涂覆在厚度为0102mm 的铜箔上,正、反面涂覆厚 度相同。将涂好的正、负极片放在真空干燥箱内120℃干燥8 h 。将正、负极片以卷绕方式组装成L IR2430扣式电池,注液后 封口。单体8Ah 电池壳为方形不锈钢,正、负极片按叠片方式装配。采用程控测试仪(武汉产)进行测试,环境温度为20~25℃。2 结果与讨论 211 极片厚度、导电剂和粒径的影响 将用不同厚度的极片做成的扣式电池,用20C 电流进行放电,放电曲线如图1a 。由图1a 看出:以20C 放电时,正极厚度为0106mm 的电池可放出额定容量(25mAh )的76%;正极厚度为0112mm 的电池可放出额定容量的6%;而正极厚度为0116mm 的电池基本放不出电。由此可知:极片的厚度对电池在大倍率放电时的容量有很大影响。减小极片厚度,可改善电池高倍率放电的性能。 在正极中加入不同量的导电剂(石墨)后,做成电池进行放电,放电曲线如图1b 。由此可知:在正极粉中加大导电剂的量,对大电流放电影响不大。 用不同粒径的正极材料按相同的配方和极片厚度做成扣式电池,进行放电,其放电曲线如图1c 。由图1c 可以看出:正极材料LiCoO 2的粒径为11μm 和6μm 时,电池放电容量基本相同。6μm 的放电平台稍高。212 8Ah 电池的性能 选择粒径为6μm 的LiCoO 2,导电剂含量为3%,做成厚度为0106mm 的正极片;负极采用人造石墨,电极厚度也为0106mm ,用叠片方法做成8Ah 的电池;分别用715C 和15C 倍率放电,放电结果如图2a 。电池表面温度变化如图2b 。 第35卷 第4期2005年 8月电 池 BA TTER Y BIMON THL Y Vol 135,No 14 Aug 1,2005

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂离子电池研究进展

华东理工大学2013—2014学年第1学期 《新能源与新材料》课程论文 2013.11 班级___复材101__ 学号__10103638__ 姓名____温乐斐_____ 开课学院材料学院任课教师张衍成绩__________

锂离子电池研究进展 温乐斐 (华东理工大学) 摘要 二次锂电池的优点是高体积、高质量比容量、长循环寿命、低放电速率,是环保型电源的理想备选之一。本文简单介绍了锂离子电池的正极材料、负极材料及电解质的种类和发展概况,并对当今锂离子电池发展所面临的问题和发展前景进行阐述。最后说明了一下其发展前途和产业化趋势。 关键词:锂电池;正极材料;负极材料;电解质;发展进程 The Research and Development of Rechargeable Lithium-ion Battery Wen Lefei (East China University of Science and Technology) Abstract The rechargeable lithium-ion battery has been extensively used in mobile communication and portable instruments due to many advantages, such as high volumetric and gravimetric energy density, long cycle life, and low self-discharge rate. In addition, it is one of the promising alternatives as the power sources. The development of researches on materials of lithium-ion battery for cathode, abode and electrolyte are introduced in this paper, at the same time lithium-ion existing problems is battery and prospects are also outlined. At last, the strategic position and some future investigating trends are also presented. Key words: Li-ion battery; cathode materials; anode materials; electrode materials; research and development; progress

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

锂电池性能测试简介

锂电池性能测试简介 充电及低公害。 各种先进电池中最被重视的商品化电池。所以在此以介绍锂离子电池为主。 可从 压 例。 止电压)又有[CV]的精准。 2.C-V曲线 C-V曲线是描充电池在充电、放电过程中电压及电容量间的关系。充电曲线能让工程师了解如何设计电池充电器,而放电曲线能使工程师在设计电路时正确的掌握电池的特性。例如最佳的工作电压、不同温度C-rate下的电池电容量。

我们也可从电池目前的电压对照C-V曲线:以斜率大小负值概略估算电池的残存容量(Residual Capacity)。因此C-V曲线是了解电池的重要工具。 2、分电池(Cell)性能测试 已组装之分电池,俗称单位电池(以下简称电池)。 在组装后静置8-12小时后为让电解液充份浸润极板,即依下列程序进行测试作 2.) 锂离子电池的化成:除了是使电池作用物质藉第一次充电转成正常电化学作用 钝化膜在锂离子电池的电化 商除将材 料及制程列为机密外化成条件也被列为该公司电池制造的重要机密。 相同于极板测试:将电池实际活化物总量换算理论电容量,以低C-rate C N。因此充、放电电流可以C-rate即C N的系数来表示其大小,关系如下式: I=M* C N I:充、放电电流大小(mA) M:倍率C-rate(hr-1) C N:N小时内完全放电的额定电容量(mAhr)

例如:电池之5小时率容量C5=300mAhr,则C-rate为0.5之充、放电电流大小 将是: I=M* C5=(0.5 hr-1)*(300mAhr)=150mA 电池化成过程中会有大量的能量耗损,最可能是用于钝化膜的形成。 3.电池电容量测试 再依下列步骤 容量在初期会有减少的情形。电池的放电电容量自0.753mA向下减少。待电池电化 有些化成程序亦包含了数十次的充放电 4. 3到520 5.自放电率测试 选取化2到37日放电一 采取积分记录。 于第28

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。 2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶

内容(十三)锂离子电池的电化学阻抗谱分析

锂离子电池得电化学阻抗谱分析 1、锂离子电池得特点 锂离子电池充电时,正极中得锂离子从基体脱出,嵌入负极;而放电时,锂离子会从负极中脱出,嵌入正极。因此锂离子电池正负极材料得充放电容量、循环稳定性能与充放电倍率等重要特性均与锂离子在嵌合物电极材料中得脱出与嵌入过程密切相关。这些过程可以很好地从电化学阻抗谱(EIS)得测量与解析中体现出来。 2、电化学阻抗谱得解析 2、1、高频谱解析 嵌合物电极得EIS谱得高频区域就是与锂离子通过活性材料颗粒表面SEI 膜得扩散迁移相关得半圆(高频区域半圆),可用一个并联电路R SEI/C SEI表示。 R SEI与C SEI就是表征锂离子活性材料颗粒表面SEI膜扩散迁移过程得基本参数,如何理解R SEI与C SEI与SEI膜得厚度、时间、温度得关系,就是应用EIS研究锂离子通过活性材料颗粒表面SEI膜扩散过程得基础。 2、1、1、高频谱解析R SEI与C SEI与SEI膜厚度得关系 SEI膜得电阻R SEI与电容C SEI与SEI膜得电导率、介电常数ε得关系可用简单得金属导线得电阻公式与平行板电容器得电容公式表达出来 (1) (2) 以上两式中S为电极得表面积,l为SEI膜得厚度。倘若锂离子在嵌合物电极得嵌入与脱出过程中ρ、ε与S变化较小,那么R SEI得增大与C SEI得减小就意味着SEI 厚度得增加。 2、1、2、SEI膜得生长规律(R SEI与时间得关系) 嵌合物电极得SEI膜得生长规律源于对金属锂表面SEI膜得生长规律得分析而获得。对金属锂电极而言,SEI膜得生长过程可分为两种极端情况:(A)锂电极表面得SEI膜不就是完全均匀得,即锂电极表面存在着锂离子溶解得阳极区域与电子穿过SEI膜导致得溶剂还原得阴极区域;(B)锂电极表面得SEI膜就是完全均匀

锂离子电池的正极材料的分析研究综述

锂离子电池的正极材料的研究综述 班级:********* 姓名: ******** 学号:********* 课程老师:***** 日期: *******

锂离子电池的正极材料的研究综述 摘要:本文简要介绍了锂离子电池的发展简况,并对锂离子电池的工作原理进行分析。重点综述了各类锂离子电池正极材料的研究状况和性能表征,通过比较各类材料的优缺点,对今后的进一步研究分析,提供了一个思路和纲领。最后,介绍了正极材料的近期一些研究进展,并对锂离子电池的今后发展进行了展望。希望,锂离子电池材料能够有个更大的突破。 关键词:锂离子电池;正极材料;工作原理;制备方法 1 引言 过去半个世纪内,可充电电池作为一种高效储能装置得到了迅猛的发展。而科学技术的进步则对这种储能装置的电化学性能提出了越来越多的要求。比如:集成电路技术的发展使电子仪器日趋小型化、便携化,相应地要求电池具有体积小、重量轻、比能量高的特点;空间探索技术和国防、军事装备技术的不断发展要求电池具有高的比能量和长储存寿命;环境保护意识的加强使人们对电动机车的发展日益关注,而这种电池则应有大的比能量和比功率。在众多的电池体系中,锂离子电池以其工作电压高、能量密度大和质量轻等优点倍受全球该领域的科研工作者的关注。 自1980年Goodenough等提出钻酸锂(LICoO2>作为锂充电电池的正极材料,揭开了锂离子电池发展的雏形后,锂离子电池在其后得到了飞速的发展。1990年,日本SONY公司的新型锂离子二次电池研制成功并实现商品化,进入90年代以后锂离子电池作为新一代的高效便携式能源,在无线电通讯、笔记本电脑、摄录一体化及空间技术等方面显示出广阔的应用前景和潜在的巨大经济效益,并被认为是21世纪最有潜力的新型能源。 2 锂离子电池的发展简况 2.1锂原电池 20世纪60年代发生的能源危机促进了锂原电池的的商品化。锂原电池是以Li或Li-Al合金作为负极材料的一系列电池,包括Li/MnO2、Li/I2、 Li/SOC12、Li/FeS2等。与一般的原电池相比,它具有电压高、比能量高、工作温度范围宽和放电平稳的优点,因此先后在便携式电器、心脏起搏器、军事设备、及航空航天领域得到应用。 2.2锂二次电池

锂离子电池隔膜的性能要求

锂离子电池由正、负极材料、电解液、隔膜以及电池外壳组成。隔膜作为电池的“第三极”,是锂离子电池中的关键内层组件之一。隔膜吸收电解液后,可隔离正、负极,以防止短路,同时允许锂离子的传导。在过度充电或者温度升高时,隔膜通过闭孔来阻隔电流传导,防止爆炸。隔膜性能的优势决定电池的界面结构和内阻,进而影响电池的容量、循环性能,充放电电流密度等关键特性。性能优异的隔膜对提高电池的综合性能起着有重要的作用。 锂离子电池隔膜生产材料目前还是以聚烯烃为首选,聚烯烃材料具有强度高、防火、耐化学试剂、耐酸碱腐蚀性好、生物相容性好、无毒等优点,在众多领域得到了广泛的应用。聚烯烃化合物可以提供良好的机械性能和化学稳定性,具有高温自闭性能,确保锂离子二次电池在日常使用上的安全性。 1 、厚度均匀性 隔膜的厚度均匀性与所有薄膜生产企业要求是一样的,是一个永远追求的重要的质量指标,它直接影响隔膜卷的外观质量以致内在性能,是生产过程严加控制的质量指标之一。锂电池用户对隔膜的分切有其特殊的要求,除了有特殊的隔膜分切机、专业培训的专业分切人员外,与隔膜自身的厚度均匀性关系最为密切。 在自动化程度很高的隔膜生产线上,隔膜厚度都是采用精度很高的在线非接触式测厚仪及快速反馈控制系统进行自动检测和控制的。隔膜的厚度均匀性包括纵向厚度均匀性和横向厚度均匀性。其中横向厚度均匀性尤为重要。一般均要求控制在+1微米以内。“南通天丰”公司厚度现已控制在+0.5微米以内。 2、力学性能 隔膜的力学性能是影响其应用的一个重要因素,如果隔膜破裂,就会发生短路,降低成品率,因此要求隔膜在电池组装和充放电结构使用过程中,需要自身具有一定的机械强度。隔膜的机械强度可用抗穿刺强度和拉伸强度来衡量。 拉伸强度,隔膜的拉伸强度与制膜的工艺相关联。采用单轴拉伸,膜在拉伸方向上与垂直方向强度不同;而采用双轴拉伸时,隔膜在两个方向上一致性会相近。一般拉伸强度主要是指纵向强度要达到100MP以上,横向强度不能太大,过大会导致横向收缩率增大,这种收缩会加大锂电池厂家正、负极接触的几率。 抗穿刺强度,抗穿刺强度是指施加在给定针形物上用来戳穿隔膜样本的质量,用它来表示隔膜在装配过程中发生短路的趋势。因隔膜是被夹在凹凸不平的正、负极片间,需要承受很大的压力。为了防止短路,所以隔膜必须具备一定的抗穿刺强度。抗穿刺强度值一般在300-500g。 3、透过性能 透过性能可用在一定时间和压力下,通过隔膜气体的量的多少来表征,主要反映了锂离子透过隔膜的通畅性。隔膜透过性的大小是隔膜孔隙率、孔径、孔的形状及孔曲折度等隔膜内部孔结构综合因素影响的结果。 作为锂电池隔膜材料,本身具有微孔结构,微孔在整个隔膜材料中的分布应当均匀。孔径一般在0.03-0.12um。孔径太小增加电阻,孔径太大易使正负极接触或被枝晶刺穿短路。 隔膜厂家现在基本以透气度、孔隙度指标来衡量透气性。透气率是指特定的空气在特定的压力下通过特定面积隔膜所需要的时间,用Gurley值来表示。根据隔膜厚度,一般在300-700s/100ml。孔隙率是单体膜的体积中孔的体积百分率,它与原料树脂及膜的密度有关。现有锂离子电池隔膜的孔隙率在40%-50%之间。 4、理化性能 润湿性和润湿速度:较好的润湿性有利于提高隔膜与电解液的亲和性,扩大隔膜与电解液的接触面,从而增加离子导电性,提高电池的充放电性能和容量。隔膜对电解液的润湿

内容(十三)锂离子电池的电化学阻抗谱分析报告

锂离子电池的电化学阻抗谱分析 1. 锂离子电池的特点 锂离子电池充电时,正极中的锂离子从基体脱出,嵌入负极;而放电时,锂离子会从负极中脱出,嵌入正极。因此锂离子电池正负极材料的充放电容量、循环稳定性能和充放电倍率等重要特性均与锂离子在嵌合物电极材料中的脱出和嵌入过程密切相关。这些过程可以很好地从电化学阻抗谱(EIS )的测量与解析中体现出来。 2. 电化学阻抗谱的解析 2.1. 高频谱解析 嵌合物电极的EIS 谱的高频区域是与锂离子通过活性材料颗粒表面SEI 膜的扩散迁移相关的半圆(高频区域半圆),可用一个并联电路R SEI /C SEI 表示。 R SEI 和C SEI 是表征锂离子活性材料颗粒表面SEI 膜扩散迁移过程的基本参数,如何理解R SEI 和C SEI 与SEI 膜的厚度、时间、温度的关系,是应用EIS 研究锂离子通过活性材料颗粒表面SEI 膜扩散过程的基础。 2.1.1. 高频谱解析R SEI 和C SEI 与SEI 膜厚度的关系 SEI 膜的电阻R SEI 和电容C SEI 与SEI 膜的电导率、介电常数的关系可用简单 的金属导线的电阻公式和平行板电容器的电容公式表达出来 S l R SEI ρ= (1) l S C SEI ε = (2) 以上两式中S 为电极的表面积,l 为SEI 膜的厚度。倘若锂离子在嵌合物电极的嵌入和脱出过程中 、 和S 变化较小,那么R SEI 的增大和C SEI 的减小就意味着 SEI 厚度的增加。由此根据R SEI 和C SEI 的变化,可以预测SEI 膜的形成和增长情况(这是理解高频容抗弧的关键)。 2.1.2. SEI 膜的生长规律(R SEI 与时间的关系) 嵌合物电极的SEI 膜的生长规律源于对金属锂表面SEI 膜的生长规律的分析而获得。对金属锂电极而言,SEI 膜的生长过程可分为两种极端情况:(A )锂电

锰酸锂的制备及其电化学性能

锰酸锂的制备及其电化学性能 锰酸锂具有安全性高、成本低、无毒、无污染等优点,被认为是最有希望取代LiCoO2应用于大功率用电设备的锂离子电池正极材料。因此,对于锰酸锂制备及应用的研究引起了国内外相关领域的广泛关注。 本论文选取锰酸锂为研究对象,对该系列材料的制备方法、工艺条件进行了探索研究,并初步测试了其在Li2SO4水溶液电解液中的电化学性能。首先采用水热甲醇还原反应法制备出层状o-LiMnO2亚微米棒。 该制备过程分两步进行:第一步是通过KMnO4与乙二胺的水热反应合成MnOOH亚微米棒前驱体(含有少量Mn3O4杂质相);第二步是o-LiMnO2亚微米棒的制备。通过实验确定前驱体的最佳制备条件为:n(乙二胺)/n(KMnO4)=2,120℃水热反应12小时。 XRD结果表明,在第二步中前驱体易被氧化形成杂质相Li0.2Mn2O4。对第二步的探索实验表明,当LiOH的浓度为3mol/L、V(甲醇)/V(H20)=5时,对 (?)o-LiMnO2(?)目的生成最为有利。 在分析实验结果的基础上,提出了o-LiMnO2亚微米棒的形成过程。材料的电化学性能分析表明,层状o-LiMnO2在首次循环就已发生晶相转变形成类尖晶石型LiMn2O4.继而采用醋酸溶胶-凝胶法成功地制备了高纯度、高结晶度的尖晶石型LiMn2O4.通过TG、XRD、FTIR和Raman分析,确定了材料的制备工艺条件:煅烧温度为600-800℃,煅烧时间仅需2小时。 通过SEM和电化学测试对65℃下制备的典型样品的形貌和电化学性能进行了分析,结果表明样品的晶粒尺寸为亚微米级,LiMn2O4电极在充放电过程中表现出良好的可逆性和较好的大电流放电性能。最后采用改进的固相反应法制备出

锂离子电池最新各种性能测试

锂离子电池最新各种性能测试 1 20℃放电性能测试 首先要进行预循环处理,在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V(GB/T18287-2000规定)后,搁置0.5h~1h,再以0.2CA电流放电到终止电压2. 75V(GB/T18287-2000规定)。在20℃放电性能之前进行预循环处理,能有效激活电池的内部组织结构,给以下各项试验做准备。 在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V后,改为恒压充电,直到充电电流小于或等于0.01CA,最长充电时间不大于8h,停止充电,这时,我们可以清晰的看到电脑仪器上显示出的充电示意图形。在充电过程中,一定要注意时间和充电电流的问题,充电电流达到或等于0.01CA即可,时间不易太长,一般都不超过8h。时间过长会造成过度充电,将会对锂离子电池中过多的锂离子硬塞进负极碳结构里去,这样其中一些锂离子再也无法释放出来,严重的会造成电池的损坏,会影响后面的试验数据结果。电池充电结束后,搁置0.5~1h在20±5℃的温度条件下,以0.2CA电流放电到终止电压2.75V,时间应不低于5小时。 上述充放电重复循环5次,当有一次循环符合GB/T18287-2000中4.2.1的规定放电到终止电压2.75V,时间应不低于5小时。该试验即可停止,有些电池在第一个循环放电时间和终止电压没有达到标准要求,这不意味着电池不合格,是因为电池中的一些聚合物质没被充分地激活,待到第二个循环后被激活,可能就会达到标准要求。 2 锂离子电池的高温性能试验(温度55±2℃) 高温性能试验是测试电池在高温的环境条件下的工作状态,由于在高温的条件下锂离子电池中的物质会发生很大变化,主要测试它的放电时间和安全性。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池放入55±2℃的高温箱中恒温2h,然后以1CA电流放电至终止电压,放电时间应符合标准4.3条规定,时间不小于51分钟,电池外观应无变形和爆炸现象,如有爆炸现象立即切断电源,把测试线从测试仪表上取下。此试验要严格控制好箱体温度,注意温度不易太高。 3 恒定湿热性能试验(温度40℃,相对湿度90%~95%,时间48h) 恒定湿热性能试验是测试电池在温度相对偏高,湿度较大的野外环境下的工作状态,电池按GB /T18287-2000中5.3.2.2条规定充电结束后,将电池放入40±2℃,相对湿度90%~95%的恒温恒湿箱中搁置48h后,将电池取出在环境温度20±5℃的条件下搁置2h,目测电池外观,应符合标准4.7.1的规定,再以1CA电流放电至终止电压,放电时间应符合标准4.7.1的规定不低于36mi n,电池外观应无明显变形、锈蚀、冒烟或爆炸。 4 振动试验 振动试验是测试电池在不平稳的有振幅的特殊条件下的工作状态。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池直接安装或通过夹具安装在振动台的台面上,按下面的振动频

锂离子电池性能影响因素分析及其改进方法研究

云南大学学报(自然科学版),2007,29(S1):237~242CN53-1045/N ISSN0258-7971 Journal of Yunnan U niversity Ξ锂离子电池性能影响因素分析及其改进方法研究 王晋鹏,胡欲立 (西北工业大学航海学院,陕西西安 710072) 摘要:如何提高锂离子电池的性能已经成为锂离子电池开发研究中的一个热点问题.介绍分析了影响锂离子电池性能的几种因素,讨论了几种改善锂离子电池性能的方法,有助于采取相应措施来提高锂离子电池的性 能. 关键词:锂离子电池;性能;影响因素;改进方法 中图分类号:TM912.9 文献标识码:A 文章编号:0258-7971(2007)S1-0237-06 锂离子电池是继镍氢电池之后的新一代绿色高能可充电电池,具有电压高、体积小、比能量高、循环性能好、自放电小、无记忆效应、无污染等突出优点,近10a来得到了飞速的发展,已在二次电池市场中与镍镉电池,镍氢电池呈三足鼎立之势,并且其市场份额仍在不断扩大.锂离子电池以其卓越的性价比优势在笔记本电脑、移动电话、武器装备等领域占据了主导地位,被认为是21世纪对国民经济和人民生活具有重要意义的高科技产品[1]. 随着锂离子电池在各个领域的大量应用,对锂离子电池的性能要求越来越高,如何提高锂离子电池的性能已经成为锂离子电池开发研究中的一个热点问题[2].影响锂离子电池性能的因素是多种多样的,本文分析介绍了影响锂离子电池性能的主要因素,并介绍了改善锂离子电池性能的几种方法. 1 影响锂离子电池性能的主要因素 影响锂离子电池性能的主要因素包括:正负极材料的选择、电解质的选择、隔膜的选择以及电池的结构和尺寸. 1.1 正极材料的选择 正极材料是锂离子电池中Li+的“贮存库”.在充电时锂离子从正极脱出嵌入负极,放电时锂离子从负极脱出插入正极材料中.作为锂离子电池正极材料要求具有以下性能[3]: (1)具有较高的氧化还原电位,从而使电池的输出电压高; (2)电极中大量的锂能够发生可逆嵌入和脱嵌以得到高容量; (3)在整个嵌入/脱嵌过程中,锂的嵌入和脱嵌应可逆且主体结构没有或很少发生变化,这样可确保良好的循环性能; (4)氧化还原电位的变化应尽可能少,这样电池的电压不会发生显著变化,可保持平稳的充电和放电; (5)具有较好的电子导电率和离子导电率,这样可减少极化,并能进行大电流充放电; (6)电极在整个电压范围内化学稳定性好,不与电解质等发生反应; (7)锂离子在电极材料中有较大的扩散系数,便于快速充放电; (8)具有良好的热稳定性; (9)从实用角度而言,电极材料应该便宜,对环境无污染. 理论上具有层状结构和尖晶石结构的材料都可用作锂离子电池的正极材料,但由于制备工艺上存在困难,目前所应用的正极材料仍然是钴、镍、锰、钒和铁的氧化物,如:LiCoO2、LiNiO2、LiMn2O4 Ξ收稿日期:2007-03-20  作者简介:王晋鹏(1982- ),男,山西人,硕士生,主要从事锂离子电池的热分析方面的研究.

锂离子电池材料的制备和电化学性能表征

锂离子电池材料的制备和电化学性能表征(24学时) 一、实验目的 1.了解尖晶石化合物的组成和结构特点。 2.了解无机材料制备方法-共沉淀制备前驱体、高温固相煅烧制备的反应原理和反应过程中影响产物性质的一般因素。 3.了解嵌入-脱嵌反应和锂离子电池的工作原理。 4.了解电池性能的主要参数和测试的主要方法。 二、实验原理 由于具有电压高、容量高、无污染、安全性好、无记忆效应等优异性能,锂离子电池自1991年实现商品化以来,其种类、性能和应用领域都得到了巨大的发展,已经成为最重要的二次电池之一,在手机、笔记本电脑、摄像机、便携式DVD、电动汽车甚至核潜艇上都得到了广泛应用。而锂离子电池的相关研究也成为当前化学电源研究的重要领域。 锂离子电池性能的优劣主要取决于电池的正极。锰酸锂LiMn2O4是重要的锂离子电池正极活性材料之一,其结构见图1。该结构为锂离子的迁移提供了三维通道。 图1 尖晶石晶体结构图 在充电过程中,锂离子从正极脱出,嵌入负极活性物质;而放电过程中,是锂离子的回嵌的过程,因此锂离子电池又称为“摇椅式”电池。电池充放电时,正极活性材料中Li+的迁移过程可用下式表示。 充电时:LiMn2O4→ xLi+ + Li1-x Mn2O4 + xe- 放电时:Li1-x Mn2O4 + yLi++ ye-→ Li1-x+y Mn2O4(0≤x≤1,0≤y≤x)

LiMn2O4的制备方法很多,常用的有高温固相法、低温固相法和液相法等。其中,低温固相法和液相法(溶胶-凝胶法)虽然反应温度低,但产物的电化学性能不能令人满意,且不适合工业化生产的需要。所谓高温固相法,就是在高温下使锰源化合物与锂源化合物反应生成LiMn2O4。 由于LiMn2O4在高温下容量衰减较快,需通过钴离子掺杂进行改性制备LiMn1.85Co0.15O4. 对固相反应而言,原料的分散状态(粒度)、孔隙度、装填密度、反应物的接触面积等对固-固反应速度有很大的影响。必须将反应物粉碎并混合均匀以使原子或离子的扩散比较容易进行。就本实验所制LiMn1.85Co0.15O4,采用共沉淀制备锰钴碳酸盐前驱体以达到离子程度的均匀混合,然后混锂后再进行高温煅烧制备出目标化合物。 三、仪器和试剂 1.仪器 X射线衍射仪,充放电测试仪,箱式电阻炉(马弗炉,Mufflefurnace),磁力搅拌器,陶瓷坩埚, 电子分析天平,恒温鼓风干燥箱,研钵,压力机,手套箱。 2.试剂 2 mol·L-1硝酸锰钴(Mn/Co=1.85:0.15)溶液,碳酸钠,碳酸锂,金属锂片,Celgard 2400隔膜,PVDF粘合剂(13%),导电炭黑,石墨,电解液(1.15mol·L-1LiPF6的碳酸乙烯酯(EC)-碳酸二甲酯(DMC)-碳酸二乙酯混合溶液(质量比:EC:DMC:DEC=3:1:1),电池壳。所有试剂均为分析纯。 四、实验步骤 1.Mn0.925Co0.075CO3的制备 取2mol·L-1的硝酸锰钴溶液40mL(约0.08mol), 至于烧杯中。称取8.9g碳酸钠(MW105.99)(0.084mol)至于另一烧杯中,然后加去离子水约80mL,摇动至完全溶解。将搅拌磁子至于硝酸锰钴溶液中,然后置于电磁搅拌器上进行搅拌,并开动加热,待温度升至约50℃,用滴管将碳酸钠溶液缓慢加入到硝酸锰钴溶液中(约半小时加完),控制溶液最终pH值约7.5~8,持续搅拌1h,将沉淀抽滤并用蒸馏水洗涤5~6次,而后置于恒温鼓风干燥箱中于110℃烘干。 2.锂锰钴复合氧化物LiMn1.85Co0.15O4的制备 将干燥的Mn0.925Co0.075CO3(MW 115.24)与摩尔比1:0.27的碳酸锂(MW 73.89)在研钵中研磨混匀(约需45~60min),转入陶瓷坩埚中,压实,开口放置在马弗炉中,于600℃下反应4h,然后升温至850℃反应12h,自然冷却到室温。 3.结构表征 将反应产物从马弗炉中取出,用研钵研细,装袋,标明合成人和合成条件,然后进行XRD表征。 4.电极的制备 将LiMn2O4粉末、石墨、乙炔黑以及作为粘合剂的PVDF(13%)按质量分数比86:2:6:6的比例混合均匀,加入适量的溶剂N-甲基吡咯烷酮(NMP)后,

内容(十三)锂离子电池的电化学阻抗谱分析

内容(十三)锂离子电池的电化学阻抗谱分析

锂离子电池的电化学阻抗谱分析 1. 锂离子电池的特点 锂离子电池充电时,正极中的锂离子从基体脱出,嵌入负极;而放电时,锂离子会从负极中脱出,嵌入正极。因此锂离子电池正负极材料的充放电容量、循环稳定性能和充放电倍率等重要特性均与锂离子在嵌合物电极材料中的脱出和嵌入过程密切相关。这些过程可以很好地从电化学阻抗谱(EIS )的测量与解析中体现出来。 2. 电化学阻抗谱的解析 2.1. 高频谱解析 嵌合物电极的EIS 谱的高频区域是与锂离子通过活性材料颗粒表面SEI 膜的扩散迁移相关的半圆(高频区域半圆),可用一个并联电路R SEI /C SEI 表示。 R SEI 和C SEI 是表征锂离子活性材料颗粒表面SEI 膜扩散迁移过程的基本参数,如何理解R SEI 和C SEI 与SEI 膜的厚度、时间、温度的关系,是应用EIS 研究锂离子通过活性材料颗粒表面SEI 膜扩散过程的基础。 2.1.1. 高频谱解析R SEI 和C SEI 与SEI 膜厚度的关系 SEI 膜的电阻R SEI 和电容C SEI 与SEI 膜的电导率、介电常数ε的关系可用简单的金属导线的电阻公式和平行板电容器的电容公式表达出来 S l R SEI ρ = (1) l S C SEI ε= (2) 以上两式中S 为电极的表面积,l 为SEI 膜的厚度。倘若锂离子在嵌合物电极的嵌入和脱出过程中ρ、ε和S 变化较小,那么R SEI 的增大和C SEI 的减小就意味着SEI 厚度的增加。由此根据R SEI 和C SEI 的变化,可以预测SEI 膜的形成和增长情况(这是理解高频容抗弧的关键)。 2.1.2. SEI 膜的生长规律(R SEI 与时间的关系) 嵌合物电极的SEI 膜的生长规律源于对金属锂表面SEI 膜的生长规律的分

影响锂离子电池循环性能的七大因素

影响锂离子电池循环性能的七大因素 我们最关注的电池莫过于锂离子电池,因为我们的手机、pad、笔记本的电池就是锂离子电池,它的续航能力也一直是企业研究的一个重点方向。循环性能对锂离子电池的重要程度无需多言,就宏观来讲,更长的循环寿命意味着更少的资源消耗,因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。 1、水分 过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成,但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。 2、正负极压实 正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能,从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 3、测试的客观条件 测试过程中的充放电倍率、截止电压、充电截止电流、测试中的过充过放、测试房温度、测试过程中的突然中断、测试点与电芯的接触内阻等外界因素,都会或多或少影响循环性能测试结果,另外,不同的材料对上述客观因素的敏感程度各不相同,统一测试标准并且了解共性及重要材料的特性应该就足够日常工作使用了。 4、负极过量 负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量,对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见,若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 5、涂布膜密度 单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务,膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异,对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环,考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度,所以,评估时也需要均衡考量。 6、材料种类 材料的选择是影响锂离子电池性能的第一要素,选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱,从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的,材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。

相关文档
相关文档 最新文档